Simple integral fusion categories

Sebastien Palcoux

September 20th， 2021 for Mathematical Innovation and Discovery

数 学 高 等 研 究 院

INSTITUTE FOR ADVANCED STUDY IN MATHEMATICS

A fusion ring is a based \mathbb{Z}-module $\mathcal{F}=\mathbb{Z} \mathcal{B}$ with $\mathcal{B}=\left\{b_{1}, \ldots, b_{r}\right\}$ finite, together with fusion rules (generalizing the multiplication on a finite group, or the tensor product on its representations):

$$
b_{i} \cdot b_{j}=\sum_{k=1}^{r} N_{i j}^{k} b_{k}
$$

with $N_{i j}^{k} \in \mathbb{Z}_{\geq 0}$ such that:

- Associativity. $b_{i} \cdot\left(b_{j} \cdot b_{k}\right)=\left(b_{i} \cdot b_{j}\right) \cdot b_{k}$,
- Neutral. $b_{1} \cdot b_{i}=b_{i} \cdot b_{1}=b_{i}$,
- Inverse/Adjoint/Dual. $\forall i \exists!i^{*}$ with $N_{i, k}^{1}=N_{k, i}^{1}=\delta_{i^{*}, k}$,
- Frobenius reciprocity. $N_{i j}^{k}=N_{i * k}^{j}=N_{k j^{*}}^{i}$.

It may be understood as a representation ring of a 'virtual' group.

The adjoint $*$ induces a structure of finite dim. *-algebra on $\mathbb{C B}$,

Frobenius-Perron theorem

\exists ! $*$-homomorphism $d: \mathbb{C B} \rightarrow \mathbb{C}$ such that $d(\mathcal{B}) \subset(0, \infty)$.

- the Frobenius-Perron $\operatorname{dim}(\mathrm{FPdim})$ of b_{i} is $d_{i}:=d\left(b_{i}\right)$,
- the FPdim of \mathcal{F} is $\sum_{i} d_{i}^{2}$,
- the type of \mathcal{F} is $\left[d_{1}, d_{2}, \ldots, d_{r}\right]$,

The fusion ring \mathcal{F} is called:

- of Frobenius type if for all $i, \frac{\operatorname{FPdim}(\mathcal{F})}{d_{i}}$ is an algebraic integer,
- integral if for all i the number d_{i} is an integer.

The "golden" fusion ring (Yang-Lee rules)

$\mathcal{B}=\left\{b_{1}, b_{2}\right\}$, with $b_{2}^{2}=b_{1}+b_{2}$, type $[1, \phi]$ with ϕ golden ratio.

Simple integral fusion rings

A fusion ring w/o proper non-trivial fusion subring is called simple. The fusion ring of $\operatorname{Rep}(G)$ is simple iff the finite goup G is simple.
Theorem (Liu-P.-Wu, Adv. Math. 2021)

rank	≤ 5	6	7	8	9	10	all
FPdim $<$	1000000	150000	15000	4080	504	240	132

With the above bounds, there are exactly 34 (perfect) simple integral fusion rings of Frobenius type (4 of which $\operatorname{Rep}(G)$).

$\#$	rank	FPdim	type	group Rep
1	5	60	$[1,3,3,4,5]$	$\operatorname{PSL}(2,5)$
1	6	168	$[1,3,3,6,7,8]$	$\operatorname{PSL}(2,7)$
2	7	210	$[1,5,5,5,6,7,7]$	
2	7	360	$[1,5,5,8,8,9,10]$	$\operatorname{PSL}(2,9)$
4	7	7980	$[1,19,20,21,42,42,57]$	
15	8	660	$[1,5,5,10,10,11,12,12]$	$\operatorname{PSL}(2,11)$
5	8	990	$[1,9,10,11,11,11,11,18]$	
2	8	1260	$[1,6,7,7,10,15,20,20]$	
2	8	1320	$[1,6,6,10,11,15,15,24]$	

Fusion category (up to equivalence)

A fusion category \mathcal{C} is a fusion ring and a solution of its pentagon equations, where $\mu \in \operatorname{hom}_{\mathcal{C}}\left(X_{i} \otimes X_{j}, X_{k}\right)$ is represented as

Such a fusion ring is called a Grothendieck ring (i.e. categorifiable).
In the pseudo-unitary case ($\mathrm{FPdim}=\operatorname{dim}_{\mathcal{C}}$), it is equiv. to that every (labeled oriented) trivalent graph admits a unique evaluation by (I.o.) tetrahedrons \qquad (complex numbers called F -symbols).

Two evaluations of the triangular prism
 recovers the PE :

Unitary case: mirror image (of tetrahedron) = complex conjugate.

Categorification criterion from Quantum Fourier Analysis

Here is the Commutative Schur Product Criterion:

Theorem (Liu-P.-Wu, Adv. Math. 2021)

Let \mathcal{F} be a commutative fusion ring, let $\left(M_{i}\right)$ be its fusion matrices, and let $\left(\lambda_{i, j}\right)$ be the table given by their simultaneous diagonalization, with $\lambda_{i, 1}=\left\|M_{i}\right\|$. If $\exists\left(j_{1}, j_{2}, j_{3}\right)$ such that

$$
\sum_{i} \frac{\lambda_{i, j_{1}} \lambda_{i, j_{2}} \lambda_{i, j_{3}}}{\lambda_{i, 1}}<0
$$

then \mathcal{F} admits no unitary categorification.
This criterion rules out 28 among the 30 non group-like simple integral fusion rings of the previous classification (more than 93\%).

The remaining 2 are denoted \mathcal{F}_{210} and \mathcal{F}_{660} (according to FPdim)
\mathcal{F}_{660} is excluded (over any field) by the zero-spectrum criterion. Note that \mathcal{F}_{210} cannot be excluded by known criteria (see why later), this requires the use a localization strategy involving TPE.

Zero-Spectrum Criterion

It is about the existence of a PE of the form $x y=0$ with $x, y \neq 0$:

Zero-spectrum criterion (Liu, P., Ren, in preparation)

For a fusion ring \mathcal{F}, if there are indices $i_{j}, 1 \leq j \leq 9$, such that $N_{i_{4}, i_{1}}^{i_{6}}, N_{i_{5}, i_{4}}^{i_{2}}, N_{i_{5}, i_{6}}^{i_{3}}, N_{i_{7}, i_{9}}^{i_{1}}, N_{i_{2}, i_{7}}^{i_{8}}, N_{i_{8}, i_{9}}^{i_{3}}$ are non-zero, and $\sum_{k} N_{i_{4}, i_{7}}^{k} N_{i_{5}^{*}, i_{8}}^{k} N_{i_{6}, i_{9}^{*}}^{k}=0$,

$$
N_{i_{2}, i_{1}}^{i_{3}}=1,
$$

$$
\sum_{k} N_{i 5, i_{4}}^{k} N_{i_{3}, i_{1}^{*}}^{k}=1 \text { or } \sum_{k} N_{i_{2}, i_{4}^{*}}^{k} N_{i_{3}, i_{6}^{*}}^{k}=1 \text { or } \sum_{k} N_{i_{5}^{*}, i_{2}}^{k} N_{i_{6}, i_{1}^{*}}^{k}=1,
$$

$$
\sum_{k} N_{i_{2}, i_{7}}^{k} N_{i_{3}, i_{9}^{*}}^{k}=1 \text { or } \sum_{k} N_{i_{8}, i_{7}^{*}}^{k} N_{i_{3}, i_{1}^{*}}^{k}=1 \text { or } \sum_{k} N_{i_{2}^{*}, i_{8}}^{k} N_{i_{1}, i_{9}^{*}}^{k}=1,
$$

then \mathcal{F} cannot be categorified (at all) over any field.
It excludes \mathcal{F}_{660}. Idem for " $0=x y z$ " (one-spectrum criterion).

Localization strategy

In general, the system of pentagon equations is too big to be attacked head-on, but the TPE framework reveals some symmetries allowing us to get local subsystems.

Theorem (Liu-P.-Ren, in preparation)

Let \mathcal{C} be pseudo-unitary fusion category over \mathbb{C} (so spherical). Let x be a self-adjoint simple object such that for all simple object $a \leq x^{2}$, then $a^{\star}=a$ and $\left\langle x^{2}, a\right\rangle \leq 1$. Let S_{x} be the set of simple components of x^{2} and S_{x}^{\prime} be a subset of S_{x} such that for all $a, b, c \in S_{x}^{\prime}$ then $\langle b c, a\rangle \leq 1$. Then we can consider the subsystem E_{x} of PE, with variables $X(i, j)$ and $Y(i, j)$ with $(i, j) \in S_{x} \times S_{x}^{\prime}$ such that for all $a, b \in S_{x}^{\prime}$

$$
\begin{aligned}
\delta_{a, b} & =d_{b} \sum_{i \in S_{X}} d_{i} Y(i, a) Y(i, b), \\
X(a, b) & =\sum_{i \in S_{X}} d_{i} Y(i, a) Y(i, b)^{2}, \\
Y(a, b)^{2} & =\sum_{i \in S_{X}} d_{i} Y(i, a) X(i, b)
\end{aligned}
$$

with $X(a, x)=Y(a, x)^{2} ; X(a, b)=0$ if $\left\langle b^{2}, a\right\rangle=0 ; Y(a, b)=Y(b, a) ; Y(1, b)=d_{x}^{-1} ; X(1, b)=\left(d_{b} d_{x}\right)^{-1}$.

Application to \mathcal{F}_{210}

Let call $1,5_{1}, 5_{2}, 5_{3}, 6_{1}, 7_{1}, 7_{2}$ the simple objects of \mathcal{F}_{210}. Consider E_{x} where $x=5_{1}, S_{x}=\left\{1,5_{1}, 5_{3}, 7_{1}, 7_{2}\right\}$ and $S_{x}^{\prime}=\left\{1,5_{1}, 5_{3}\right\}$. It has 10 variables and 12 equations:

$$
\begin{aligned}
5 u_{0}+7 u_{1}+7 u_{2}-4 / 25 & =0, \\
5 v_{0}+5 v_{1}+7 v_{3}+7 v_{5}+1 / 5 & =0, \\
25 v_{0}^{2}+25 v_{1}^{2}+35 v_{3}^{2}+35 v_{5}^{2}-4 / 5 & =0, \\
5 v_{0}^{3}+5 v_{1}^{3}+7 v_{3}^{3}+7 v_{5}^{3}-v_{0}^{2}+1 / 125 & =0, \\
5 v_{0} v_{1}^{2}+5 v_{1} v_{2}^{2}+7 v_{3} v_{4}^{2}+7 v_{5} v_{6}^{2}+1 / 125 & =0, \\
5 u_{0} v_{1}-v_{1}^{2}+7 u_{1} v_{3}+7 u_{2} v_{5}+1 / 125 & =0, \\
5 v_{1}+5 v_{2}+7 v_{4}+7 v_{6}+1 / 5 & =0, \\
25 v_{0} v_{1}+25 v_{1} v_{2}+35 v_{3} v_{4}+35 v_{5} v_{6}+1 / 5 & =0, \\
5 v_{0}^{2} v_{1}+5 v_{1}^{2} v_{2}+7 v_{3}^{2} v_{4}+7 v_{5}^{2} v_{6}-v_{1}^{2}+1 / 125 & =0, \\
25 v_{1}^{2}+25 v_{2}^{2}+35 v_{4}^{2}+35 v_{6}^{2}-4 / 5 & =0, \\
5 v_{1}^{3}+5 v_{2}^{3}+7 v_{4}^{3}+7 v_{6}^{3}-u_{0}+1 / 125 & =0, \\
5 u_{0} v_{2}-v_{2}^{2}+7 u_{1} v_{4}+7 u_{2} v_{6}+1 / 125 & =0,
\end{aligned}
$$

It admits 14 solutions in char. 0, which can be written as a Gröbner basis.

Theorem (Liu-P.-Ren, in preparation)

(assumption of previous theorem) Let x, S_{x}, S_{x}^{\prime} and E_{x} as above, and let $z \in S_{x}^{\prime}$ with S_{z}, S_{z}^{\prime} and E_{z} as above. Then there is an extra equation linking the two independent subsystems E_{x} and E_{z} :

$$
X_{x}(z, z)=\sum_{i \in S_{x} \cap S_{z}} d_{i} Y_{z}(i, z) X_{x}(i, z)
$$

Let us apply above theorem to \mathcal{F}_{210} with E_{X} as above, $z=5_{3}$, $S_{z}=\left\{1,5_{2}, 5_{3}, 7_{1}, 7_{2}\right\}$ and $S_{z}^{\prime}=\left\{1,5_{2}, 5_{3}\right\}$. By putting together the Gröbner bases of E_{x}, E_{z} and the extra, we quickly show the absence of solution in char. 0 ; and so $p>0$ (in the pivotal case) by lifting theorem (below) and a quick check on $p \mid 210$.

Theorem (ENO, 2005)

Let \mathcal{C} be a fusion category over $\overline{\mathbb{F}}_{p}$. If $\operatorname{dim}(\mathcal{C}) \neq 0$ then it lifts into a Grothendieck-equivalent fusion category in char. 0.

Note that $\operatorname{dim}(\mathcal{C})=0$ iff p divides $\operatorname{FPdim}(\mathcal{C})$, by pseudo-unitarity.

Classification of unitary simple integral fusion categories

Previous classification + criteria + localization leads to:
Corollary (Liu-P.-Ren, in preparation)
A unitary simple (perfect) integral fusion category of Frobenius type, rank ≤ 8 and FPdim <4080 is Grothendieck equivalent to $\operatorname{Rep}(\operatorname{PSL}(2, q))$ with $4 \leq q \leq 11$ prime power.

The existence of a non group-like (unitary) simple integral fusion category is related to a famous open problem of the theory: A fusion category is weakly group-theoretical if its Drinfeld center is equivalent to the one coming from a sequence of group extensions.

Theorem (ENO, 2011)

A weakly group-theoretical simple fusion category is Grothendieck equivalent to $\operatorname{Rep}(G)$, with G a finite simple group.

Question (ENO, 2011)

Is there an integral fusion category not weakly group-theoretical?

Formal table characterization of commutative fusion ring

Let \mathcal{F} be a commutative fusion ring. Let $\left(M_{i}\right)$ be its fusion matrices, and let $D_{i}=\operatorname{diag}\left(\lambda_{i, j}\right)$, be their simultaneous diagonalization. The eigentable of \mathcal{F} is the table given by $\left(\lambda_{i, j}\right)$.

Theorem (Folklore?; Liu-P.-Ren, under review)

Let $\left(\lambda_{i, j}\right)$ be a formal $r \times r$ table. Consider the space of functions from $\{1, \ldots, r\}$ to \mathbb{C} with some inner product $\langle f, g\rangle$. Consider the functions $\left(\lambda_{i}\right)$ defined by $\lambda_{i}(j)=\lambda_{i, j}$, and assume that $\left\langle\lambda_{i}, \lambda_{j}\right\rangle=\delta_{i, j}$. Consider the pointwise multiplication $(f g)(i)=f(i) g(i)$, and the multiplication operator $M_{f}: g \mapsto f g$. Consider $M_{i}:=M_{\lambda_{i}}$, and assume that for all i there is j (automatically unique, denoted i^{*}) such that $M_{i}^{*}=M_{j}$. Assume that M_{1} is the identity. Assume that for all i, j, k, $N_{i, j}^{k}:=\left\langle\lambda_{i} \lambda_{j}, \lambda_{k}\right\rangle$ is a nonnegative integer. Then $\left(N_{i, j}^{k}\right)$ are the structure constants of a commutative fusion ring and $\left(\lambda_{i, j}\right)$ is its eigentable. Moreover, every eigentable of a commutative fusion ring satisfies all the assumptions above.

In previous Theorem, the inner product can be taken of the form

$$
\langle f, g\rangle:=\sum_{j} \frac{1}{\mathfrak{c}_{j}} f(j) \overline{g(j)}
$$

with $\mathfrak{c}_{j}=\sum_{i}\left|\lambda_{i, j}\right|^{2}$ (formal codegrees). So (Verlinde-like formula):

$$
N_{i, j}^{k}=\sum_{s} \frac{\lambda_{i, s} \lambda_{j, s} \overline{\lambda_{k, s}}}{\mathfrak{c}_{s}}=\sum_{s} \frac{\lambda_{i, s} \lambda_{j, s} \overline{\lambda_{k, s}}}{\sum_{I}\left|\lambda_{l, s}\right|^{2}}
$$

Generic character table of $\operatorname{Rep}(\operatorname{PSL}(2, q)), q$ even

classparam k	$\{1\}$	$\{1\}$	$\left\{1, \ldots, \frac{q-2}{2}\right\}$	$\left\{1, \ldots, \frac{q}{2}\right\}$
$\{1\}$	1	1	1	1
$\left\{1, \ldots, \frac{q}{2}\right\}$	$q-1$	-1	0	$-2 \cos \left(\frac{2 \pi k c}{q+1}\right)$
$\{1\}$	q	0	1	0
$\left\{1, \ldots, \frac{q-2}{2}\right\}$	$q+1$	1	$2 \cos \left(\frac{2 \pi k c}{q-1}\right)$	0
class size	1	$q^{2}-1$	$q(q+1)$	$q(q-1)$

There are also tables for $q \equiv 1$ or $3 \bmod 4$. Above Theorem applies on these tables (even when q is not a prime-power).

Interpolated simple integral fusion rings of Lie type

Theorem (Liu-P.-Ren, under review)

The ring of $\operatorname{Rep}(\operatorname{PSL}(2, q))$ interpolate to q non prime-power as a non group-like simple integral fusion ring (∞ family). If q even:

$$
\begin{aligned}
& x_{q-1, c_{1}} x_{q-1, c_{2}}=\delta_{q_{1}, c_{2} x_{1,1}+} \sum_{c_{3} \text { such that }} x_{q-1, c_{3}}+\left(1-\delta_{\left.c_{1}, c_{2}\right)}\right) x_{q, 1}+\sum_{c_{3}} x_{q+1, c_{3}}, \\
& c_{1}+c_{2}+c_{3} \neq q+1 \text { and } 2 \max \left(c_{1}, c_{2}, c_{3}\right) \\
& x_{q-1, c_{1} x_{q, 1}}=\sum_{c_{2}}\left(1-\delta_{\left.c_{1}, c_{2}\right)}\right) x_{q-1, c_{2}}+x_{q, 1}+\sum_{c_{2}} x_{q+1, c_{2}}, \\
& x_{q-1, c_{1}} x_{q+1, c_{2}}=\sum_{c_{3}} x_{q-1, c_{3}}+x_{q, 1}+\sum_{c_{3}} x_{q+1, c_{3}} \text {, } \\
& x_{q, 1} x_{q, 1}=x_{1,1}+\sum_{c} x_{q-1, c}+x_{q, 1}+\sum_{c} x_{q+1, c}, \\
& x_{q, 1} x_{q+1, c_{1}}=\sum_{c_{2}} x_{q-1, c_{2}}+x_{q, 1}+\sum_{c_{2}}\left(1+\delta_{c_{1}, c_{2}}\right) x_{q+1, c_{2}},
\end{aligned}
$$

They automatically check all the known categorification criteria, and \mathcal{F}_{210} corresponds to $q=6$. Idem q odd (and all Lie families?).

Project: application of the localization strategy to others q (all?).

