Intertwining Operators/Genus-0 Conformal Blocks Associated to Permutation-Twisted Modules of $V^{\otimes n}$

Bin Gui

Yau Mathematical Sciences Center, Tsinghua University

$$
2021 \text { Sep. BIRS-IASM }
$$

Why should we care about permutation orbifold CFT?

- We have a nice twisted-untwisted correspondence for VOA/conformal net modules
(Barron-Dong-Mason, Kac-Longo-Xu, Dong-Xu-Yu, etc.)
- We are able to compute fusion rings/rules among twisted modules using untwisted data.
(Conformal net: Kawahigashi-Longo-Mueger, Longo-Xu, Kac-Long-Xu
$V O A$: Dong-Li-Xu-Yu Explicit modules, but fusion rules are not
Modular functor: Barmeier-Schweigert , completely determined

Tensor category: EdieMichell-C.Jones-Plavnik,
Fusion rings are completely
Bischoff-C.Jones, Delaney
\longleftarrow characterized, but objects are
"abstract"
etc.)

The computation of fusion rules suggests a relation:

Genus 0 permutation-twisted chiral CFT

Higher genus untwisted chiral CFT

Goal: Make the above relation precise (and complete) in the VOA setting

- We assume V is a VOA with positive L_{0}-grading
- V-modules: \mathbb{N}-gradable (i.e. admissible) modules, where each graded subspace is finite-dimensional.
- To define conformal blocks for untwisted modules, we need data

$$
\mathfrak{X}=\left\{C ; x_{1}, \ldots, x_{N} ; \eta_{1}, \ldots, \eta_{N}\right\}
$$

where C is a (not necessarily connected) compact Riemann surface with distinct marked points x_{j} and holomorphic injective

$$
\eta_{j}: \text { a neighborhood of } x_{j} \rightarrow \mathbb{C}, \quad \eta_{j}\left(x_{j}\right)=0
$$

- Associate a V-module W_{j} to X_{j}
- A conformal block (CB) associated to \mathfrak{X} and all the modules W_{j} is a linear functional $\varphi: W_{1} \otimes \cdots \otimes W_{N} \rightarrow \mathbb{C}$ "invariant" under the action of V. (Zhu, E.Frenkel-BenZvi)
- If \mathfrak{X} is \mathbb{P}^{1} with 3 marked points associated with modules $W_{1}, W_{2}, W_{3}^{\prime}$ then

$$
\operatorname{dim}\{\mathrm{CB}\}=\text { fusion rule } N_{W_{1} W_{2}}^{W_{3}}
$$

Contragredient
to W_{3}
Theorem (many people, completed by Damiolini-Gibney-Tarasca):
Assume V is CFT-type, C_{2}-cofinite, rational.

- $\operatorname{dim}\{\mathrm{CB}\}$ is finite and depends only the topology of C , the number of marked points on each connected component, and the modules.
- Factorization property.

Factorization property

$$
\begin{aligned}
& \operatorname{dim} C B(\underbrace{w_{1}}_{w_{2}-w_{3}} \\
& \text { - } \operatorname{dim} C B\binom{w^{\prime}}{\square} \\
& \operatorname{dim} C B(\overbrace{w_{2}}^{w_{1}} \begin{array}{lll}
w_{3} & w_{1} \\
w_{4}
\end{array})=\sum_{i r w} \operatorname{dim} C B\left(\begin{array}{ll}
w_{1} \\
w & 0 \\
w & 0
\end{array}\right)
\end{aligned}
$$

Genus-0 twisted conformal blocks

- Let U be a VOA, a finite group $G \leq \operatorname{Aut}(U)$. If $g \in G$, a g-twisted module is assumed to satisfy $Y\left(u, e^{-2 i \pi} z\right)=Y(g u, z)$ where the arg of $e^{-2 i \pi} z$ is $-2 \pi+$ the \arg of z
- We consider $\mathfrak{P}=\left(\mathbb{P}^{1} ; x_{1}, x_{2}, x_{3} ; \eta_{1}, \eta_{2}, \eta_{3} ; \gamma_{1}, \gamma_{2}, \gamma_{3}\right)$

Let $\alpha_{j}=\gamma_{j}^{-1} \varepsilon_{j} \gamma_{j}$, in the picture, $\left[\alpha_{1}\right],\left[\alpha_{2}\right]$ are free generators of $\Gamma=\pi_{1}\left(\mathbb{P}^{1} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}, \star\right) \simeq F_{2}$, and $\left[\alpha_{3}\right]^{-1}=\left[\alpha_{1}\right]\left[\alpha_{2}\right]$. Then we associate g_{j-} twisted module \mathcal{W}_{j} to x_{j} (for $\mathrm{j}=1,2,3$) such that $g_{3}^{-1}=g_{1} g_{2}$.

A CB associated to \mathfrak{P} and $\mathcal{W}_{1}, \mathcal{W}_{2}, \mathcal{W}_{3}$ is a linear functional $\varphi: \mathcal{W}_{1} \otimes \mathcal{W}_{2} \otimes \mathcal{W}_{3} \rightarrow \mathbb{C}$ "invariant under the action of V when moving along $\gamma_{1}, \gamma_{2}, \gamma_{3}$ ".

Now let $E=\{1,2, \ldots, n\}$, let $U=V^{\otimes E} \simeq V^{\otimes n}$, let $G=\operatorname{Perm}(E)$. For each $g \in G$ define $\operatorname{Orb}(g)=\{$ the set of g-orbits of $E\}$. Then $\mathcal{W}=\underset{\omega \in \operatorname{cor}(\mathrm{s})}{\otimes} W_{\omega}$ (where each W_{ω} is a V-module) has a natural structure of g-twisted U-module (by Barron-DongMason).
 module. Consider a branched covering $\varphi: C \rightarrow \mathbb{P}^{1}$ which is unbranched outside the finite set $\varphi^{-1}\left\{x_{1}, x_{2}, x_{3}\right\}$ and, near each point of this set it looks like $z \mapsto z^{k}$.

Examples of branched coverings:

(a) $\varphi: \mathbb{P}^{1} \xrightarrow{z^{2}} \mathbb{P}^{1} \quad$ with branched points $0, \infty$
(b) elliptic curve $w^{2}=z(z-a)(z-b) \xrightarrow{z} \mathbb{P}^{1}$ with branched points $0, a, b, \infty$

Describe $\varphi: C \rightarrow \mathbb{P}^{1}$

- We have 1-1 correspondence

$\left\langle g_{1}, g_{2}, g_{3}\right\rangle$-orbit Ω of E

 connected component C_{Ω} of C- Define an action $\Gamma \curvearrowright E$ sending $\left[\alpha_{j}\right] \mapsto g_{j}$. The restriction $\Gamma \curvearrowright \Omega$ is transitive, which is equivalent to a coset action $\Gamma \curvearrowright \Gamma / \Gamma_{\Omega}$ for a cofinite subgroup $\Gamma_{\Omega} \leq \Gamma$.

Then $\Gamma_{\Omega} \leq \Gamma$ corresponds to $\varphi: C_{\Omega} \backslash \varphi^{-1}\left\{x_{1}, x_{2}, x_{3}\right\} \rightarrow \mathbb{P}^{1} \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ via the "(cofinite) subgroup \leftrightarrow (finite) covering space" correspondence.

- Moreover, we have 1-1 correspondence

- Near $\tilde{x}_{j, \omega}, \varphi$ is equivalent to $z \mapsto z^{|\rho|}$ where $|\omega|$ is the size of ω.

Theorem (G.) A linear functional $\quad \varphi: \mathcal{W}_{1} \otimes \mathcal{W}_{2} \otimes \mathcal{W}_{3}=\underset{j=1,2,3}{\otimes} \underset{\omega \in \operatorname{Orb}\left(g_{j}\right)}{\otimes} W_{j, \omega} \rightarrow \mathbb{C}$ is a CB associated to and $\mathcal{W}_{1}, \mathcal{W}_{2}, \mathcal{W}_{3}$ iff it is a CB associated to
the branched covering C, the set of marked points
C_{2}-cofinite or rational is not assumed in this theorem

$$
\varphi^{-1}\left\{x_{1}, x_{2}, x_{3}\right\}=\left\{\tilde{x}_{j, \omega}: j=1,2,3, \omega \in \operatorname{Orb}\left(g_{j}\right)\right\}
$$

with suitable local coordinates, and the associated V-modules $W_{j, \omega}$.

Note: If C_{Ω} corresponds to the $\left\langle g_{1}, g_{2}, g_{3}\right\rangle$ - orbit Ω with size $|\Omega|$, then by Riemann-Hurwitz formula,

$$
\operatorname{genus}\left(C_{\Omega}\right)=1-|\Omega|+\frac{1}{2} \sum_{j=1,2,3} \sum_{\substack{\omega \in \operatorname{Orb}\left(g_{j}\right) \\ \omega \subset \Omega}}(|\omega|-1)
$$

Applications and outlook

- The currently existing VOA/Conforma Net correspondences (Carpi-Kawahigashi-Longo-Weiner, Henriques-Tener, Raymond-Tanimoto-Tener ...) are genus-0 by nature. Now we know that doing such genus-0 correspondence for permutation-twisted CFT amounts to establishing higher genus correspondence for untwisted CFT.
- We have a new explanation of why multi-interval Jones-Wassermann subfactors/mutiinterval Connes fusion are related to higher genus CFT. (Asked e.g. by Wassermann in Proceedings ICM 1994.)
- Problem: In VOA, understand genus-1 (or higher genus) data and phenomena (e.g. modular invariance, mapping class group rep.) from the point of view of genus-0 permutation orbifolds (e.g. their G-crossed braided fusion categories). And vice versa!
- Problem: For a completely rational conformal net \mathcal{A} with $g_{1}-, g_{2}-, g_{1} g_{2}$-permutation twisted modules $\mathcal{H}_{1}, \mathcal{H}_{2}, \mathcal{H}_{3}$ (or possibly with more modules), construct an explicit isomorphism between $\operatorname{Hom}_{\mathcal{A}}\left(\mathcal{H}_{1} \boxtimes \mathcal{H}_{2}, \mathcal{H}_{3}\right)$ and a space of conformal blocks for untwisted modules (in the sense of Bartels-Douglas-Henriques).

Thank you!

