Identification of dynamic panel logit models with fixed effects

Jiaying Gu
University of Toronto
IASM-BIRS Workshop
December 11-15, 2023
Joint work with Christopher Dobronyi and Kyoo il Kim

Introduction

- Dynamic panel logit models with fixed effects:

$$
Y_{i t}=1\left\{\alpha_{i}+\beta Y_{i t-1}+\gamma^{\prime} X_{i t} \geq \epsilon_{i t}\right\}, \quad t=1,2, \ldots, T
$$

where $\epsilon_{i t}$ are iid Logit error and α_{i} is a scalar random variable with unknown distribution $Q\left(\cdot \mid \boldsymbol{x}, y_{0}\right)$.

- This is a workhorse model in industrial organization in Economics, often used to analyze consumer purchase decisions, firm entry/exit decisions, or binary longitudinal data in general.
- Data: $y_{i t}$ and $x_{i t}$ for $t=0, \ldots, T$.
- Parameter of interest: $\theta=\{\beta, \gamma\}$, distribution Q or some functionals of Q.
- We may also introduce more lags (e.g. AR(2) model)

$$
Y_{i t}=1\left\{\alpha_{i}+\beta_{1} Y_{i t-1}+\beta_{2} Y_{i t-2}+\gamma^{\prime} X_{i t} \geq \epsilon_{i t}\right\}
$$

Introduction

Key challanges:

- Incidental parameter problem due to the presence of α_{i} : if we include individual dummies, β will be inconsistently estimated.
- Functional of $Q: Q$ is not point identified due to binary nature of $Y_{i t}$.

Introduction

- Chamberlain (1985): (without x) Point identification of β and use conditional MLE with sufficient statistics $S\left(y_{i}\right)=\left\{y_{i 0}, \sum_{t=1}^{T-1} y_{i t}, y_{i T}\right\}$,

$$
P\left(\boldsymbol{y}_{i} \mid y_{i 0}, \beta\right)=\underbrace{P\left(\boldsymbol{y}_{i} \mid S\left(y_{i}\right), \beta\right)}_{\text {free from } \alpha_{i}} \int P\left(S\left(\boldsymbol{y}_{i}\right) \mid \beta, \alpha_{i}\right) d Q\left(\alpha_{i} \mid y_{i 0}\right)
$$

- Honoré and Kyriazidou (2000): extends sufficient statistics idea to allow covariates under some assumptions on x [i.e., $x_{2}=x_{3}$ for $T=3$]
- Sufficient Statistics method fails to identify β_{1} and β_{2} for $\operatorname{AR}(2)$ model.
- If the panel length is very short (i.e. $T=2$), sufficient statistics also fails to identify β.

Introduction

- In this paper, we conduct an identification analysis for both parameters and Q.
- We show that the identification problem has a connection to the truncated moment problem in mathematics [dates back to Chebyshev 1874].
- Truncated moment problem: Given the first K raw moments of a random variable X, to characterize the set of probability measure that X can have: existence and uniqueness.

Introduction

Using this connection, we show two types of results:

- Identified set for structural parameters θ is characterized by a set of moment equality and inequality conditions.
- The number of moment equality conditions may be substantially more than those found by sufficient statistics approach.
- e.g. moment equality conditions available for $\operatorname{AR}(2)$ model, more moment conditions available for $\operatorname{AR}(1)$ model with x.
- The inequality conditions can sharpen the identified set for θ when they are not point identified by moment equality conditions alone (i.e. $\operatorname{AR}(1)$ model with time trend)
- Identified set of the latent distribution Q is characterized by a finite vector of generalized moments, and the number of moments grows linearly in T.
- Provide sufficient conditions on point identification of functionals of Q.

We then provide estimation and inference method with these new identification results.

Roadmap

- A simple example with $T=2$.
- Identification of θ and Q for $\operatorname{AR}(1)$ model with general T.
- Identification of a class of functionals of Q.
- Examples: time trend
- Empirical Illustration

Identification Analysis

- Let \mathcal{Y} be the set containing all choice histories $\boldsymbol{y}^{1}, \ldots, \boldsymbol{y}^{J}$ with $J=2^{T}$.

$$
\begin{aligned}
\mathcal{P}_{j} & =\mathbb{P}\left(\left(Y_{1} \ldots Y_{T}\right)=\boldsymbol{y}^{j} \mid Y_{0}=y_{0}, X=\boldsymbol{x}, \alpha\right) \\
& =\mathcal{L}_{j}\left(\alpha, \theta, \boldsymbol{x}, y_{0}\right)=\prod_{t=1}^{T} \frac{\exp \left(\alpha+\beta y_{t-1}+\gamma x_{t}\right)^{y_{t}}}{1+\exp \left(\alpha+\beta y_{t-1}+\gamma x_{t}\right)}
\end{aligned}
$$

- Denote the probability vector $\mathcal{P}_{x}=\left(\mathcal{P}_{1}, \ldots, \mathcal{P}_{J}\right)$ and \mathcal{L} the vector that stacks \mathcal{L}_{j}.
- Let $A=\exp (\alpha)$ with distribution $Q\left(A \mid y_{0}, \boldsymbol{x}\right)$ supported on $\mathcal{A}=[0, \infty)$.
- Define the set of probability measures with support \mathcal{A} :

$$
\mathcal{Q}\left(\theta, y_{0}, x\right)=\left\{Q: \mathcal{P}_{x}=\int_{\mathcal{A}} \mathcal{L}\left(A, \theta, \boldsymbol{x}, y_{0}\right) d Q\right\}
$$

Definition (Identified Set): The identified set of θ is

$$
\Theta^{*}=\left\{\theta: \mathcal{Q}\left(\theta, y_{0}, x\right) \neq \emptyset, \text { for all } x \in \mathcal{X}\right\}
$$

Simplest example: $T=2$ without \times

- Consider $T=2$, no covariates and fix $y_{0}=0$.
- We have $2^{T}=4$ distinct elements in \mathcal{Y} and

$$
\mathcal{L}(A, \beta)=\left(\begin{array}{l}
\mathbb{P}((0,0) \mid A, \beta) \\
\mathbb{P}((1,0) \mid A, \beta) \\
\mathbb{P}((0,1) \mid A, \beta) \\
\mathbb{P}((1,1) \mid A, \beta)
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{\overline{1+A)^{2}}} \\
\frac{A}{1+A} \frac{1}{1+A B} \\
\frac{A}{(1+A)^{2}} \\
\frac{A}{1+A} \frac{A B}{1+A B}
\end{array}\right)=\frac{1}{g(A, \beta)}\left(\begin{array}{c}
(1+A B) \\
A(1+A) \\
A(1+A B) \\
A^{2} B(1+A)
\end{array}\right)
$$

with $B=\exp (\beta)$ and $g(A, \beta)=(1+A B)(1+A)^{2}$.

- The right hand side consists polynomials of A up to degree $2 T-1=3$.

Simplest example: $T=2$ without \times

In particular, for any (β, Q)

$$
\int_{\mathcal{A}} \mathcal{L}(A, \beta) d Q(A)=\int_{\mathcal{A}} G(\beta)\left(\begin{array}{c}
1 \\
A \\
A^{2} \\
A^{3}
\end{array}\right) \frac{1}{g(A, \beta)} d Q(A)=G(\beta) \int_{\mathcal{A}}\left(\begin{array}{c}
1 \\
A \\
A^{2} \\
A^{3}
\end{array}\right) d \bar{Q}(A \mid \beta)
$$

with

$$
G(\beta)=\left(\begin{array}{llll}
1 & B & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & B & 0 \\
0 & 0 & B & B
\end{array}\right)
$$

and $d \bar{Q}(A \mid \beta)=\frac{1}{g(A, \beta)} d Q(A)$.

- Q is a probability measure on \mathcal{A} and $1 / g(A, \beta) \in(0,1]$ for all $A \in \mathcal{A}$,
- \bar{Q} is a non-negative Borel measure on \mathcal{A}.

Simplest example: $T=2$ without x

- Identifying condition: $\beta \in \Theta^{*} \Leftrightarrow \exists Q: \mathcal{P}=G(\beta) \int_{\mathcal{A}}\left(\begin{array}{c}1 \\ A \\ A^{2} \\ A^{3}\end{array}\right) \frac{1}{g(A, \beta)} d Q(A)$.
- Given $G(\beta)$ full rank, $\beta \in \Theta^{*} \Leftrightarrow \exists \bar{Q}$:

$$
\boldsymbol{r}(\beta):=G(\beta)^{-1} \mathcal{P}=\int_{\mathcal{A}}\left(\begin{array}{llll}
1 & A & A^{2} & A^{3}
\end{array}\right)^{\prime} d \bar{Q}(A \mid \beta)
$$

- $\beta \in \Theta^{*} \Leftrightarrow$ the observed vector $\boldsymbol{r}(\beta)$ is a truncated moment sequence of some non-negative measure.

Definition (Moment Space): The moment space of any non-negative Borel measure μ on \mathcal{A} is:
$\mathcal{M}_{K}=\left\{r \in \mathbb{R}^{K+1}:\right.$ there exists μ such that $r_{k}=\int_{\mathcal{A}} A^{k} d \mu(A)$, for all $\left.k=0,1, \ldots, K\right\}$
In this simple $T=2$ example: $\Theta^{*}=\left\{\beta: \boldsymbol{r}(\beta) \in \mathcal{M}_{3}\right\}$.

Moment Space

Moment space has unique geometric structure:

- \mathcal{M}_{K} is a closed convex cone in \mathbb{R}^{K+1}.
- The moment space \mathcal{M}_{K} does not take up the entire \mathbb{R}^{K+1} since moments have dependency:
- Cauchy-Schwartz inequality: $\mathbb{E}\left[A^{2}\right] \geq \mathbb{E}[A]^{2}$
- More generally Hölder's inequlity has to hold.
- This implies: $\boldsymbol{r}(\beta) \in \mathcal{M}_{3}$ provides nontrivial constraints on β.
- Using the result of Karlin and Studden (1966), the restricitons boils down to nonnegativity of two matrices (Hankel matrices):

$$
\left(\begin{array}{ll}
r_{0}(\beta) & r_{1}(\beta) \\
r_{1}(\beta) & r_{2}(\beta)
\end{array}\right),\left(\begin{array}{ll}
r_{1}(\beta) & r_{2}(\beta) \\
r_{2}(\beta) & r_{3}(\beta)
\end{array}\right)
$$

Simplest example: $T=2$ without x

- Non-negativity of square matrices \Leftrightarrow non-negativity of all principal minors: this gives us moment inequalities for β.
- $\beta \in \Theta^{*} \Leftrightarrow \boldsymbol{r}(\beta) \geq 0, r_{0}(\beta) r_{2}(\beta)-r_{1}(\beta)^{2} \geq 0$ and $r_{1}(\beta) r_{3}(\beta)-r_{2}(\beta)^{2} \geq 0$.
- For $T=2$ and no $x: \mathcal{P}:=\left(p_{0}, p_{1}, p_{2}, p_{3}\right)=\mathbb{P}\left(Y=\boldsymbol{y} \mid Y_{0}=0\right)$:

$$
\boldsymbol{r}(\beta):=\left(\begin{array}{c}
r_{0}(\beta) \\
r_{1}(\beta) \\
r_{2}(\beta) \\
r_{3}(\beta)
\end{array}\right)=\left(\begin{array}{c}
p_{0}-\frac{B^{2}}{B-1} p_{1}+\frac{B}{B-1} p_{2} \\
\frac{B p_{1}-p_{2}}{B-1} \\
\frac{p_{2}-p_{1}}{B-1} \\
\frac{p_{1}-p_{2}}{B-1}+\frac{p_{3}}{B}
\end{array}\right)
$$

Illustration: $T=2$, no $x, y_{0}=0$

- DGP: $\alpha_{i} \sim \frac{1}{2} \delta_{-2}+\frac{1}{2} \delta_{1}$, we vary $\exp \left(\beta_{0}\right)$ from 0.01 to 2 .
- Left: identified set for $\exp (\beta)$

What does the analysis say about identification of distribution Q and its functionals?

Identified set for Q

- Recall

$$
\boldsymbol{r}(\beta)=G(\beta)^{-1} \mathcal{P}=\int_{\mathcal{A}}\left(\begin{array}{llll}
1 & A & A^{2} & A^{3}
\end{array}\right)^{\prime} \frac{1}{g(A, \beta)} d Q
$$

- The identified set of the distribution Q is characterized by the generalized moments:

$$
\mathcal{Q}\left(\beta, y_{0}\right)=\left\{Q: \boldsymbol{r}(\beta)=\int_{\mathcal{A}}\left(\begin{array}{llll}
1 & A & A^{2} & A^{3}
\end{array}\right)^{\prime} \frac{1}{g(A, \beta)} d Q\right\}
$$

for each $\beta \in \Theta^{*}$.

- $\boldsymbol{r}(\beta)$ is the dimension reduction from the data information \mathcal{P} to the information on Q.

General T

With the results from the simple example, we now generalize:

- The simple example reveals a polynomial structure of the dynamic panel logit model with fixed effects, which generalizes to any finite T with or without x.

General Results for $\operatorname{AR}(1)$ model

- For general T, for each given $\boldsymbol{x} \in \mathcal{X}$ and y_{0}, we can construct $g\left(A, \theta, \boldsymbol{x}, y_{0}\right)$ as a polynomial of A of degree $2 T-1$ such that:

$$
\mathcal{L}\left(A, \theta, x, y_{0}\right)=G(\theta, x)\left(\begin{array}{c}
1 \\
A \\
\vdots \\
A^{2 T-1}
\end{array}\right) \frac{1}{g\left(A, \theta, x, y_{0}\right)}
$$

where $G(\theta, x)$ is of dimension $2^{T} \times 2 T$.

- When $T>2$, we obtain moment equalities in addition to moment inequalities. [Because G is of dimension $2^{T} \times 2 T$].
- The number of moment equalities available is determined by the dimension of the left null space of $G(\theta)$.
- The form of the moment equalities can be constructed analytically with the basis of the left null space of $G(\theta)$.
- Define the set (left null space of $G(\theta, x)$):

$$
M_{x}(\theta)=\left\{\boldsymbol{v}_{x}(\theta) \in \mathbb{R}^{2^{T}}: \boldsymbol{v}_{x}(\theta)^{\prime} G(\theta, x)=0\right\}
$$

- Moment equality conditions: $\mathbb{E}\left[\boldsymbol{v}_{x}(\theta)_{j} 1\left\{Y=y^{j}, X=x\right\}\right]=0, \forall j$.

General T

Theorem 2: If $G(\theta, x)$ is full rank, then $\theta \in \Theta^{*}$ if and only if the following conditions hold:
(a) For all $\boldsymbol{x} \in \mathcal{X}$, we have $\boldsymbol{v}_{\boldsymbol{x}}(\theta)^{\prime} \mathcal{P}_{\boldsymbol{x}}=0$ for all $\boldsymbol{v}_{\boldsymbol{x}}(\theta) \in \boldsymbol{M}_{\boldsymbol{x}}(\theta)$.
(b) For all $\boldsymbol{x} \in \mathcal{X}$, we have $\boldsymbol{r}(\theta, \boldsymbol{x}) \in \mathcal{M}_{2 T-1}$, where $\boldsymbol{r}(\theta, \boldsymbol{x})=H(\theta, \boldsymbol{x}) \mathcal{P}_{\boldsymbol{x}}$ and $H(\theta, \boldsymbol{x})$ is a matrix of dimension $2 T \times 2^{T}$ such that $H(\theta, x) G(\theta, \boldsymbol{x})=I_{2 T}$.

- Condition (a) provides moment equalities and condition (b) provides moment inequalities.
- The number of non-redundant moment equalities available: $2^{T}-\operatorname{rank}(G)=2^{T}-2 T$.

Identification of Q

For general T,

Theorem 4: For each $x \in \mathcal{X}$ and each value of $\theta \in \Theta^{*}$, the sharp identified set $\mathcal{Q}\left(\theta, y_{0}, \boldsymbol{x}\right)$ of the latent distribution are those Q that has its generalized moments, $\mathbb{E}_{Q}\left[A^{j} / g\left(A, \theta, \boldsymbol{x}, y_{0}\right)\right]=\boldsymbol{r}_{j}(\theta, \boldsymbol{x})$ for $j=0,1,2, \ldots, 2 T-1$.

- Q is in general not point identified from the $2 T-1$ generalized moments.
- But some functional of Q may be point identified.
- If θ is point identified (i.e. $\Theta^{*}=\left\{\theta_{0}\right\}$), then the generalized moments $\boldsymbol{r}\left(\theta_{0}, \boldsymbol{x}\right)=\int_{\mathcal{A}}\left(\begin{array}{lll}1 & A & \cdots A^{2 T-1}\end{array}\right)^{\prime} \frac{1}{g\left(A, \theta_{0}, x, y_{0}\right)} d Q_{0}\left(A \mid y_{0}, \boldsymbol{x}\right)$ is also point identified.

Point Identification of Functionals $\int \psi(A, \theta, x) d Q$

Theorem (Point Identification of Functionals of Q) If θ is point identified and the product $\psi\left(A, \theta_{0}, \boldsymbol{x}\right) g\left(A, \theta_{0}, \boldsymbol{x}, y_{0}\right)$ is a polynomial of A with a degree that is no larger than $2 T-1$ such that:

$$
\psi\left(A, \theta_{0}, \boldsymbol{x}\right) g\left(A, \theta_{0}, \boldsymbol{x}, y_{0}\right)=\sum_{j=0}^{2 T-1} \eta_{j}\left(\theta_{0}, \boldsymbol{x}\right) A^{j}
$$

for some vector $\boldsymbol{\eta}\left(\theta_{0}, \boldsymbol{x}\right)=\left(\eta_{0}\left(\theta_{0}, \boldsymbol{x}\right), \eta_{1}\left(\theta_{0}, \boldsymbol{x}\right), \ldots, \eta_{2 T-1}\left(\theta_{0}, \boldsymbol{x}\right)\right)$, then $\mathbb{E}_{Q_{0}\left(A \mid y_{0}, \boldsymbol{x}\right)}\left[\psi\left(A, \theta_{0}, \boldsymbol{x}\right)\right]$ is point identified and equal to $\boldsymbol{\eta}\left(\theta_{0}, \boldsymbol{x}\right)^{\prime} \boldsymbol{r}\left(\theta_{0}, \boldsymbol{x}\right)$.

- The Theorem provides sufficient conditions on the function ψ under which $\mathbb{E}_{Q_{0}}\left[\psi\left(A, \theta_{0}, \boldsymbol{x}\right)\right]$ is point identified.
- Examples:
- Average marginal effect of lagged choice when $T \geq 3$.
- Posterior expectation of A when $T \geq 3: \mathbb{E}_{Q_{0}}[A \mid \boldsymbol{y}]$ for $\boldsymbol{y} \in \mathcal{Y}$.
- Counterfactual choice probability with no dynamics: i.e. $\operatorname{AR}(1)$ model without x, we can compare the counterfactual $\mathbb{P}(Y=(1,1,1) \mid \beta=0)$ with $\mathbb{P}_{0}(1,1,1)$ in the data.

Example: Average Marginal Effect

- For models without covariates, $T=3$, and $y_{0}=0$ (we know β is point identified)

$$
A M E=\int \frac{A B_{0}}{1+A B_{0}} d Q_{0}(A)-\int \frac{A}{1+A} d Q_{0}(A)
$$

- Let $\psi\left(A, \beta_{0}\right)=\frac{A B_{0}}{1+A B_{0}}-\frac{A}{1+A}$, and $g\left(A, \beta_{0}\right)=(1+A)^{3}\left(1+A B_{0}\right)^{2}$.

$$
\psi\left(A, \beta_{0}\right) g\left(A, \beta_{0}\right)=\left(B_{0}-1\right) A\left(1+A B_{0}\right)(1+A)^{2}=\boldsymbol{\eta}\left(\beta_{0}\right)^{\prime}\left(1, A, \ldots, A^{5}\right)^{\prime}
$$

with $\boldsymbol{\eta}\left(\beta_{0}\right)=\left(0, B_{0}-1,\left(2+B_{0}\right)\left(B_{0}-1\right),\left(1+2 B_{0}\right)\left(B_{0}-1\right), B_{0}\left(B_{0}-1\right), 0\right)^{\prime}$.

- Point identification of AME :

$$
\begin{aligned}
A M E & =\int \psi\left(A, B_{0}\right) d Q_{0}(A)=\boldsymbol{\eta}\left(\beta_{0}\right)^{\prime} H\left(\beta_{0}\right) \mathcal{P} \\
& =\left(B_{0}-1\right)\left\{\frac{1}{2}\left(\mathbb{P}_{0}(1,0,0)+\mathbb{P}_{0}(0,1,0)\right)+\frac{1}{B_{0}+1}\left(\mathbb{P}_{0}(1,0,1)+\mathbb{P}_{0}(0,1,1)\right)\right\}
\end{aligned}
$$

Example: Bounding AME for $T=2$

- For models without $\times, T=2$, and $y_{0}=0$ (we know β is not point identified)

$$
A M E=\int \frac{A B_{0}}{1+A B_{0}} d Q_{0}(A)-\int \frac{A}{1+A} d Q_{0}(A)
$$

with $\psi(A, \beta)=\frac{A B}{1+A B}-\frac{A}{1+A}$ and $g(A, \beta)=(1+A)^{2}(1+A B)$.

- It is easy to verify that $\psi(A, \beta) g(A, \beta)=\boldsymbol{\eta}^{\prime}\left(\begin{array}{llll}1 & A & A^{2} & A^{3}\end{array}\right)^{\prime}$ with

$$
\boldsymbol{\eta}^{\prime}=\left(\begin{array}{llll}
0 & B-1 & B-1 & 0
\end{array}\right)^{\prime}
$$

- Sharp bound of AME is:

$$
\left[\inf _{\beta \in \Theta^{*}} \boldsymbol{\eta}(\beta)^{\prime} \boldsymbol{r}(\beta), \sup _{\beta \in \Theta^{*}} \boldsymbol{\eta}(\beta)^{\prime} \boldsymbol{r}(\beta)\right]
$$

- Since $\boldsymbol{\eta}(\beta)^{\prime} \boldsymbol{r}(\beta)=(B-1) \mathbb{P}_{0}(1,0)$.
- As soon as we have the identified set Θ^{*}, sharp bounds for AME is mapped directly from that.

Illustration: $T=2$, no $x, y_{0}=0$

- DGP: $Q_{0}=\frac{1}{2} \delta_{\exp (-2)}+\frac{1}{2} \delta_{\exp (1)}$, we vary $\exp \left(\beta_{0}\right)$ from 0.01 to 2 .
- Left: identified set for $\exp (\beta)$; Right: identified set for AME

Time trend model with $T=3$

- $Y_{i t}=1\left\{\alpha_{i}+\beta Y_{i t-1}+\gamma t \geq \epsilon_{i t}\right\}$ and $T=3$.
- There are two moment conditions for (β, γ), which always give two solutions.
- Using the moment inequality, we demonstrate inequalities can be used to rule out the false solution.

Time trend model with $T=3$

- $\alpha \sim G=0.5 \delta_{-2}+0.5 \delta_{1}$, and $\beta_{0}=0.5$ and $\gamma_{0}=0.8$.
- The false root, roughly at $\tilde{\theta}=(1.15,0.3)$.
- $r_{1}(\tilde{\theta}) \approx-0.24<0$.

(a) moment equality

(b) moment inequality

Estimation

- We need an estimation and inference framework that allows for both moment equality and inequalities.
- We can use minimum distance framework to combine moment equality and inequalities: (Bajari, Benkard, Levin (2007), Shi and Shum (2015))

$$
Q(\theta, \mathcal{P})=h^{e}(\theta, \mathcal{P})^{\prime} W h^{e}(\theta, \mathcal{P})+\sum_{j=1}^{K}\left(\min \left\{h^{i e}(\theta, \mathcal{P}), 0\right\}\right)^{2}
$$

- If Θ^{*} is singleton: $Q\left(\theta_{0}, \mathcal{P}_{0}\right)=0=\min _{\theta \in \Theta} Q\left(\theta, \mathcal{P}_{0}\right)$, and $Q\left(\theta, \mathcal{P}_{0}\right)>0$ for $\theta \neq \theta_{0}$: CAN estimator under suitable conditions:

$$
\hat{\theta}_{n}=\underset{\theta \in \Theta}{\operatorname{argmin}} Q_{n}\left(\theta, \hat{\mathcal{P}}_{n}\right)
$$

with $Q_{n}\left(\theta, \hat{\mathcal{P}}_{n}\right)=h^{e}\left(\theta, \hat{\mathcal{P}}_{n}\right)^{\prime} \hat{W}_{n} h^{e}\left(\theta, \hat{\mathcal{P}}_{n}\right)+\sum_{j=1}^{K}\left(\min \left\{h^{i e}\left(\theta, \hat{\mathcal{P}}_{n}\right), 0\right\}\right)^{2}$ and $\hat{\mathcal{P}}_{n}$ a CAN estimator of \mathcal{P}_{0}.

- If Θ^{*} is a set: consistent estimation via Manski and Tamer (2002):

$$
\hat{\Theta}_{n}=\left\{\theta: Q_{n}\left(\theta, \hat{\mathcal{P}}_{n}\right) \leq \min _{\theta \in \Theta} Q_{n}\left(\theta, \hat{\mathcal{P}}_{n}\right)+\kappa_{n}\right\}
$$

with $\kappa_{n}>0$ and $\kappa_{n} \rightarrow 0$.

Empirical Application

- We revisit Fitzmaurice and Laird (1993) on modeling children's respiratory conditions with data over a short period of time.
- Data: Observe wheezing conditions (binary) of 537 children from Steubenville, Ohio between the ages of 7 and 10 .
- Model: time trend model with $T=3$

$$
y_{i t}=1\left\{\alpha_{i}+\beta y_{i t-1}+\gamma t \geq \epsilon_{i t}\right\}, \quad t=1,2,3
$$

- Focus on children with $y_{0}=0$ (85% of the sample).
- Time trend is crucial to distinguish age effect and persistence.
- Fixed effects are crucial to distinguish unobserved heterogeneity from true dynamics.

Empirical Application

Full Sample

- Using only moment equality conditions, we have two solutions: $(\hat{\beta}, \hat{\gamma})=(1.301,-0.276)$ and $(\tilde{\beta}, \tilde{\gamma})=(-0.088,-0.019)$, indistinguishable for the GMM criteria with a diagonal weighting matrix.
- For the second root: $r_{1}(\tilde{\beta}, \tilde{\gamma})=-4.82<0$.

Empirical Application

	Logit Full	Logit Full		Logit	Logit	Logit FE ML
Logit FE ML						
	All Sample $(\mathrm{n}=450)$					
lagged y	$1.301^{* *}$	0.693	$2.08^{* * *}$	$1.772^{* * *}$	$-2.918^{* * *}$	$-2.736^{* * *}$
	(0.671)	(0.707)	(0.258)	(0.238)	(0.690)	(0.503)
time trend	-0.276	-	$1.05^{* * *}$	-	$1.666^{* * *}$	-
	(0.321)	-	(0.162)	-	(0.260)	-

- Logit Full: our proposed method combining equality and inequalities.
- Logit: models without fixed effects.
- Logit FE ML: models with fixed effects estimated through full MLE (incidental parameter problem).

Discussions (Finite sample issues)

When parameters are point identified by moment equalities, can inequalities improve finite sample efficiency?

- When inequalities are binding, they will act like moment equalities, hence incorporating them should improve efficiency.
- We need a way to detect binding inequalities.
- It may also be that incorporating all inequalities is not suited in practice, since some of them will be very noisy in finite sample.

