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Classification

I Goal: to assign categorical labels to unlabelled test data based on patterns and

relationships learned from a labeled training dataset.

I Classification has diverse applications, including

• email spam filtering (Delany et al., 2012; Fan et al., 2016),

• sentiment analysis (Medhat et al., 2014; Wang et al., 2016),

• image recognition (Krizhevsky et al., 2017; Pan et al., 2018).

• · · · · · ·
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Training and test data-set paradigm

X: features/covariates/input variables Y : label/response/output variable

I Training data: (X1, Y1), . . . , (Xn, Yn)
iid∼ Ptrain(Y,X)

I Ideal test data: (Xn+1, Yn+1), . . . , (Xn+m, Yn+m)
iid∼ Ptrain(Y,X)
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Convention

Training and test data are often assumed to have the same distribution

Ptrain(Y,X) = Ptest(Y,X)

I Many powerful supervised learning algorithms try to estimate the common

P (Y = y|X = x).

• Decision Trees (Breiman, 1984; Friedl and Brodley, 1997; Kim and Loh, 2001),

• Random Forests (Ho, 1995; Breiman, 2001; Ham et al., 2005; Biau, 2012),

• Support Vector Machines (Cortes and Vapnik, 1995; Suykens and Vandewalle,

1999; Pavlidis et al., 2004; Cervantes et al., 2020),

• Neural Networks (Dreiseitl and Ohno-Machado, 2002; Ghosh et al., 2004;

Krizhevsky et al., 2017; Gurney, 2018).

I Then classify the test data using the estimated P (Y = y|X = x).
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Challenge

However, the conventional methods face challenges or even underperform when the

training and test data-sets exhibits distributions mismatches

I Distributions mismatch or distribution shift:

Ptrain(Y,X) 6= Ptest(Y,X)

I Two commonly-seen special cases

• Covariate shift: Ptrain(Y |X) = Ptest(Y |X), Ptrain(X) 6= Ptest(X),

• Label shift: Ptrain(X|Y ) = Ptest(X|Y ), Ptrain(Y ) 6= Ptest(Y ),
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This talk

We focuses on the case where both covariate shift and label shift exist.

I The labelled training data can be reorganized as

{(X0j , Y0j = 0)}
⋃
· · ·
⋃
{(XK−1,j , YK−1,j = K − 1)}

where Xkj ∼ Fk(x) = Ptrain(X ≤ x|Y = k), k = 0, 1, . . . ,K − 1.

I In the unlabelled test data, a feature X

• may come from F0(x), F1(x), . . . , FK−1(x), or

• does not come from any of them (outliers)
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This talk

I Let FK(x) denote the cdf of the outliers, and categorize them into Class K.

I In the test data, let πk = Ptest(Y = k), k = 0, 1, . . . ,K.

I X in the test data follows a finite mixture model

π0F0(x) + · · ·+ πK−1FK−1(x) + πKFK(x)

The goal is to make prediction about Y for each X in the test data
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Literature on outlier detection

I Applicable in fraud detection, network security, quality control, and more

I The problem of “ whether a data point in the test data is an outlier” has

been studied extensively recently:

• Unconstrained least-squares importance fitting (uLSIF) method (Hido et al., 2011)

• CNN + uLSIF, (Nam and Sugiyama, 2015)

• A robust outlier detection method incorporating k-NN algorithm (Li et al., 2022)

I Limitations:

• nonparametric estimation of density ratios,

• absence of a more detailed classification
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Label prediction set

I The conventional classification algorithms and the outlier detection methods all

provide a prediction point for the label of each test data point.

I An alternative is to construct a prediction set: the density-level set (Cadre, 2006;

Lei et al., 2013; Rigollet & Vert, 2009; Sadinle et al., 2019)

C(x) = {k : x ∈ Ak}, Ak = {x|fk(x) > fk,α}

where

• fk(x) is the pdf corresponding to Fk(x),

• fk,α is the α-th quantile of fk(X) for X ∼ fk(x).

I C(x) may contains more than one labels.

I An x with C(x) = ∅ is classified as outlier.

10 / 42



Label prediction set

I Weakness of the density-level set

• does not utilize information comparing different classes, potentially leading to

efficiency loss

I To overcome this problem, Guan and Tibshirani (2022) proposed the BCOPS

(balanced and conformal optimized prediction set) to construct C(x)

• Perform better because it combines information from different classes and unlabelled

test samples

I The validation of BCOPS is built on the assumption that the outliers can be

perfectly separated from the observed classes (their Assumption 6).

• Too strong to be satisfied by popular parametric models, such as normal.
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A challenge in BCOPS

Hereafter we assume K = 2 and let

ftest(x) = π0f0(x) + · · ·π1f1(x) + π2f2(x).

I To see their Assumption 6 is too strong, let ηl(x) = log{fl(x)/ftest(x)} and

gl,k(·) be the density of ηl in class k for l ∈ {0, 1} and k ∈ {0, 1, 2}.

I Define Sl = {z : gl,l ◦ ηl(z) ≥ Q(ζ; gl,l ◦ ηl, Fl)}, where gl,l ◦ ηl(z) = gl,l(ηl(z))

and ζ is a user-specific positive constant, where they recommended ζ = 0.2.

I Their Assumption 6 requires

P2(X ∈ Sl) = 0, l = 0, 1,

where Pk takes probability when X ∼ Fk(x).
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A challenge in BCOPS

Values of P2(S0) and P2(S1) when Fk is the distribution function of

N(µk, I3) with µ>
0 = (0, 0, 0), π0 = 0.35, and π1 = 0.3.

µ>
1 µ>

2 P2(S0) P2(S1)

(0.25, 0.25, 0.25) (1.00,−0.50,−0.50) 0.480 0.422

(1.00, 1.00, 0.00) (1.00,−0.50,−0.50) 0.426 0.360

(1.00, 0.30,−0.80) (−0.70,−0.20, 1.50) 0.464 0.120

(1.00, 0.30,−0.80) (1.00,−0.50,−0.50) 0.377 0.628

This motivates us to develop a new label prediction set.
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Identifability

I Recall that we have data from f0(x) and f1(x), and an X in the test data follows

ftest(x) = π0f0(x) + π1f1(x) + π2f2(x).

I Challenge in identifiability:

• f0 and f1 are identifiable nonparametrically

• However, there are no direct data from f2, but only indirect data in the test data.

Lemma 1

For a mixture model λF (x) + (1− λ)G(x), where λ ∈ [0, 1] and F and G be two cdfs,

if G is known but λ and F are unknown, then λ and F are unidentifiable.

λ1

{
λ2
λ1
F (x) +

λ1 − λ2
λ1

G(x)

}
+ (1− λ1)G(x) = λ2F (x) + (1− λ2)G(x)
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Our model assumption

We make a semiparametric density ratio model (Anderson, 1979; DRM) assumption:

fk(x) = f0(x) exp{αk + β>
k φ(x)}, k = 1, 2,

where φ(x) is a pre-specified q-variate function and usually taken as x.

I Satisfied by many popular parametric distribution families, including normal,

binomial, exponential, Poisson and so on.

I Closely related to discrimination analysis and problems subject to covariate

shift.
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Identifiability

Under DRM, we rewrite

ftest(x) = π0f0(x) + π1f1(x) + π2f2(x)

= f0(x){π0 + π1e
γ>1 φe(x) + π2e

γ>2 φe(x)}.

where γk = (αk, β
>
k )> and φe(x) = (1, φ>(x))>.

Assumption 1 Let nk =
∑n
i=1 I(Yi = k) for k = 0, 1. There exist constants c0, c1, c2 ∈ (0, 1) such that

n0/N = c0 + o(1), n1/N = c1 + o(1) and m/N = c2 + o(1) as N →∞.

Assumption 2 βo1 6= 0, βo2 6= 0, βo1 6= βo2 , π
o
2 > 0, and E0{φe(X)φ>

e (X)} is finite and positive definite.

Lemma 2

Under Assumptions 1 and 2, f0(x) and θ = (γ>
1 , γ

>
2 , π0, π1) are identifiable.
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Semiparametric likelihood estimation

I Under DRM, the likelihood contribution of the training data is

L0 =

n∏
i=1

{eYiγ>1 φe(Xi)dF0(Xi)}

I The likelihood contribution of the test data is

L1 =

N∏
i=n+1

[
{π0 + π1e

γ>1 φe(Xi) + π2e
γ>2 φe(Xi)}dF0(Xi)

]
I The likelihood based on all data is

L0 × L1 =

N∏
I=1

[
dF0(Xi)× eYi(1−Di)γ

>
1 φe(Xi) × {π0 + π1e

γ>1 φe(Xi) + π2e
γ>1 φe(Xi)}Di

]
.
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Empirical profile likelihood function

I We use empirical likelihood to handle the baseline distribution, namely

F0(x) =

N∑
i=1

piI(Xi ≤ x).

I Then the log-likelihood becomes

˜̀=

N∑
i=1

[log(pi) + Yi
(
1−Di

)
γ>
1 φe(Xi) +Di log{π0 + π1e

γ>1 φe(Xi) + π2e
γ>2 φe(Xi)}],

where feasible pi’s satisfy

pi ≥ 0,

N∑
i=1

pi = 1,

N∑
i=1

pi{eγ
>
k φe(Xi) − 1} = 0, k = 1, 2. (1)
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Semiparametric profile likelihood function

I Given θ = (γ>
1 , γ

>
2 , π0, π1), the log-function ˜̀ takes its maximum when

pi =
1

N

1

1 + λ1{eγ
>
1 φe(Xi) − 1}+ λ2{eγ

>
2 φe(Xi) − 1}

,

where (λ1, λ2) is the solution to

1

N

N∑
i=1

eγ
>
1 φe(Xi) − 1

1 + λ1{eγ
>
1 φe(Xi) − 1}+ λ2{eγ

>
2 φe(Xi) − 1}

= 0,

1

N

N∑
i=1

eγ
>
2 φe(Xi) − 1

1 + λ1{eγ
>
1 φe(Xi) − 1}+ λ2{eγ

>
2 φe(Xi) − 1}

= 0.

(2)

I The profile log-likelihood function of θ is

`(θ) = −
N∑
k=1

log[1 + λ1{eγ
>
1 φe(Xi) − 1}+ λ2{eγ

>
2 φe(Xi) − 1}]

+

N∑
i=1

[Yi
(
1−Di

)
γ>
1 φe(Xi) +Di log{π0 + π1e

γ>1 φe(Xi) + π2e
γ>2 φe(Xi)}].
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Maximum likelihood estimation

I We propose to estimate θ by the maximum likelihood estimator (MLE)

θ̂ := (γ̂>
1 , γ̂

>
2 , π̂0, π̂1) = arg max

θ∈Θ
`(θ).

I Accordingly, we have the MLE p̂i of pi, and the MLEs of F0 and Fk:

F̂0(x) =
N∑
i=1

p̂iI(Xi ≤ x),

F̂k(x) =

N∑
i=1

p̂ie
γ̂>
k φe(Xi)I(Xi ≤ x), k = 1, 2.

I These estimators provides basic elements for the construction of the proposed label

prediction set.
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Asymptotics

I Assumption 3 : The function E0[exp{β>
k φ(X)}] is finite for βk in a neighborhood of βok

and k = 1, 2, and the matrix W∗ is nonsingular.

I Assumption 4: Θ ⊂ Rs is a closed subset, and θo is an interior point of Θ.

Theorem 1

Under Assumptions 1-4, as N goes to infinity,

(1)
√
N(θ̂ − θo)→ N

(
0,W−1

∗
)

in distribution

(2) The stochastic process
√
N{F̂k(·)− Fk(·)} converges weakly to a Gaussian process with

mean zero for each k = 0, 1, 2.
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Numerical implementation: EM algorithm

I Naturally we take the labels {Y ∗j : n+ 1 ≤ j ≤ n+m} for the test data as

natural missing data.

I Let X denote all the observed data. It is clear that

w
(r+1)
jk = E{I(Y ∗j = k)|X , θ(r)}

=
π
(r)
k eγ

(r)>
k φe(Xj)

π
(r)
0 + π

(r)
1 eγ

(r)>
1 φe(Xj) + (1− π(r)0 − π

(r)
1 )eγ

(r)>
2 φe(Xj)

.

I An EM algorithm can be constructed by standard discussions. The details are

omitted.

23 / 42



Outline

1 Introduction and motivation

2 Model, identifiability and parameter estimation

3 Semi-parametric label prediction

4 A simulation study

5 Real applications

24 / 42



Semi-parametric label prediction

I Following Guan and Tibshirani (2022), we consider constructing a label prediction set

C(x) ∈ {{0}, {1}, {0, 1},∅} for each X = x, instead of giving a label prediction point.

I A reasonable prediction set C(x) can be constructed as the minimizer of the

misclassification loss averaged over the out-of-sample data

(P)

min
∫
|C(x)|ftest(x)dx,

s.t. Pk(k ∈ C(X)) ≥ 1− α, k = 0, 1,

where

• α ∈ (0, 1) is a prespecified mis-coverage level,

• |C(x)| be the size of C(x) , and

• the weight function ftest(x) balances classification accuracy and power of outlier

detection.
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Semi-parametric label prediction

I The solution to problem (P) is the oracle prediction set C∗(x) = {k : x ∈ Ak∗},
where Ak∗ is the solution to

(Pk)
min

∫
I(x ∈ Ak)ftest(x)dx,

s.t. Pk (x ∈ Ak) ≥ 1− α, k = 0, 1.

I The set Ak∗, also called the oracle acceptance set for class k, has an explicit form

in terms of density ratios vk(x) = fk(x)/ftest(x), namely,

Ak∗ = {x : vk(x) ≥ Q (α; vk, Fk)} , (3)

where Q(α;h, F ) is the lower α percentile of a real-valued function h(X) under

distribution F , i.e. Q(α;h, F ) = sup{t :
∫
I(h(x) ≤ t)dF (x) ≤ α}.
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Semi-parametric likelihood prediction Set

I We propose a semi-parametric likelihood prediction method, without

requiring the Assumption 6 of Guan and Tibshirani (2022).

I As Ak∗ depends only on the ordering of vk(x) = fk(x)/ftest(x), any

order-preserving transformation of vk(x) is permitted when constructing Ak∗.

I We take

v0(x) =
f0(x)

f0(x) + ftest(x)
=

1

1 + π0 + π1 exp{γ>
1 φe(x)}+ π2 exp{γ>

1 φe(x))}
,

v1(x) =
f1(x)

f1(x) + ftest(x)
=

exp{γ>
1 φe(x)}

π0 + (1 + π1) exp{γ>
1 φe(x)}+ π2 exp{γ>

2 φe(x)}
.
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Semi-parametric empirical likelihood prediction Set

I Let Fnk(x) denote the empirical distribution of {Xi : Yi = k,Di = 0} for k = 0, 1.

I Our semi-parametric empirical likelihood prediction set (SELPS) is

Ĉ(x) = {k : x ∈ Âk},

where

Âk = {x : v̂k(x) ≥ Q(α; v̂k, Fnk)},

with

v̂0(x) =
1

1 + π̂0 + π̂1 exp{γ̂>
1 φe(x)}+ π̂2 exp{γ̂>

2 φe(x)}
,

v̂1(x) =
exp{γ̂>

1 φe(x)}
π̂0 + (1 + π̂1) exp{γ̂>

1 φe(x)}+ π̂2 exp{γ̂>
2 φe(x)}

.
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Semi-parametric empirical likelihood prediction Set

Assumption 5: The densities f0(x) and f1(x) are upper bounded by a constant.

There exist constants 0 < ε1 ≤ ε2 and ε, δ0, ς > 0 such that for k = 0, 1,

ε1|δ|ς ≤ |Pk(vk(X) ≤ Q(t; vk, Fk) + δ)− t| ≤ ε2|δ|ς , ∀δ ∈ [−δ0, δ0], t ∈ [α− ε, α+ ε].

I This assumption requires that the likelihood ratio functions vk(x) are neither too

steep nor too flat around the boundary of Q(t; vk, Fk) uniformly for

t ∈ [α− ε, α+ ε], where Q(α; vk, Fk) corresponds to the optimal decision regions

Ak∗.
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Semi-parametric empirical likelihood prediction Set

Theorem 2

Suppose that Assumptions 1-5 are satisfied. Given a mis-coverage rate α > 0, let Ĉ(x)

be the proposed SELPS and C∗(x) the oracle prediction set. Then

(i) there exists M > 0 such that

Pk(X ∈ Âk) ≥ 1− α−M
(

logN

N

)min{ς,2}
6

,

(ii) there exists a large enough constant D > 0 such that

lim
N→∞

P

∫ (|Ĉ(x)| − |C∗(x)|)ftest(x)dx ≥ D
(

logN

N

)min{ς,2}
6

 = 0.
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Methods under comparison

We investigate the finite-sample performance of the proposed label prediction method

SELPS at 95% coverage level.

I BCOPS(rf): the BCOPS with random forest (rf);

I BCOPS(sel): the BCOPS with the semiparametric EL estimators;

I SELPS: our proposed semi-parametric EL prediction set
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Simulation scenarios

We set Fk (k = 0, 1, 2) to be the distribution of N(µk,Σk), with

I µ0 = (0, 0, . . . , 0)>, µ1 = (2, 2, 0, . . . , 0)> and µ2 = (−2,−2, 0, . . . , 0)> are three

10-dimensional vectors,

I Σk are 10× 10 matrices with diagonal elements being 1 and general (i, j) element

being ρ
|i−j|
k .

• (ρ0, ρ1, ρ2)=(0, 0, 0) (homogeneous case);

• (ρ0, ρ1, ρ2)=(0, 0.5, 0.2) (heterogeneous case, model mis-specification).

I In each case, for training data-set, n0 = 1000 , n1 = 2000 ; for training data-set ,

m = 3000, one third of which come from Fk for k = 0, 1, 2.

33 / 42



Simulation scenarios

We set Fk (k = 0, 1, 2) to be the distribution of N(µk,Σk), with

I µ0 = (0, 0, . . . , 0)>, µ1 = (2, 2, 0, . . . , 0)> and µ2 = (−2,−2, 0, . . . , 0)> are three

10-dimensional vectors,

I Σk are 10× 10 matrices with diagonal elements being 1 and general (i, j) element

being ρ
|i−j|
k .

• (ρ0, ρ1, ρ2)=(0, 0, 0) (homogeneous case);

• (ρ0, ρ1, ρ2)=(0, 0.5, 0.2) (heterogeneous case, model mis-specification).

I In each case, for training data-set, n0 = 1000 , n1 = 2000 ; for training data-set ,

m = 3000, one third of which come from Fk for k = 0, 1, 2.
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An example with heterogeneous variances (ρ0 = 0, ρ1 = 0.5, ρ2 = 0.2)
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Table: Simulation results on abstention rate R, prediction accuracy of BCOPS(rf), BCOPS(sel)

and SELPS, and their coverages in terms of coverages I and II at the 95% prediction level

R accuracy coverage I coverage II

Homogeneous case: (ρ0, ρ1, ρ2) = (0, 0, 0)

BCOPS(rf) 0.671 0.774 0.956 0.947

BCOPS(sel) 0.746 0.810 0.965 0.961

SELPS 0.774 0.833 0.950 0.957

Heterogeneous case: (ρ0, ρ1, ρ2) = (0, 0.5, 0.2)

BCOPS(rf) 0.721 0.760 0.963 0.937

BCOPS(sel) 0.763 0.766 0.957 0.936

SELPS 0.778 0.784 0.952 0.937

I Coverage I (II) is defined by the proportion of points (x, y) with y = 0 (y = 1) in

the test data whose predicted sets are either {0} ({1}) or {0, 1}.
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Simulated RMSE and bias (in paratheses) of the estimators for πk’s

n0/n (π1, π2) π̃0 π̃1 π̃2 π̂0 π̂1 π̂2

Homogeneous case: (ρ0, ρ1, ρ2) = (0, 0, 0)

0.333 (0.333, 0.333) 0.056
(0.054)

0.011
(−0.006)

0.05
(−0.048)

0.014
(0)

0.005
(0)

0.011
(0)

(0.400, 0.200) 0.049
(0.046)

0.012
(−0.006)

0.043
(−0.041)

0.014
(−0.001)

0.006
(0)

0.011
(0)

(0.250, 0.500) 0.058
(0.057)

0.010
(−0.007)

0.052
(−0.050)

0.012
(0)

0.004
(0)

0.010
(0.001)

0.500 (0.333, 0.333) 0.049
(0.048)

0.01
(−0.005)

0.044
(−0.043)

0.013
(0)

0.005
(0)

0.010
(0)

(0.400, 0.200) 0.041
(0.039)

0.011
(−0.004)

0.038
(−0.035)

0.012
(0)

0.006
(0)

0.009
(0)

(0.250, 0.500) 0.054
(0.053)

0.009
(−0.006)

0.048
(−0.047)

0.011
(−0.001)

0.004
(0)

0.009
(0.001)

Heterogeneous case: (ρ0, ρ1, ρ2) = (0, 0.5, 0.2)

0.333 (0.333, 0.333) 0.063
(0.061)

0.010
(−0.005)

0.058
(−0.056)

0.015
(0.004)

0.006
(0)

0.013
(−0.003)

(0.400, 0.200) 0.053
(0.051)

0.011
(−0.005)

0.048
(−0.046)

0.016
(0.003)

0.006
(0)

0.013
(−0.003)

(0.250, 0.500) 0.066
(0.065)

0.009
(−0.005)

0.061
(−0.059)

0.014
(0.003)

0.006
(0)

0.011
(−0.003)

0.500 (0.333, 0.333) 0.058
(0.056)

0.011
(−0.007)

0.051
(−0.050)

0.015
(0.004)

0.006
(−0.001)

0.012
(−0.003)

(0.400, 0.200) 0.047
(0.045)

0.011
(−0.006)

0.042
(−0.040)

0.014
(0.004)

0.007
(−0.001)

0.010
(−0.003)

(0.250, 0.500) 0.062
(0.061)

0.009
(−0.006)

0.057
(−0.055)

0.013
(0.003)

0.005
(−0.001)

0.010
(−0.002)
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Real applications

In this section we further investigate the finite-sample performance of the proposed

SELPS by analyzing four real-world data-sets:

I Forest Covertype data-set,
• contains 54 features of 9,813 trees among which 3,969 are Douglas fir (class 0),

4,505 are Krummholz (class 1), and 1,339 are Cottonwood Willow (class 2).

I Human Activity Recognition (HAR) data-set,
• contains 561 features of three activities, walking (class 0), sitting (class 1) and

standing (class 2), with sample size 1,722, 1,777, and 1,906 respectively.

I StatLog DNA data-set,
• contains 60 features of DNA fragments, including the following three categories:

donors (class 0), acceptors (class 1), and neither (class 2), with sample size being

767, 765 and 1,654, respectively.

I pendigits data-set,
• contains 16 features of pen-based recognition of handwritten digits 0, 1 and 2,

among which 779 are of digit 1, 780 are of digit 2 and 780 are of digit 0.
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Table: Real data results on abstention rate R, prediction accuracy of BCOPS(rf), BCOPS(glm) and

SELPS, their coverages in terms of coverages I and II at the 95% prediction level, and their proportion

estimators π̂1, π̂2.

R accuracy coverage I coverage II π̂1 π̂2

Forest Covertype: (p, n,m, π1, π2) = (54, 3000, 6813, 0.441, 0.196)

BCOPS(rf) 0.146 0.801 0.956 0.947 0.509 0.002

BCOPS(glm) 0.001 0.811 0.957 0.952 0.463 0.048

SELPS 0.255 0.818 0.943 0.941 0.486 0.106

StatLog DNA: (p, n,m, π1, π2) = (180, 800, 2386, 0.153, 0.693)

BCOPS(rf) 0.886 0.781 0.951 0.934 0.196 0.611

BCOPS(glm) 0.909 0.821 0.967 0.945 0.172 0.678

SELPS 0.969 0.915 0.948 0.918 0.141 0.714

HAR: (p, n,m, π1, π2) = (561, 1600, 3405, 0.257, 0.501)

BCOPS(rf) 0.187 0.963 0.963 0.962 0.550 0.210

BCOPS(glm) 0.080 0.711 0.973 0.983 - -

SELPS 0.249 0.967 0.980 0.954 0.268 0.488

pendigits: (p, n,m, π1, π2) = (16, 800, 1539, 0.246, 0.507)

BCOPS(rf) 0.996 0.889 0.931 0.968 0.259 0.499

BCOPS(glm) 0.992 0.755 0.942 0.966 0.252 0.517

SELPS 1.00 0.937 0.942 0.932 0.245 0.515
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Plots of actual type I error (ATE) versus empirical misclassification rate

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

ATE

E
M

R
Forest Covertype

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8

ATE

E
M

R

Statlog DNA

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5

ATE

E
M

R

HAR

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3

ATE

E
M

R
pendigits

I BCOPS(rf): green, dotted

I BCOPS(glm): blue, dashed

I SELPS: red, solid

40 / 42



Summary

I The unlabelled test data follow a mixture model, and it can not be identified nonparametrically.

I We propose to model the test data by a finite semiparametric mixture model under density ratio

model

I We construct a semiparametric empirical likelihood prediction set (SELPS) for the labels in the

test data.

• All underlying parameters are identifiable.

• Our method circumvents a stringent separation assumption, which is required by

Guan and Tibshirani (2022) but is often violated by commonly-used distributions.

• We establish the consistency and asymptotic normalities of our estimators, and

asymptotic optimality of the proposed SELPS.
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