Simple integral fusion categories

Sebastien Palcoux

BIMSA (Beijing)

September 20th, 2021

INSTITUTE FOR ADVANCED STUDY IN MATHEMATICS

Fusion rings

A fusion ring is a based \mathbb{Z} -module $\mathcal{F} = \mathbb{Z}\mathcal{B}$ with $\mathcal{B} = \{b_1, \ldots, b_r\}$ finite, together with fusion rules (generalizing the multiplication on a finite group, or the tensor product on its representations):

$$b_i \cdot b_j = \sum_{k=1}^r N_{ij}^k b_k$$

with $N_{ij}^k \in \mathbb{Z}_{\geq 0}$ such that:

- Associativity. $b_i \cdot (b_j \cdot b_k) = (b_i \cdot b_j) \cdot b_k$,
- Neutral. $b_1 \cdot b_i = b_i \cdot b_1 = b_i$,
- Inverse/Adjoint/Dual. $\forall i \exists ! i^* \text{ with } N_{i,k}^1 = N_{k,i}^1 = \delta_{i^*,k}$,
- Frobenius reciprocity. $N_{ij}^k = N_{i^*k}^j = N_{kj^*}^i$.

It may be understood as a representation ring of a 'virtual' group.

The adjoint * induces a structure of finite dim. *-algebra on $\mathbb{C}\mathcal{B}$,

Frobenius-Perron theorem

 $\exists !$ *-homomorphism $d : \mathbb{C}\mathcal{B} \to \mathbb{C}$ such that $d(\mathcal{B}) \subset (0,\infty)$.

- the Frobenius-Perron dim (FPdim) of b_i is $d_i := d(b_i)$,
- the FPdim of \mathcal{F} is $\sum_i d_i^2$,
- the type of \mathcal{F} is $[d_1, d_2, \ldots, d_r]$,

The fusion ring \mathcal{F} is called:

- of *Frobenius type* if for all *i*, $\frac{\operatorname{FPdim}(\mathcal{F})}{d_i}$ is an algebraic integer,
- *integral* if for all i the number d_i is an integer.

The "golden" fusion ring (Yang-Lee rules)

 $\mathcal{B} = \{b_1, b_2\}$, with $b_2^2 = b_1 + b_2$, type $[1, \phi]$ with ϕ golden ratio.

Simple integral fusion rings

A fusion ring w/o proper non-trivial fusion subring is called **simple**. The fusion ring of Rep(G) is simple iff the finite goup G is simple.

The	orem (Liu	I-PWu, <i>A</i>	dv. Math	. 2021)				
		≤ 5						
F	Pdim <	1000000	150000	15000	4080	504	240	132

With the above bounds, there are exactly 34 (perfect) simple integral fusion rings of Frobenius type (4 of which Rep(G)).

#	rank	FPdim	type	group Rep
1	5	60	[1, 3, 3, 4, 5]	PSL(2,5)
1	6	168	[1, 3, 3, 6, 7, 8]	PSL(2,7)
2	7	210	[1, 5, 5, 5, 6, 7, 7]	
2	7	360	[1, 5, 5, 8, 8, 9, 10]	PSL(2,9)
4	7	7980	[1, 19, 20, 21, 42, 42, 57]	
15	8	660	[1, 5, 5, 10, 10, 11, 12, 12]	PSL(2,11)
5	8	990	[1, 9, 10, 11, 11, 11, 11, 18]	
2	8	1260	[1, 6, 7, 7, 10, 15, 20, 20]	
2	8	1320	[1, 6, 6, 10, 11, 15, 15, 24]	

Fusion category (up to equivalence)

A fusion category C is a fusion ring and a solution of its pentagon equations, where $\mu \in \hom_{C}(X_i \otimes X_j, X_k)$ is represented as $\bigvee_{k} f_{j}$

Such a fusion ring is called a Grothendieck ring (i.e. categorifiable).

In the pseudo-unitary case (FPdim = dim_C), it is equiv. to that every (labeled oriented) trivalent graph admits a unique evaluation by (I.o.) tetrahedrons \bigtriangleup (complex numbers called F-symbols). Two evaluations of the triangular prism \bigtriangleup recovers the PE: (TPE) $\sum \cdots \bigtriangleup \bigtriangleup = \sum \cdots \bigtriangleup \bigtriangleup$ **Unitary case**: mirror image (of tetrahedron) = complex conjugate.

Categorification criterion from Quantum Fourier Analysis

Here is the Commutative Schur Product Criterion:

Theorem (Liu-P.-Wu, Adv. Math. 2021)

Let \mathcal{F} be a commutative fusion ring, let (M_i) be its fusion matrices, and let $(\lambda_{i,j})$ be the table given by their simultaneous diagonalization, with $\lambda_{i,1} = ||M_i||$. If $\exists (j_1, j_2, j_3)$ such that

$$\sum_{i} \frac{\lambda_{i,j_1} \lambda_{i,j_2} \lambda_{i,j_3}}{\lambda_{i,1}} < 0$$

then $\ensuremath{\mathcal{F}}$ admits no unitary categorification.

This criterion rules out 28 among the 30 non group-like simple integral fusion rings of the previous classification (more than 93%).

The remaining 2 are denoted \mathcal{F}_{210} and \mathcal{F}_{660} (according to FPdim)

 \mathcal{F}_{660} is excluded (over any field) by the *zero-spectrum criterion*. Note that \mathcal{F}_{210} cannot be excluded by known criteria (see why later), this requires the use a *localization strategy* involving TPE.

Zero-Spectrum Criterion

It is about the existence of a PE of the form xy = 0 with $x, y \neq 0$:

Zero-spectrum criterion (Liu, P., Ren, in preparation)

For a fusion ring \mathcal{F} , if there are indices i_i , $1 \leq i \leq 9$, such that $N_{i_{6},i_{1}}^{i_{6}}, N_{i_{5},i_{6}}^{i_{2}}, N_{i_{5},i_{6}}^{i_{3}}, N_{i_{7},i_{6}}^{i_{1}}, N_{i_{2},i_{7}}^{i_{8}}, N_{i_{8},i_{6}}^{i_{3}}$ are non-zero, and $\sum_{i} N_{i_4,i_7}^k N_{i_5,i_8}^k N_{i_6,i_9^*}^k = 0,$ $N_{i_{0}}^{i_{3}} = 1,$ $\sum_{\iota} N_{i_5,i_4}^k N_{i_3,i_1^*}^k = 1 \text{ or } \sum_{\iota} N_{i_2,i_4^*}^k N_{i_3,i_6^*}^k = 1 \text{ or } \sum_{k} N_{i_5^*,i_2}^k N_{i_6,i_1^*}^k = 1,$ $\sum_{i} N_{i_2,i_7}^k N_{i_3,i_9^*}^k = 1 \text{ or } \sum_{i} N_{i_8,i_7^*}^k N_{i_3,i_1^*}^k = 1 \text{ or } \sum_{i} N_{i_2^*,i_8}^k N_{i_1,i_9^*}^k = 1,$

then \mathcal{F} cannot be categorified (at all) over any field.

It excludes \mathcal{F}_{660} . Idem for "0 = xyz" (one-spectrum criterion).

Localization strategy

In general, the system of pentagon equations is too big to be attacked head-on, but the TPE framework reveals some symmetries allowing us to get local subsystems.

Theorem (Liu-P.-Ren, *in preparation*)

Let C be pseudo-unitary fusion category over \mathbb{C} (so spherical). Let x be a self-adjoint simple object such that for all simple object $a \leq x^2$, then $a^* = a$ and $\langle x^2, a \rangle \leq 1$. Let S_x be the set of simple components of x^2 and S'_x be a subset of S_x such that for all $a, b, c \in S'_x$ then $\langle bc, a \rangle \leq 1$. Then we can consider the subsystem E_x of PE, with variables X(i,j) and Y(i,j) with $(i,j) \in S_x \times S'_x$ such that for all $a, b \in S'_x$

$$\delta_{a,b} = d_b \sum_{i \in S_x} d_i Y(i,a) Y(i,b),$$

$$X(a,b) = \sum_{i \in S_x} d_i Y(i,a) Y(i,b)^2,$$

$$Y(a,b)^2 = \sum_{i \in S_x} d_i Y(i,a) X(i,b)$$

with $X(a, x) = Y(a, x)^2$; X(a, b) = 0 if $\langle b^2, a \rangle = 0$; Y(a, b) = Y(b, a); $Y(1, b) = d_x^{-1}$; $X(1, b) = (d_b d_x)^{-1}$.

Application to \mathcal{F}_{210}

Let call $1, 5_1, 5_2, 5_3, 6_1, 7_1, 7_2$ the simple objects of \mathcal{F}_{210} . Consider E_x where $x = 5_1$, $S_x = \{1, 5_1, 5_3, 7_1, 7_2\}$ and $S'_x = \{1, 5_1, 5_3\}$. It has 10 variables and 12 equations:

$$\begin{split} 5u_0+7u_1+7u_2-4/25=0,\\ 5v_0+5v_1+7v_3+7v_5+1/5=0,\\ 25v_0^2+25v_1^2+35v_3^2+35v_5^2-4/5=0,\\ 5v_0^3+5v_1^3+7v_3^3+7v_5^3-v_0^2+1/125=0,\\ 5v_0v_1^2+5v_1v_2^2+7v_3v_4^2+7v_5v_6^2+1/125=0,\\ 5u_0v_1-v_1^2+7u_1v_3+7u_2v_5+1/125=0,\\ 5v_1+5v_2+7v_4+7v_6+1/5=0,\\ 25v_0v_1+25v_1v_2+35v_3v_4+35v_5v_6+1/5=0,\\ 5v_0^2v_1+5v_1^2v_2+7v_3^2v_4+7v_5^2v_6-v_1^2+1/125=0,\\ 25v_1^2+25v_2^2+35v_4^2+35v_6^2-4/5=0,\\ 5v_1^3+5v_2^3+7v_4^3+7v_6^3-u_0+1/125=0,\\ 5u_0v_2-v_2^2+7u_1v_4+7u_2v_6+1/125=0\end{split}$$

It admits 14 solutions in char. 0, which can be written as a Gröbner basis.

Theorem (Liu-P.-Ren, *in preparation*)

(assumption of previous theorem) Let x, S_x , S'_x and E_x as above, and let $z \in S'_x$ with S_z , S'_z and E_z as above. Then there is an extra equation linking the two independent subsystems E_x and E_z :

$$X_x(z,z) = \sum_{i \in S_x \cap S_z} d_i Y_z(i,z) X_x(i,z)$$

Let us apply above theorem to \mathcal{F}_{210} with E_x as above, $z = 5_3$, $S_z = \{1, 5_2, 5_3, 7_1, 7_2\}$ and $S'_z = \{1, 5_2, 5_3\}$. By putting together the Gröbner bases of E_x , E_z and the extra, we quickly show the absence of solution in char. 0; and so p > 0 (in the pivotal case) by lifting theorem (below) and a quick check on p|210.

Theorem (ENO, 2005)

Let C be a fusion category over $\overline{\mathbb{F}}_p$. If dim $(C) \neq 0$ then it lifts into a Grothendieck-equivalent fusion category in char. 0.

Note that dim(C) = 0 iff p divides FPdim(C), by pseudo-unitarity.

Classification of unitary simple integral fusion categories

Previous classification + criteria + localization leads to:

Corollary (Liu-P.-Ren, *in preparation*)

A unitary simple (perfect) integral fusion category of Frobenius type, rank ≤ 8 and FPdim < 4080 is Grothendieck equivalent to $\operatorname{Rep}(\operatorname{PSL}(2,q))$ with $4 \leq q \leq 11$ prime power.

The existence of a non group-like (unitary) simple integral fusion category is related to a famous open problem of the theory: A fusion category is *weakly group-theoretical* if its Drinfeld center is equivalent to the one coming from a sequence of group extensions.

Theorem (ENO, 2011)

A weakly group-theoretical simple fusion category is Grothendieck equivalent to Rep(G), with G a finite simple group.

Question (ENO, 2011)

Is there an integral fusion category not weakly group-theoretical?

Formal table characterization of commutative fusion ring

Let \mathcal{F} be a commutative fusion ring. Let (M_i) be its fusion matrices, and let $D_i = diag(\lambda_{i,j})$, be their simultaneous diagonalization. The *eigentable* of \mathcal{F} is the table given by $(\lambda_{i,j})$.

Theorem (Folklore?; Liu-P.-Ren, under review)

Let $(\lambda_{i,i})$ be a formal $r \times r$ table. Consider the space of functions from $\{1, \ldots, r\}$ to \mathbb{C} with some inner product $\langle f, g \rangle$. Consider the functions (λ_i) defined by $\lambda_i(j) = \lambda_{i,i}$, and assume that $\langle \lambda_i, \lambda_i \rangle = \delta_{i,j}$. Consider the pointwise multiplication (fg)(i) = f(i)g(i), and the multiplication operator $M_f : g \mapsto fg$. Consider $M_i := M_{\lambda_i}$, and assume that for all *i* there is *j* (automatically unique, denoted i^*) such that $M_i^* = M_i$. Assume that M_1 is the identity. Assume that for all i, j, k, $N_{i,i}^k := \langle \lambda_i \lambda_j, \lambda_k \rangle$ is a nonnegative integer. Then $(N_{i,i}^k)$ are the structure constants of a commutative fusion ring and $(\lambda_{i,j})$ is its eigentable. Moreover, every eigentable of a commutative fusion ring satisfies all the assumptions above.

In previous Theorem, the inner product can be taken of the form

$$\langle f, g \rangle := \sum_{j} \frac{1}{\mathfrak{c}_{j}} f(j) \overline{g(j)}$$

with $c_j = \sum_i |\lambda_{i,j}|^2$ (formal codegrees). So (Verlinde-like formula):

$$N_{i,j}^{k} = \sum_{s} \frac{\lambda_{i,s} \lambda_{j,s} \overline{\lambda_{k,s}}}{\mathfrak{c}_{s}} = \sum_{s} \frac{\lambda_{i,s} \lambda_{j,s} \overline{\lambda_{k,s}}}{\sum_{I} |\lambda_{I,s}|^{2}}$$

Generic character table of $\operatorname{Rep}(\operatorname{PSL}(2,q))$, q even

classparam k charparam c	{1}	{1}	$\{1,\ldots,\frac{q-2}{2}\}$	$\{1,\ldots,\frac{q}{2}\}$
{1}	1	1	1	1
$\{1,\ldots,\frac{q}{2}\}$	q-1	$^{-1}$	0	$-2\cos(\frac{2\pi kc}{q+1})$
{1}	q	0	1	-1^{4+2}
$\{1, \ldots, \frac{q-2}{2}\}$	q+1	1	$2\cos(\frac{2\pi kc}{q-1})$	0
class size	1	$q^2 - 1$	q(q+1)	q(q-1)

There are also tables for $q \equiv 1$ or 3 mod 4. Above Theorem applies on these tables (even when q is not a prime-power).

Interpolated simple integral fusion rings of Lie type

Theorem (Liu-P.-Ren, under review)

The ring of $\operatorname{Rep}(\operatorname{PSL}(2, q))$ interpolate to q non prime-power as a non group-like simple integral fusion ring (∞ family). If q even:

$$\begin{split} \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q-1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{\substack{c_{3} \text{ such that} \\ c_{1}+c_{2}+c_{3}\neq q+1 \text{ and } 2\max(c_{1},c_{2},c_{3})}} \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q,1} &= \sum_{c_{2}}(1-\delta_{c_{1},c_{2}})\mathbf{x}_{q-1,c_{2}} + \mathbf{x}_{q,1} + \sum_{c_{2}}\mathbf{x}_{q+1,c_{2}}, \\ \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q,1} &= \sum_{c_{2}}(1-\delta_{c_{1},c_{2}})\mathbf{x}_{q-1,c_{2}} + \mathbf{x}_{q,1} + \sum_{c_{2}}\mathbf{x}_{q+1,c_{2}}, \\ \mathbf{x}_{q-1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + \mathbf{x}_{q,1} + \sum_{c_{3}}\mathbf{x}_{q+1,c_{3}}, \\ \mathbf{x}_{q,1}\mathbf{x}_{q,1} &= \mathbf{x}_{1,1} + \sum_{c}\mathbf{x}_{q-1,c} + \mathbf{x}_{q,1} + \sum_{c}\mathbf{x}_{q+1,c}, \\ \mathbf{x}_{q,1}\mathbf{x}_{q+1,c_{1}} &= \sum_{c_{2}}\mathbf{x}_{q-1,c_{2}} + \mathbf{x}_{q,1} + \sum_{c_{2}}(1+\delta_{c_{1},c_{2}})\mathbf{x}_{q+1,c_{2}}, \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + (1+\delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{1}\mathbf{h}_{c_{3}}) + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{c_{3}}) \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + (1+\delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{c_{3}}) \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + (1+\delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{c_{3}}) \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + (1+\delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{c_{3}}) \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + (1+\delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{1}) \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\mathbf{x}_{q-1,c_{3}} + (1+\delta_{c_{1},c_{2}})\mathbf{x}_{q,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{1}) \\ \mathbf{x}_{q+1,c_{1}}\mathbf{x}_{q+1,c_{2}} &= \delta_{c_{1},c_{2}}\mathbf{x}_{1,1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{1} + \sum_{c_{3}}\sup(\mathbf{h}_{1}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf{h}_{2}\mathbf$$

They automatically check all the known categorification criteria, and \mathcal{F}_{210} corresponds to q = 6. Idem q odd (and all Lie families?).

Project: application of the localization strategy to others q (all?).