Intertwining Operators/Genus-0 Conformal Blocks Associated to Permutation-Twisted Modules of $V^{\otimes n}$

Bin Gui

Yau Mathematical Sciences Center, Tsinghua University

2021 Sep. BIRS-IASM

Why should we care about permutation orbifold CFT?

• We have a nice twisted-untwisted correspondence for VOA/conformal net modules

(Barron-Dong-Mason, Kac-Longo-Xu, Dong-Xu-Yu, etc.)

• We are able to compute fusion rings/rules among twisted modules using untwisted data.

(*Conformal net*: Kawahigashi-Longo-Mueger, Longo-Xu, Kac-Long-Xu VOA: Dong-Li-Xu-Yu Modular functor: Barmeier-Schweigert *Tensor category*: EdieMichell-C.Jones-Plavnik, Bischoff-C.Jones, Delaney etc.) The computation of fusion rules suggests a relation:

Genus 0 permutation-twisted chiral CFT Higher genus untwisted chiral CFT

Goal: Make the above relation precise (and complete) in the VOA setting

- We assume V is a VOA with positive L_0 -grading
- V-modules: \mathbb{N} -gradable (i.e. admissible) modules, where each graded subspace is finite-dimensional.
- To define conformal blocks for untwisted modules, we need data

$$\mathfrak{X} = \{C; x_1, \dots, x_N; \eta_1, \dots, \eta_N\}$$

where C is a (not necessarily connected) compact Riemann surface with distinct marked points x_j and holomorphic injective

$$\eta_j$$
: a neighborhood of $x_j \to \mathbb{C}$, $\eta_j(x_j) = 0$

- Associate a V-module W_i to X_j
- A conformal block (**CB**) associated to \mathfrak{X} and all the modules W_j is a linear functional $\varphi: W_1 \otimes \cdots \otimes W_N \to \mathbb{C}$ "invariant" under the action of V. (Zhu, E.Frenkel-BenZvi)
- If \mathfrak{X} is \mathbb{P}^1 with 3 marked points associated with modules W_1, W_2, W_3 ' then

dim{CB} = fusion rule
$$N_{W_1W_2}^{W_3}$$

Contragredient to W_3

Theorem (many people, completed by Damiolini-Gibney-Tarasca): Assume V is CFT-type, C_2 -cofinite, rational.

- dim{CB} is finite and depends only the topology of C, the number of marked points on each connected component, and the modules.
- Factorization property.

Factorization property

Genus-0 twisted conformal blocks

- Let U be a VOA, a finite group $G \le \operatorname{Aut}(U)$. If $g \in G$, a g-twisted module is assumed to satisfy $Y(u, e^{-2i\pi}z) = Y(gu, z)$ where the arg of $e^{-2i\pi}z$ is $-2\pi +$ the arg of z
- We consider $\mathfrak{P} = (\mathbb{P}^1; x_1, x_2, x_3; \eta_1, \eta_2, \eta_3; \gamma_1, \gamma_2, \gamma_3)$

Let $\alpha_j = \gamma_j^{-1} \varepsilon_j \gamma_j$, in the picture, $[\alpha_1], [\alpha_2]$ are free generators of $\Gamma = \pi_1(\mathbb{P}^1 \setminus \{x_1, x_2, x_3\}, \star) \simeq F_2$, and $[\alpha_3]^{-1} = [\alpha_1][\alpha_2]$. Then we associate g_j - twisted module \mathcal{W}_j to x_j (for j=1,2,3) such that $g_3^{-1} = g_1g_2$.

A CB associated to \mathfrak{P} and $\mathcal{W}_1, \mathcal{W}_2, \mathcal{W}_3$ is a linear functional $\varphi: \mathcal{W}_1 \otimes \mathcal{W}_2 \otimes \mathcal{W}_3 \to \mathbb{C}$ "invariant under the action of V when moving along $\gamma_1, \gamma_2, \gamma_3$ ".

Now let $E = \{1, 2, ..., n\}$, let $U = V^{\otimes E} \simeq V^{\otimes n}$, let G = Perm(E). For each $g \in G$ define $\text{Orb}(g) = \{\text{the set of } g \text{-orbits of } E\}$. Then $\mathcal{W} = \bigotimes_{\omega \in \text{Orb}(g)} W_{\omega}$ (where each W_{ω} is a V-module) has a natural structure of g-twisted U-module (by Barron-Dong-Mason).

For j=1,2,3, associate $\mathcal{W}_j = \bigotimes_{\omega \in Orb(g_j)} W_{j,\omega}$ to the marked point x_j . Each $W_{j,\omega}$ is a V-module. Consider a branched covering $\varphi : C \to \mathbb{P}^1$ which is unbranched outside the finite set $\varphi^{-1}\{x_1, x_2, x_3\}$ and, near each point of this set it looks like $z \mapsto z^k$.

Examples of branched coverings:

(a) $\varphi: \mathbb{P}^1 \xrightarrow{z^2} \mathbb{P}^1$ with branched points $0, \infty$

(b) elliptic curve $w^2 = z(z-a)(z-b) \xrightarrow{z} \mathbb{P}^1$ with branched points $0, a, b, \infty$

Describe $\varphi: C \to \mathbb{P}^1$

• We have 1-1 correspondence

connected component C_{Ω} of C

 $\langle g_1, g_2, g_3 \rangle$ -orbit Ω of E

• Define an action $\Gamma \curvearrowright E$ sending $[\alpha_j] \mapsto g_j$. The restriction $\Gamma \curvearrowright \Omega$ is transitive, which is equivalent to a coset action $\Gamma \curvearrowright \Gamma / \Gamma_{\Omega}$ for a cofinite subgroup $\Gamma_{\Omega} \leq \Gamma$.

• Moreover, we have 1-1 correspondence

• Near $\tilde{x}_{j,\omega}$, φ is equivalent to $z \mapsto z^{|\omega|}$ where $|\omega|$ is the size of ω .

Theorem (G.) A linear functional $\varphi: \mathcal{W}_1 \otimes \mathcal{W}_2 \otimes \mathcal{W}_3 = \bigotimes_{j=1,2,3} \bigotimes_{\omega \in \operatorname{Orb}(g_j)} W_{j,\omega} \to \mathbb{C}$

is a CB associated to $\begin{pmatrix} r_1 \\ x_1 \end{pmatrix}$

and W_1, W_2, W_3 iff it is a CB associated to

the branched covering C, the set of marked points

 $\varphi^{-1}{x_1, x_2, x_3} = {\tilde{x}_{j,\omega} : j = 1, 2, 3, \omega \in \operatorname{Orb}(g_j)}$

 C_2 -cofinite or rational is not assumed in this theorem

with suitable local coordinates, and the associated V-modules $W_{j,\omega}$.

Note: If C_{Ω} corresponds to the $\langle g_1, g_2, g_3 \rangle$ - orbit Ω with size $|\Omega|$, then by Riemann-Hurwitz formula,

$$\operatorname{genus}(C_{\Omega}) = 1 - |\Omega| + \frac{1}{2} \sum_{\substack{j=1,2,3 \\ \omega \in \operatorname{Orb}(g_j) \\ \omega \subset \Omega}} \left(|\omega| - 1 \right)$$

Applications and outlook

- The currently existing VOA/Conforma Net correspondences (Carpi-Kawahigashi-Longo-Weiner, Henriques-Tener, Raymond-Tanimoto-Tener ...) are genus-0 by nature. Now we know that doing such genus-0 correspondence for permutation-twisted CFT amounts to establishing higher genus correspondence for untwisted CFT.
- We have a new explanation of why multi-interval Jones-Wassermann subfactors/mutiinterval Connes fusion are related to higher genus CFT. (Asked e.g. by Wassermann in Proceedings ICM 1994.)
- Problem: In VOA, understand genus-1 (or higher genus) data and phenomena (e.g. modular invariance, mapping class group rep.) from the point of view of genus-0 permutation orbifolds (e.g. their G-crossed braided fusion categories). And vice versa!
- Problem: For a completely rational conformal net A with g₁-,g₂-,g₁g₂-permutation twisted modules H₁, H₂, H₃(or possibly with more modules), construct an explicit isomorphism between Hom_A(H₁ ⊠ H₂, H₃) and a space of conformal blocks for untwisted modules (in the sense of Bartels-Douglas-Henriques).

Thank you!