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Introduction
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Latent Factor Model

We observe independent copies of the pair (X ,Y ) with features
X ∈ Rp according to

X = AZ + W

and labels Y ∈ {0, 1}.

Only X is observed

A is a deterministic, unknown p × K loading matrix

Z ∈ RK are unobserved, latent factors

W is unobserved, random noise
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Assumptions

(i) W is independent of both Z and Y

(ii) E[Z ] = 0K , E[W ] = 0p

(iii) A has rank K

(iv) Z | Y = k ∼ NK (αk ,ΣZ |Y ) with αk := E[Z |Y = k] and

ΣZ |Y := Cov(Z |Y = 0) = Cov(Z |Y = 1) > 0

(v) W = Σ
1/2
W V with E[V ] = 0p, E[VV>] = Ip and

sup
‖u‖2=1

E[exp(u>V )] ≤ exp(γ2/2)

(vi) For some absolute constant c ∈ (0, 1), min{π0, π1} ≥ c with
πk := P{Y = k}, k = 0, 1
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Basic inequality

Lemma

Under (i), (ii), (iii), we have

R∗x := inf
g
P{g(X ) 6= Y } ≥ R∗z := inf

h
P{h(Z ) 6= Y }
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Oracle Benchmark

We have the explicit expression

R∗z = 1− π1Φ

(
∆

2
+

log π1
π0

∆

)
− π0Φ

(
∆

2
−

log π1
π0

∆

)
.

Here

∆2 := (α0 − α1)>Σ−1
Z |Y (α0 − α1)

is the Mahalanobis distance between the conditional means
α0 = E[Z | Y = 0] and α1 = E[Z | Y = 1].
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Oracle Benchmark

If ∆→∞, then R∗z → 0. Trivial asymptotic Bayes error -
Expect fast rates

If ∆→ 0 and π0 > π1, then R∗z → π1. Trivial asymptotic
Bayes rule votes 0 all the time - Expect fast rates

If ∆→ 0 and π0 = π1 = 1/2, then R∗z → 1/2.
Asymptotic random guessing - Expect slow rates

Conclusion:

In a way, the most interesting case is ∆ � 1.
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Oracle Benchmark

ΣX |Y = AΣZ |YA
> + ΣW

If the signal-to-noise ratio

ξ :=
λK (AΣZ |YA

>)

λ1(ΣW )

for predicting Z from X given Y is large, the gap between R∗x and
R∗z is small.
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Minimax Lower Bounds
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Minimax Lower Bound

We establish minimax-optimal rates of convergence of the excess
risk

Rx(ĝ)− R∗z := P{ĝ(X ) 6= Y } − inf
h
P{h(Z ) 6= Y }

for any classification rule ĝ : Rp → {0, 1} based on independent
pairs (X1,Y1), . . . , (Xn,Yn) from our factor model (i)–(iv).
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Minimax Lower Bound

Define the parameter space of θ := (A,ΣZ |Y ,ΣW , α) as

π0 = π1 = 1/2

λ1(ΣW ) � λp(ΣW ) � σ2

λ1(AΣZ |YA
>) � λK (AΣZ |YA

>) � λ
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Set

ω2 :=
K

n
+
σ2

λ
∆ +

σ2p

λn

σ2

λ
∆.
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Theorem

Assume (i) – (vi), K ≥ 2, K/(n ∧ p) ≤ c1, σ2/λ ≤ c2 and
σ2p/(λn) ≤ c3 for some small constants c1, c2, c3 > 0.

1 If ∆ � 1, then there exists some constants c0 ∈ (0, 1) and C > 0
such that

inf
ĝ

sup
θ

Pθ

{
Rx(ĝ)− R∗z ≥ Cω2

}
≥ c0.

2 If ∆→∞ and σ2/λ→ 0, as n→∞, then there exists some
constants c0 ∈ (0, 1) and C > 0 such that

inf
ĝ

sup
θ

Pθ

{
Rx(ĝ)− R∗z ≥ Cω2e−

1
8 ∆2+o(∆2)

}
≥ c0.

3 If ∆→ 0, as n→∞, then there exists some constants c0 ∈ (0, 1)
and C > 0 such that

inf
ĝ

sup
θ

Pθ

{
Rx(ĝ)− R∗z ≥ Cωmin

( ω
∆
, 1
)}
≥ c0.
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Minimax lower bound

ω2 :=
K

n
+
σ2

λ
∆ +

σ2p

λn

σ2

λ
∆.

The lower bounds consist of three terms:

the one related with K/n is the optimal rate of the excess
risk even when Z were observable;

the second one related with σ2/λ is the irreducible error for
not observing Z ;

the last one involving σ2p/(λn)× (σ2/λ) is the price to pay
for estimating the column space of A.

The third term can be absorbed by the second term as
σ2p/(λn) ≤ c3.

The lower bounds are tight (later).
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Methodology
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Methodology

To motivate our approach, suppose that we observe Z .
The optimal Bayes rule to classify a new point z ∈ RK is

g∗z (z) = 1{z>η + η0 ≥ 0}

where

η = Σ−1
Z |Y (α1 − α0), η0 = −1

2
(α0 + α1)>η + log

π1

π0
.

This rule is optimal in the sense that it has the smallest possible
misclassification error P{Y 6= g(Z )}.
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Modern efficient empirical LDA in the high-dimensional
setting exploit potential sparsity of Σ−1

X |Y (µ1 − µ0).

See, e.g., Tibshirani et al (2002), Fan and Fan (2008), Witten
and Tibshirani (2011), Shao, Wang, Deng, Wang (2011), Cai
and Liu (2011), Mai, Zou, Yuan (2012), Cai and Zhang
(2019ab).

In the high-dimensional regime, many features are highly
correlated and any sparsity assumption becomes questionable.

Instead: assume low-dimensional structure and “classify
projections”.
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Connection between LDA and Regression

Let ΣZ = E[ZZ>] be the unconditional covariance matrix of Z .
Define

β = π0π1Σ−1
Z (α1 − α0),

β0 = −1

2
(α0 + α1)>β + π0π1

[
1− (α1 − α0)>β

]
log

π1

π0
.

Proposition

Under Assumptions (ii) and (iv), we have

z>η + η0 ≥ 0 ⇐⇒ z>β + β0 ≥ 0.

Furthermore,
β = Σ−1

Z E[ZY ].
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Methodology

The key difference is the use of the unconditional ΣZ , as
opposed to the conditional ΣZ |Y .

We can interpret β as the regression coefficient of Y on Z .
This suggests to estimate β via least squares.

We only have access to x ∈ Rp, X = [X1 · · ·Xn]> ∈ Rn×p,
and y = (Y1, . . . ,Yn)> ∈ {0, 1}n.

Since X = ZA> + W, we need to find some appropriate
matrix B ≈ A(A>A)−1 so that XB ≈ Z + WA(A>A)−1.
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Methodology

Estimate the inner-product z>β by

x>θ̂ := x>B(XB)+y = x>B(B>X>XB)+B>X>y

for some appropriate matrix B.

Estimate β0 by

β̂0 := −1

2
(µ̂0 + µ̂1)>θ̂ + π̂0π̂1

[
1− (µ̂1 − µ̂0)>θ̂

]
log

π̂1

π̂0

based on standard non-parametric estimates

nk =
n∑

i=1

1{Yi = k}, π̂k =
nk
n
, µ̂k =

1

nk

n∑
i=1

Xi1{Yi = k}.
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Our proposed classifier (Bing and W. 2023) is

ĝx(x) := 1{x>θ̂ + β̂0 ≥ 0}.

The estimates θ̂ and β̂0 depend on B.

We investigate B = Ur ∈ Rp×r , where Ur consists of the first
r right-singular vectors of X̃ .

X̃ is an auxiliary n × p data matrix (unlabelled observations
only), independent of the training data (X , y). If not
available, split the data in two equal parts.

What if we use X instead?
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PCR-based LDA

Bing and W. (2019, 2023) propose to use r = K̂ with

K̂ := arg min
0≤k≤K̄

∑
j>k σ

2
j

np − 2.1(n + p)k

based on the singular-values σj of X̃ , with K̄ < b 1
4.2 (n ∧ p)c.
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Real data analysis

We analyze three popular gene expression datasets (leukemia data,
colon data and lung cancer data).

For all three data sets, the features are standardized to zero mean
and unit standard deviations.

For each dataset, we randomly split the data, within each category,
into 70% training set and 30% test set.

We compare our proposed algorithm, PCLDA-K̂ , with the

Nearest Shrunken Centroids classifier (PAMR) of Tibshirani,
Hastie, Narasimhan, Chu (2002),
`1-Penalized Linear Discriminant (PenalizedLDA) of Witten
and Tibshirani (2011),
Direct Sparse Discriminant (DSDA) of Mai, Zou, Yuan (2012).
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Data name p n n0 (category) n1 (category)

Leukemia 7129 72 47 (acute lymphoblastic leukemia) 25 (acute myeloid leukemia)

Colon 2000 62 22 (normal) 40 (tumor)

Lung cancer 12533 181 150 (adenocarcinoma) 31 (malignant pleural mesothelioma)

Summary of three data sets.

PCLDA-K̂ DSDA PenalizedLDA PAMR

Leukemia 3.57 (0.036) 5.52 (0.044) 3.91 (0.043) 4.61 (0.039)

Colon 16.37 (0.077) 18.11 (0.07) 33.95 (0.086) 19.00 (0.089)

Lung cancer 0.55 (0.008) 1.69 ( 0.017) 1.80 (0.026) 0.91 (0.011)

The averaged misclassification errors (in percentage). The numbers in
parentheses are the standard deviations over 100 repetitions.
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Rates of convergence for the excess risk
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General method for deriving upper bounds

We view R∗z as an oracle risk since the Zi aren’t observed.
Our proposed classifier is designed to estimate the Bayes classifier
g∗z in RK and to adapt to the underlying low-dimensional structure.

We define

Ĝx(x) := x>θ̂ + β̂0, Gz(z) := z>β + β0

so that ĝx(x) = 1{Ĝx(x) ≥ 0} and g∗z (z) = 1{Gz(z) ≥ 0}.
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Theorem

Set c∗ = (1 + π0π1∆2)/(π0π1). For all t > 0,

Rx(ĝx)− R∗z ≤ P{|Ĝx(X )− Gz(Z )| > t} + c∗tP(t),

with

P(t) := π0P{−c∗t < Gz(Z ) < 0 | Y = 0}+
π1P{0 < Gz(Z ) < c∗t | Y = 1}.

Rate depends on

estimate of optimal half space

behavior around the decision boundary
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Explicit expression for P(t)

Since Z is Gaussian, P(t) can be simplified.

Proposition

Assume (i) – (iv). For all ωn → 0, the exists 0 < c < 1/8,

P(ωn) .


ωn if ∆ � 1

ωn exp(−c∆2) if ∆→∞
ωn exp(−c/∆2) if ∆→ 0 and π0 6= π1

min(1, ωn/∆) if ∆→ 0 and π0 = π1 = 1/2
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Estimation of optimal boundary

Since

Ĝx(X )− Gz(Z ) = Z>(A>θ̂ − β) + W>θ̂ + β̂0 − β0

the key quantities to bound are

‖θ̂‖2

‖Σ1/2
Z (A>θ̂ − β)‖2.
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Rates of Convergence

Theorem - simplified case

Let θ ∈ Θ(λ, σ,∆) with ∆ � 1 and κ(AΣZA
>) � 1. With

probability 1−O(n−1),

Rx(ĝx)− R∗z .

[
K log n

n
+
σ2

λ
+

(
p

n

σ2

λ

)2
]

log n, if B = UK ;

Rx(ĝx)− R∗z .

[
K log n

n
+
σ2

λ

]
log n, if B = ŨK .
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Rates of Convergence

(1) If p < n, the two rates coincide and consistency of both
PC-based classifiers requires that K log2 n/n→ 0 and
σ2 log n/λ→ 0.

(2) If p > n, and

λ

σ2
& min

{(p
n

)2
,

p√
nK log n

}
,

the two rates coincide.

(3) If p > n and λ/σ2 is relatively small, the effect of using
B = ŨK based on an independent data set X̃ is real as
evidenced on the next slide where we keep λ/σ2, n and K
fixed but let p grow.
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Illustration of the advantage of constructing ŨK from an independent dataset: PCLDA represents the PC-based

classifier based on B = UK while PCLDA-split uses B = ŨK that is constructed from an independent X̃ .
Oracle-LS is the oracle benchmark that uses both Z and Z while Bayes represents the risk of using the oracle Bayes
rule. We fix n = 100 and K = 5 and keep λ/σ2 fixed, while we let p grow.
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Simulations
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Simulations

We set π0 = π1 = 1/2, α0 = −α1 = −( 1
2

√
η/K ) 1K .

The parameter η controls the signal strength ∆.

We generate ΣZ |Y as follows:

[ΣZ |Y ]ii are iid Unif(1,3)

[ΣZ |Y ]ij =
√

[ΣZ |Y ]ii [ΣZ |Y ]jj(−1)i+j(0.5)|i−j| for each i 6= j .

We generate ΣW in the same way, except diag(ΣW ) = 1p.

Rows of W ∈ Rn×p are iid Np(0,ΣW ).

Entries of A are iid N(0, 0.32).
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η = 5, K = 10, p = 300 and n ∈ {50, 100, 300, 500, 700}

K = 5, n = 100, p = 300 and η ∈ {2, 4, 6, 8, 10} =⇒ ∆2 ∈ {3.1, 6.3, 9.4, 12.6, 15.7}
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K = 5, η = 5, n = 100 and p ∈ {100, 300, 500, 700, 900}.
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Interpolation

Question:

What happens if B = Ip, hence θ̂ = X+y (generalized least
squares)?
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Interpolation

Phenomenon: deep neural networks

It is possible to achieve good generalization error despite zero
training error (overfitting)!

In regression context: Bartlett et al (2020), Belkin et al
(2018), Hastie et al (2022)
For this model: Bing, Bunea, Strimas-Mackey, W (2021),
Bunea, Strimas-Mackey, W (2022)

For binary classification: Cao et al (2021), Chatterji and Long
(2021), Hsu et al (2021), Minsker et al (2021), Muthukumar
et al (2019), Wang and Thrampoulidis (2021)
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Current literature on classification considers

Decision boundaries are hyperplanes through origin
Misclassification risk, not excess risk, is bounded.

These interpolation methods without intercept actually fail
when the mixture probabilities are asymmetric and the Bayes
error does not vanish.
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Our results:

We will show that ĝ(x) = x>θ̂ + β̂0 has zero training error,
but is inconsistent due to plug-in estimate β̂0.

We need to use an independent hold-out sample to estimate
intercept β0 to obtain consistency and sometimes even
minimax optimality.

The interpolation property may be destroyed. However, if we
encode the labels differently, e.g., via ±1, interpolation is
preserved (if one cares).

We provide a concrete instance of the interesting phenomenon
that overfitting and minimax-optimal generalization
performance can coexist in a latent low-dimensional statistical
model, against traditional statistical belief.
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Interpolation

Proposition (Bunea, Strimas-Mackey, W 2022)

Assume n ≥ K . Then, there exist finite, positive constants C , c
depending on σ only, such that, provided
re(ΣW ) = tr(ΣW )/‖ΣW ‖op ≥ Cn,

P
{
σ2
n(X ) ≥ 1

8
tr(ΣW )

}
≥ 1− 3 exp(−c n)

Corollary: interpolation is common

Assume p ≥ n ≥ K , ‖ΣW ‖op � 1 and tr(ΣW ) � p. Then the GLS

θ̂ = X+y interpolates the data

lim
n→∞

P{X θ̂ = y} = 1.
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Interpolation

Observation: zero training error if intercept in (−1, 0]

If θ̂ = X+y interpolates, then the classifier

1{x>θ̂ + β̄0 > 0}

perfectly classifies the training data for any β̄0 ∈ (−1, 0] (including
zero intercept).

Simply note that, as long as β̄0 ∈ (−1, 0],

X>
i θ̂ + β̄0 = Yi + β̄0 > 0 ⇐⇒ Yi = 1, for all i ∈ [n]

We will argue that interpolation depends on how we encode labels
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Interpolation

Question:

Does the classifier 1{x>θ̂ + β0 > 0} that uses the true intercept
β0 yield zero training error ?

This is equivalent with verifying if β0 ∈ (−1, 0].

Answer:

It depends! Only if we encode the majority class as 0.

Lemma

The true intercept β0 satisfies

sgn(β0) = sgn

(
1

2
− π0

)
, |β0| ≤

∣∣∣∣12 − π0

∣∣∣∣ .
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Observation

The optimal decision boundary in the latent space is
independent of the particular encoding.

Interpolation property crucially depends on the way we encode
the labels.

For instance, if we encode Y as {−1, 1}, the classifier

21{x>θ̂ + 2β0 > 0} − 1

always has zero training error (as |β0| ≤ 1/2).
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Interpolation leads to inconsistency

The following lemma shows that β̂0 = −1/2, irrespective of the
true value of β0, whenever θ̂ interpolates.

Proposition

Let β̂0 be the plug-in estimate. On the event {X θ̂ = y} where θ̂
interpolates, we have β̂0 = −1/2.

ĝ(x) = 1{x>θ̂ + β̂0 > 0} always interpolates as β̂0 ∈ (−1, 0].

β̂0 is an inconsistent estimate of β0 in general.

Confirmed in simulations: classifier is inconsistent.



Introduction Minimax Lower Bounds Methodology Rates of convergence Simulation study Interpolation Simulation study

What can we do?

1 π0 = π1 = 1/2. In this case β0 = 0, no need to estimate β0

(current literature).

2 π0 6= π1. Estimate β0 by

β̃0 := −1

2
(µ̃0 + µ̃1)>θ̂ +

[
1− (µ̃1 − µ̃0)>θ̂

]
π̂0π̂1 log

π̂1

π̂0

with θ̂ and π̂k as before, but

µ̃k =
1

ñk

n′∑
i=1

X ′i 1{Y ′i = k}, ñk =
n′∑
i=1

1{Y ′i = k}

are based on an independent hold-out sample of size n′ � n.
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Modified classifier

Theorem: Simplified rates of convergence

Suppose

θ ∈ Θ(λ, σ,A), p � n� K , ∆ � 1, n � n′, κ � 1

Then g̃(x) = 1{x>θ̂ + β̃0 > 0} satisfies

Rx(g̃)− R∗z .

[
K log(n)

n
+

n

p
+

(
p

n ξ

)2

+
1

ξ

]
log(n).
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Simplified rates of convergence

Summary

If ξ � p/n, then g̃ is consistent

If, furthermore, ξ & (p/n) · (n/K )1/2, then

P{g̃(X ) 6= Y } − R∗z .
K

n
log2(n) +

n

p
log(n).

If, in addition, p & n2/K , then g̃ is minimax-optimal.
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Simulations
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Simulations

We generated the data as follows:

π0 = π1 = 0.5

α0 = −α1, α1 = 1K
√

2/K

ΣZ |Y = IK (This implies ∆2 = 8).

Entries of W and A are independent realizations of N(0, 1)
and N(0, 0.32), respectively.
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Simulations

We first verify the inconsistency of the naive classifier that uses the
naive plug-in estimator of β0 and contrast with other consistent
classifiers.

GLS-Naive: classifier ĝ(x) = 1{x>θ̂ + β̂0 > 0} with β̂0 being
the naive plug-in estimator

GLS-Oracle, GLS-Plugin and GLS-ERM represent
1{x>θ̂ + β̄0 > 0} with β̄0 chosen as the true β0, the plug-in
estimate based on data splitting, and the estimate based on
empirical risk minimization, respectively.

Besides the optimal Bayes classifier (Bayes), we also choose
the oracle procedure (Oracle-LS) that uses both Z and Z as
our benchmark.
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Simulations

The performance of all classifiers on 200 test data points, averaged
over 100 simulations, for K = 5 and n = 100, and
p ∈ {300, 600, 1000, 2000, 4000, 6000}.
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Simulations

We evaluate the performance of our proposed classifier and
examine its dependence on p, K and ξ.

We consider the misclassification error on 200 test data
points, the estimation error ‖β − A>θ̂‖ΣZ

of β, and the

estimation error |β̃0 − β0| of β0.

The sample size is fixed as n = 100 and we use a validation
set with 100 data points to compute β̃0.
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Simulations

Setting Misclassification errors Errors of estimating β Errors of estimating β0

K = 5, σA = 0.3

p = 300 0.256 (0.046) 0.144 (0.052) 0.040 (0.031)

p = 600 0.198 (0.037) 0.127 (0.046) 0.034 (0.023)

p = 1000 0.156 (0.032) 0.117 (0.041) 0.029 (0.021)

p = 2000 0.132 (0.034) 0.115 (0.039) 0.029 (0.024)

p = 4000 0.116 (0.027) 0.112 (0.032) 0.027 (0.020)

p = 1000, σA = 0.3

K = 3 0.152 (0.033) 0.091 (0.039) 0.028 (0.020)

K = 5 0.161 (0.029) 0.117 (0.039) 0.032 (0.022)

K = 10 0.178 (0.036) 0.180 (0.036) 0.033 (0.027)

K = 15 0.186 (0.038) 0.219 (0.040) 0.030 (0.022)

p = 1000, K = 5

σA = 0.01 0.479 (0.038) 0.397 (0.004) 0.048 (0.039)

σA = 0.05 0.282 (0.039) 0.239 (0.024) 0.034 (0.026)

σA = 0.1 0.187 (0.035) 0.124 (0.037) 0.029 (0.019)

σA = 0.24 0.161 (0.033) 0.109 (0.034) 0.029 (0.022)
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Thank you!
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