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Bi-unitary connections, subfactors and tensor networks

Physicists in condensed matter physics are recently
interested in a certain family (aijkl)ijkl of complex
numbers labeled with 4 indices, called a 4-tensor, in
connection to two-dimensional topological order. They
construct certain finite dimensional projections out of
this and make physical studies of their ranges.

We first show that their 4-tensor corresponds to a
bi-unitary connection giving a finite dimensional
commuting square, labeled with 4 edges from the 4
Bratteli diagrams. Then our main result identifies the
range of their projections with the higher relative
commutants of the subfactor arising from such a
commuting square.
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A commuting square

Consider the following inclusions of four finite

dimensional C∗-algebras,
A ⊂ B
∩ ∩
C ⊂ D,

with a normalized

trace tr on D and A = B ∩ C.

When the orthogonal projections onto subalgebras B,C
with respect to the L2-norm arising from the trace
commute on D, we say that the above is a commuting
square. If we have span BC = D, then we say that
the commuting square is non-degenerate. Finite
dimensional non-degenerate commuting squares have
been important and well-studied in subfactor theory of
Jones over many years.
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Repeated basic constructions

Starting with a finite dimensional non-degenerate
commuting square, we can repeat basic constructions of
Jones and get increasing sequences of finite dimensional
algebras.
A ⊂ B ⊂ B1 ⊂ B2 ⊂ · · ·
∩ ∩ ∩ ∩
C ⊂ D ⊂ D1 ⊂ D2 ⊂ · · ·
We take the GNS-completions of the unions∪∞

n=1 Bn ⊂
∪∞

n=1 Dn with respect to the trace to get
N ⊂ M . Both N and M are hyperfinite II1 factors
and we get a subfactor of the finite Jones index. We can
also repeat the basic construction vertically and get
another subfactor P ⊂ Q.
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An old question of Jones
When we have a subfactor N ⊂ M with finite Jones
index, we have the Jones tower
N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · arising from the basic
constructions. When we have only finitely many
irreducible bimodules arising from NMkN , we say that
N ⊂ M has a finite depth. This is an important
finiteness condition in connection to 3-dimensional
topology and mathematical physics.

In 1995, Jones asked the following question.

When one of the two subfactors of N ⊂ M and
P ⊂ Q has a finite depth, so does the other?

Sato gave a positive answer and a more detailed
characterization of the relation between the two.
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Strongly amenable subfactors and Popa’s classification

From a subfactor N ⊂ M with finite Jones index, we
get the following sequence of commuting squares.
M ′ ∩ M ⊂ M ′ ∩ M1 ⊂ M ′ ∩ M2 ⊂ · · ·

∩ ∩ ∩
N ′ ∩ M ⊂ N ′ ∩ M1 ⊂ N ′ ∩ M2 ⊂ · · ·
Popa proved that the subfactor N ⊂ M is completely
recovered from the above commuting squares if the
subfactor satisfies a nice analytic property called strong
amenability. If we have a finite depth and M is
hyperfinite, a single commuting square
M ′ ∩ Mk ⊂ M ′ ∩ Mk+1

∩ ∩
N ′ ∩ Mk ⊂ N ′ ∩ Mk+1

for a large k suffices.
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A bi-unitary connection

We choose one edge each from the four Bratteli
diagrams of a commuting square. Then we get an
assignment W of a complex number to each such square
with the following. This is called a bi-unitary connection.
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Basis change with a bi-unitary connection

Paths of length 2 on two Bratteli diagrams give an
orthonormal basis |ξ1ξ2⟩ of a (finite dimensional) Hilbert
space. Those on the other two Bratteli diagrams give
another basis |ξ4ξ3⟩ of the same space, and a bi-unitary
connection gives a basis change as follows.
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ξ1 ξ1

ξ2

ξ3
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ξ4

W=
∑
ξ3,ξ4

Namely, the bi-unitary connection W gives a unitary
matrix ⟨ξ1ξ2|ξ4ξ3⟩ on this Hilbert space. This unitarity
is a “half” of bi-unitarity.
Yasu Kawahigashi (Univ. Tokyo) Tensor Networks and Subfactors Hangzhou (online), Sept. 2021 7 / 17



The string algebra construction

Suppose we have a series of Bratteli diagrams for
inclusions C = A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 ⊂ · · · .
We have a model for these inclusions as follows. Let
(ξ1, ξ2) be a pair of path of the same length on this
Bratteli diagram with a common starting vertex and a
common ending vertex at some stage. We call such a
pair a string and they span a finite dimensional C-vector
space. A string (ξ, η) really means an operator |ξ⟩⟨η|
in the bracket notation, and this gives an algebra
structure among strings of the same length.
We make an embedding of a string (ξ1, ξ2) of length k
into the next row as

∑
η(ξ1 · η, ξ2 · η), where η is a

path of length 1 and · stands for concatenation of paths.
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Construction of a subfactor

We use four Bratteli diagrams and their reflections to
obtain doubly indexed string algebras Akl. Since the
bi-unitary connection gives a basis change of paths of
length 2, it also gives a basis change of strings of length

2 so that we have inclusions
Akl ⊂ Ak,l+1

∩ ∩
Ak+1,l ⊂ Ak+1,l+1.

This is a commuting square due to the other “half” of
bi-unitarity.
Taking the GNS-completions, we have the limit algebras
Ak,∞ and A∞,l, and they are hyperfinite II1 factors. We
naturally have two subfactors A0,∞ ⊂ A1,∞ and
A∞,0 ⊂ A∞,1, like N ⊂ M and P ⊂ Q before.
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An example for the Dynkin diagrams

We give an example of a bi-unitary connection as follows.
Fix one of the A-D-E Dynkin diagram and use it for
the four Bratteli diagrams. Let n be its Coxeter number

and set ε =
√
−1 exp

π
√
−1

2(n + 1)
. We write µx for the

Perron-Frobenius eigenvector entry for a vertex x. Then
a bi-unitary connection is given as follows.
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Figure: A bi-unitary connection on the Dynkin diagram
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A subfactor and a fusion category

Suppose the subfactor A0,∞ ⊂ A1,∞ (or equivalently
A∞,0 ⊂ A∞,1) has a finite depth. Consider the
bimodules A0,∞(Ak,∞)A0,∞ and their irreducible
decompositions. We get only finitely many irreducible
bimodules in this way and we have a fusion category of
bimodules. We have a relative tensor product of
bimodules and dual bimodules there.

We also have corresponding tensor products and
irreducible decompositions at the level of bi-unitary
connections. We then have an equivalent fusion category
of bi-unitary connections. This correspondence is given
by the open string bimodule construction, due to
Asaeda-Haagerup.
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A 4-tensor from a bi-unitary connection

Suppose we have a bi-unitary connection Wa. We then
define a 4-tensor a as follows.
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Here W ′
a stands for the horizontal reflection of Wa. We

also use the vertical reflection so that we can concatenate
4-tensors as usual. The reflection corresponds to basic
construction and the vertical concatenation of 4-tensors
corresponds to the product of bi-unitary connections.
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A matrix product operator algebra

Suppose we have a 4-tensor corresponding to a
commuting square giving a subfactor of finite depth.

Bultinck-Mariën-Williamson-Şahinoğlu-Haegeman-
Verstraete gave an anyon algebra, a finite dimensional
C∗-algebra, in this setting and argued that its minimal
central projections give anyons describing a
two-dimensional topological order. Here an anyon is a
new type of quasi-particle more general than a boson and
a fermion and it is expected to be useful for constructing
a topological quantum computer.

We proved that this anyon algebra is isomorphic to the
tube algebra of Ocneanu and anyons correspond to
irreducible objects of the Drinfel′d center.
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A projector matrix product operator

We define a matrix product operator Ok
a as follows.

a a · · · a

η1

ξ1

η2

ξ2

ηk

ξk∑
| ξ1ξ2 · · · ξk⟩⟨η1η2 · · · ηk |

We then set P k =
∑
a

da

w
Ok

a like Bultinck-Mariën-

Williamson-Şahinoğlu-Haegeman-Verstraete. This is a
projector matrix product operator (PMPO) and it acts
on certain projected entangled pair state (PEPS).
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Higher relative commutants of a subfactor

The range of the projector matrix product operator P k

plays an important role in theory of two-dimensional
topological order, and we identify it with the higher
relative commutant A′

∞,0 ∩A∞,k of the subfactor. This

is equal to A0,k if (and only if) the original bi-unitary
connection is flat, but we do not assume this flatness
here.
We have the inclusion A′

∞,0 ∩ A∞,k ⊂ A0,k due to
Ocneanu’s compactness argument and he proved that an
element in A′

∞,0 ∩ A∞,k is characterized as a flat field
of strings of length k. A field of strings is an element in
a certain string algebra and it is flat if and only if it does
not change the form under parallel transport of length 2.
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A sketch of a proof

We sketch a proof of the above identification.
It is not difficult to show that if we have a flat field of
strings, then it is preserved under the projector matrix
product operator P k because a flat field does not
change the form under a parallel transport.
Conversely, take an element in the range of the projector
matrix product operator P k. Then we construct an
element xm ∈ A′

m,0 ∩ Am,k in a simple manner. Using

the Perron-Frobenius theorem, we show that {xm}m is
a Cauchy sequence in the L2-norm, so it converges to
some x in A′

∞,0 ∩ A∞,k and gives a flat field of strings.
We next show that all xm are actually equal to x.
The above two maps are actually mutual inverses.
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The Drinfel′d center and Morita equivalence

For getting a fusion category, we used the subfactor
A0,∞ ⊂ A1,∞, but now for the range of the projector
matrix product operator, we used the higher relative
commutants of the other subfactor A∞,0 ⊂ A∞,1.
The former is used to get a modular tensor category
through the tube algebra and we have description of
anyons. The latter produces a series of Hilbert spaces on
which Hamiltonians act.
These two subfactors can be quite different, but still the
relation between the two is characterized as being
opposite Morita equivalent. In particular, they produce
complex conjugate topological quantum field theory
(TQFT) and have the same Drinfel′d center.
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