Navigating challenges in classification and outlier detection: a remedy based on semi-parametric density ratio models

#### Yukun Liu (East China Normal University)

Joint work with: Siyan Liu (East China Normal University) Pengfei Li (University of Waterloo) Jing Qin (National Institutes of Health)

#### BIRS - IASM Workshop \* Hang Zhou \* Dec 14, 2023



## Introduction and motivation

2 Model, identifiability and parameter estimation

3 Semi-parametric label prediction

A simulation study

#### 5 Real applications

- Goal: to assign categorical labels to unlabelled test data based on patterns and relationships learned from a labeled training dataset.
- Classification has diverse applications, including
  - email spam filtering (Delany et al., 2012; Fan et al., 2016),
  - sentiment analysis (Medhat et al., 2014; Wang et al., 2016),
  - image recognition (Krizhevsky et al., 2017; Pan et al., 2018).



. . . . . .



X: features/covariates/input variables

Y: label/response/output variable



▶ Training data:  $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{iid}{\sim} P_{\text{train}}(Y, X)$ 

▶ Ideal test data:  $(X_{n+1}, Y_{n+1}), \dots, (X_{n+m}, Y_{n+m}) \stackrel{iid}{\sim} P_{\text{train}}(Y, X)$ 

## Convention

Training and test data are often assumed to have the same distribution

 $P_{\text{train}}(Y, X) = P_{\text{test}}(Y, X)$ 

- ► Many powerful supervised learning algorithms try to estimate the common P(Y = y | X = x).
  - Decision Trees (Breiman, 1984; Friedl and Brodley, 1997; Kim and Loh, 2001),
  - Random Forests (Ho, 1995; Breiman, 2001; Ham et al., 2005; Biau, 2012),
  - Support Vector Machines (Cortes and Vapnik, 1995; Suykens and Vandewalle, 1999; Pavlidis et al., 2004; Cervantes et al., 2020),
  - Neural Networks (Dreiseitl and Ohno-Machado, 2002; Ghosh et al., 2004; Krizhevsky et al., 2017; Gurney, 2018).

▶ Then classify the test data using the estimated P(Y = y | X = x).

However, the conventional methods face challenges or even underperform when the training and test data-sets exhibits distributions mismatches

**Distributions mismatch or distribution shift**:

 $P_{\text{train}}(Y, X) \neq P_{\text{test}}(Y, X)$ 

However, the conventional methods face challenges or even underperform when the training and test data-sets exhibits distributions mismatches

**Distributions mismatch or distribution shift**:

 $P_{\text{train}}(Y, X) \neq P_{\text{test}}(Y, X)$ 

► Two commonly-seen special cases

• Covariate shift:  $P_{\text{train}}(Y|X) = P_{\text{test}}(Y|X), \quad P_{\text{train}}(X) \neq P_{\text{test}}(X),$ 

• Label shift:  $P_{\text{train}}(X|Y) = P_{\text{test}}(X|Y), P_{\text{train}}(Y) \neq P_{\text{test}}(Y),$ 

We focuses on the case where both covariate shift and label shift exist.

We focuses on the case where both covariate shift and label shift exist.

▶ The labelled training data can be reorganized as

$$\{(X_{0j}, Y_{0j} = 0)\} \bigcup \cdots \bigcup \{(X_{K-1,j}, Y_{K-1,j} = K - 1)\}$$

where 
$$X_{kj} \sim F_k(x) = P_{\text{train}}(X \le x | Y = k), \quad k = 0, 1, \dots, K-1.$$

▶ In the unlabelled test data, a feature X

- may come from  $F_0(x), F_1(x), ..., F_{K-1}(x)$ , or
- does not come from any of them (outliers)

• Let  $F_K(x)$  denote the cdf of the **outliers**, and categorize them into **Class** K.

- Let  $F_K(x)$  denote the cdf of the **outliers**, and categorize them into **Class** K.
- ▶ In the test data, let  $\pi_k = P_{\text{test}}(Y = k)$ ,  $k = 0, 1, \dots, K$ .

- Let  $F_K(x)$  denote the cdf of the **outliers**, and categorize them into **Class** K.
- ▶ In the test data, let  $\pi_k = P_{\text{test}}(Y = k)$ ,  $k = 0, 1, \dots, K$ .
- ▶ X in the test data follows a finite mixture model

$$\pi_0 F_0(x) + \dots + \pi_{K-1} F_{K-1}(x) + \pi_K F_K(x)$$

- Let  $F_K(x)$  denote the cdf of the **outliers**, and categorize them into **Class** K.
- ▶ In the test data, let  $\pi_k = P_{\text{test}}(Y = k)$ ,  $k = 0, 1, \dots, K$ .
- ▶ X in the test data follows a finite mixture model

$$\pi_0 F_0(x) + \dots + \pi_{K-1} F_{K-1}(x) + \pi_K F_K(x)$$

The goal is to make prediction about Y for each X in the test data

## Literature on outlier detection

- > Applicable in fraud detection, network security, quality control, and more
- The problem of "whether a data point in the test data is an outlier" has been studied extensively recently:
  - Unconstrained least-squares importance fitting (uLSIF) method (Hido et al., 2011)
  - CNN + uLSIF, (Nam and Sugiyama, 2015)
  - A robust outlier detection method incorporating k-NN algorithm (Li et al., 2022)

## Limitations:

- nonparametric estimation of density ratios,
- absence of a more detailed classification

## Label prediction set

- The conventional classification algorithms and the outlier detection methods all provide a prediction point for the label of each test data point.
- An alternative is to construct a prediction set: the density-level set (Cadre, 2006; Lei et al., 2013; Rigollet & Vert, 2009; Sadinle et al., 2019)

$$C(x) = \{k : x \in A_k\}, \quad A_k = \{x | f_k(x) > f_{k,\alpha}\}$$

where

- $f_k(x)$  is the pdf corresponding to  $F_k(x)$ ,
- $f_{k,\alpha}$  is the  $\alpha$ -th quantile of  $f_k(X)$  for  $X \sim f_k(x)$ .
- C(x) may contains more than one labels.
- An x with  $C(x) = \emptyset$  is classified as outlier.

#### ► Weakness of the density-level set

- does not utilize information comparing different classes, potentially leading to efficiency loss
- ► To overcome this problem, Guan and Tibshirani (2022) proposed the BCOPS (balanced and conformal optimized prediction set) to construct C(x)
  - Perform better because it combines information from different classes and unlabelled test samples
- The validation of BCOPS is built on the assumption that the outliers can be perfectly separated from the observed classes (their Assumption 6).
  - Too strong to be satisfied by popular parametric models, such as normal.

# A challenge in BCOPS

Hereafter we assume K = 2 and let

$$f_{\text{test}}(x) = \pi_0 f_0(x) + \dots + \pi_1 f_1(x) + \pi_2 f_2(x).$$

- ► To see their Assumption 6 is too strong, let  $\eta_l(x) = \log\{f_l(x)/f_{\text{test}}(x)\}$  and  $g_{l,k}(\cdot)$  be the density of  $\eta_l$  in class k for  $l \in \{0, 1\}$  and  $k \in \{0, 1, 2\}$ .
- ▶ Define  $S_l = \{z : g_{l,l} \circ \eta_l(z) \ge Q(\zeta; g_{l,l} \circ \eta_l, F_l)\}$ , where  $g_{l,l} \circ \eta_l(z) = g_{l,l}(\eta_l(z))$ and  $\zeta$  is a user-specific positive constant, where they recommended  $\zeta = 0.2$ .

# A challenge in BCOPS

Hereafter we assume K = 2 and let

$$f_{\text{test}}(x) = \pi_0 f_0(x) + \dots + \pi_1 f_1(x) + \pi_2 f_2(x).$$

- ► To see their Assumption 6 is too strong, let  $\eta_l(x) = \log\{f_l(x)/f_{\text{test}}(x)\}$  and  $g_{l,k}(\cdot)$  be the density of  $\eta_l$  in class k for  $l \in \{0, 1\}$  and  $k \in \{0, 1, 2\}$ .
- ▶ Define  $S_l = \{z : g_{l,l} \circ \eta_l(z) \ge Q(\zeta; g_{l,l} \circ \eta_l, F_l)\}$ , where  $g_{l,l} \circ \eta_l(z) = g_{l,l}(\eta_l(z))$ and  $\zeta$  is a user-specific positive constant, where they recommended  $\zeta = 0.2$ .
- ► Their Assumption 6 requires

$$P_2(X \in S_l) = 0, \quad l = 0, 1,$$

where  $P_k$  takes probability when  $X \sim F_k(x)$ .

## A challenge in BCOPS

Values of  $P_2(S_0)$  and  $P_2(S_1)$  when  $F_k$  is the distribution function of  $N(\mu_k, I_3)$  with  $\mu_0^{\top} = (0, 0, 0)$ ,  $\pi_0 = 0.35$ , and  $\pi_1 = 0.3$ .

| $\mu_1^{\scriptscriptstyle \top}$ | $\mu_2^	op$          | $P_2(S_0)$ | $P_2(S_1)$ |
|-----------------------------------|----------------------|------------|------------|
| (0.25, 0.25, 0.25)                | (1.00, -0.50, -0.50) | 0.480      | 0.422      |
| (1.00, 1.00, 0.00)                | (1.00, -0.50, -0.50) | 0.426      | 0.360      |
| (1.00, 0.30, -0.80)               | (-0.70, -0.20, 1.50) | 0.464      | 0.120      |
| (1.00, 0.30, -0.80)               | (1.00, -0.50, -0.50) | 0.377      | 0.628      |

#### This motivates us to develop a new label prediction set.

## Introduction and motivation

## 2 Model, identifiability and parameter estimation

Semi-parametric label prediction

A simulation study

#### 5 Real applications

# Identifability

▶ Recall that we have data from  $f_0(x)$  and  $f_1(x)$ , and an X in the test data follows

 $f_{\text{test}}(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x).$ 

## Identifability

▶ Recall that we have data from  $f_0(x)$  and  $f_1(x)$ , and an X in the test data follows

$$f_{\text{test}}(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x).$$

#### **Challenge in identifiability:**

- $f_0$  and  $f_1$  are identifiable nonparametrically
- However, there are no direct data from  $f_2$ , but only indirect data in the test data.

#### Lemma 1

For a mixture model  $\lambda F(x) + (1 - \lambda)G(x)$ , where  $\lambda \in [0, 1]$  and F and G be two cdfs, if G is known but  $\lambda$  and F are unknown, then  $\lambda$  and F are unidentifiable.

$$\lambda_1 \left\{ \frac{\lambda_2}{\lambda_1} F(x) + \frac{\lambda_1 - \lambda_2}{\lambda_1} G(x) \right\} + (1 - \lambda_1) G(x) = \lambda_2 F(x) + (1 - \lambda_2) G(x)$$

We make a semiparametric density ratio model (Anderson, 1979; DRM) assumption:

$$f_k(x) = f_0(x) \exp\{\alpha_k + \beta_k^{\top} \phi(x)\}, \quad k = 1, 2,$$

where  $\phi(x)$  is a pre-specified q-variate function and usually taken as x.

We make a semiparametric density ratio model (Anderson, 1979; DRM) assumption:

$$f_k(x) = f_0(x) \exp\{\alpha_k + \beta_k^{\top} \phi(x)\}, \quad k = 1, 2,$$

where  $\phi(x)$  is a pre-specified q-variate function and usually taken as x.

- Satisfied by many popular parametric distribution families, including normal, binomial, exponential, Poisson and so on.
- Closely related to discrimination analysis and problems subject to covariate shift.

#### Under DRM, we rewrite

$$f_{\text{test}}(x) = \pi_0 f_0(x) + \pi_1 f_1(x) + \pi_2 f_2(x) = f_0(x) \{ \pi_0 + \pi_1 e^{\gamma_1^\top \phi_e(x)} + \pi_2 e^{\gamma_2^\top \phi_e(x)} \}.$$

where  $\gamma_k = (\alpha_k, \beta_k^{\scriptscriptstyle op})^{\scriptscriptstyle op}$  and  $\phi_e(x) = (1, \phi^{\scriptscriptstyle op}(x))^{\scriptscriptstyle op}$ .

Assumption 1 Let  $n_k = \sum_{i=1}^n I(Y_i = k)$  for k = 0, 1. There exist constants  $c_0, c_1, c_2 \in (0, 1)$  such that  $n_0/N = c_0 + o(1), n_1/N = c_1 + o(1)$  and  $m/N = c_2 + o(1)$  as  $N \to \infty$ .

Assumption 2  $\beta_1^o \neq 0, \ \beta_2^o \neq 0, \ \beta_1^o \neq \beta_2^o, \ \pi_2^o > 0$ , and  $\mathbb{E}_0\{\phi_e(X)\phi_e^\top(X)\}$  is finite and positive definite.

#### Lemma 2

Under Assumptions 1 and 2,  $f_0(x)$  and  $\theta = (\gamma_1^{\top}, \gamma_2^{\top}, \pi_0, \pi_1)$  are identifiable.

## Semiparametric likelihood estimation

▶ Under DRM, the likelihood contribution of the training data is

$$L_0 = \prod_{i=1}^n \{ e^{Y_i \gamma_1^\top \phi_e(X_i)} dF_0(X_i) \}$$

The likelihood contribution of the test data is

$$L_1 = \prod_{i=n+1}^{N} \left[ \{ \pi_0 + \pi_1 e^{\gamma_1^\top \phi_e(X_i)} + \pi_2 e^{\gamma_2^\top \phi_e(X_i)} \} dF_0(X_i) \right]$$

The likelihood based on all data is

$$L_0 \times L_1 = \prod_{I=1}^N \left[ dF_0(X_i) \times e^{Y_i(1-D_i)\gamma_1^\top \phi_e(X_i)} \times \{\pi_0 + \pi_1 e^{\gamma_1^\top \phi_e(X_i)} + \pi_2 e^{\gamma_1^\top \phi_e(X_i)} \}^{D_i} \right].$$

# Empirical profile likelihood function

▶ We use empirical likelihood to handle the baseline distribution, namely

$$F_0(x) = \sum_{i=1}^{N} p_i I(X_i \le x).$$

▶ Then the log-likelihood becomes

$$\tilde{\ell} = \sum_{i=1}^{N} [\log(p_i) + Y_i (1 - D_i) \gamma_1^{\mathsf{T}} \phi_e(X_i) + D_i \log\{\pi_0 + \pi_1 e^{\gamma_1^{\mathsf{T}} \phi_e(X_i)} + \pi_2 e^{\gamma_2^{\mathsf{T}} \phi_e(X_i)}\}],$$

where feasible  $p_i$ 's satisfy

$$p_i \ge 0, \quad \sum_{i=1}^N p_i = 1, \quad \sum_{i=1}^N p_i \{ e^{\gamma_k^\top \phi_e(X_i)} - 1 \} = 0, \quad k = 1, 2.$$
 (1)

## Semiparametric profile likelihood function

▶ Given  $\theta = (\gamma_1^{\top}, \gamma_2^{\top}, \pi_0, \pi_1)$ , the log-function  $\tilde{\ell}$  takes its maximum when

$$p_i = \frac{1}{N} \frac{1}{1 + \lambda_1 \{ e^{\gamma_1^\top \phi_e(X_i)} - 1 \} + \lambda_2 \{ e^{\gamma_2^\top \phi_e(X_i)} - 1 \}},$$

where  $(\lambda_1, \lambda_2)$  is the solution to

$$\frac{1}{N} \sum_{i=1}^{N} \frac{e^{\gamma_{1}^{\top} \phi_{e}(X_{i})} - 1}{1 + \lambda_{1} \{ e^{\gamma_{1}^{\top} \phi_{e}(X_{i})} - 1 \} + \lambda_{2} \{ e^{\gamma_{2}^{\top} \phi_{e}(X_{i})} - 1 \}} = 0,$$

$$\frac{1}{N} \sum_{i=1}^{N} \frac{e^{\gamma_{2}^{\top} \phi_{e}(X_{i})} - 1}{1 + \lambda_{1} \{ e^{\gamma_{1}^{\top} \phi_{e}(X_{i})} - 1 \} + \lambda_{2} \{ e^{\gamma_{2}^{\top} \phi_{e}(X_{i})} - 1 \}} = 0.$$
(2)

▶ The profile log-likelihood function of  $\theta$  is

$$\ell(\theta) = -\sum_{k=1}^{N} \log[1 + \lambda_1 \{ e^{\gamma_1^{\top} \phi_e(X_i)} - 1 \} + \lambda_2 \{ e^{\gamma_2^{\top} \phi_e(X_i)} - 1 \}] \\ + \sum_{i=1}^{N} [Y_i (1 - D_i) \gamma_1^{\top} \phi_e(X_i) + D_i \log\{ \pi_0 + \pi_1 e^{\gamma_1^{\top} \phi_e(X_i)} + \pi_2 e^{\gamma_2^{\top} \phi_e(X_i)} \}].$$

## Maximum likelihood estimation

• We propose to estimate  $\theta$  by the maximum likelihood estimator (MLE)

$$\hat{\theta} := (\hat{\gamma}_1^{\mathsf{T}}, \hat{\gamma}_2^{\mathsf{T}}, \hat{\pi}_0, \hat{\pi}_1) = \arg \max_{\theta \in \Theta} \ell(\theta).$$

▶ Accordingly, we have the MLE  $\hat{p}_i$  of  $p_i$ , and the MLEs of  $F_0$  and  $F_k$ :

$$\hat{F}_{0}(x) = \sum_{i=1}^{N} \hat{p}_{i} I(X_{i} \le x),$$
  
$$\hat{F}_{k}(x) = \sum_{i=1}^{N} \hat{p}_{i} e^{\hat{\gamma}_{k}^{\top} \phi_{e}(X_{i})} I(X_{i} \le x), \quad k = 1, 2.$$

These estimators provides basic elements for the construction of the proposed label prediction set.

Assumption 3 : The function 𝔅<sub>0</sub>[exp{β<sup>⊤</sup><sub>k</sub>φ(X)}] is finite for β<sub>k</sub> in a neighborhood of β<sup>o</sup><sub>k</sub> and k = 1, 2, and the matrix W<sub>\*</sub> is nonsingular.

• Assumption 4:  $\Theta \subset \mathbb{R}^s$  is a closed subset, and  $\theta^o$  is an interior point of  $\Theta$ .

#### Theorem 1

Under Assumptions 1-4, as N goes to infinity,

(1) 
$$\sqrt{N}(\hat{ heta} - heta^o) 
ightarrow N\left(0, W_*^{-1}
ight)$$
 in distribution

(2) The stochastic process  $\sqrt{N}{\{\hat{F}_k(\cdot) - F_k(\cdot)\}}$  converges weakly to a Gaussian process with mean zero for each k = 0, 1, 2.

## Numerical implementation: EM algorithm

▶ Naturally we take the labels  $\{Y_j^* : n+1 \le j \le n+m\}$  for the test data as natural missing data.

• Let  $\mathcal{X}$  denote all the observed data. It is clear that

$$w_{jk}^{(r+1)} = \mathbb{E}\{I(Y_j^* = k) | \mathcal{X}, \theta^{(r)}\}$$
  
= 
$$\frac{\pi_k^{(r)} e^{\gamma_k^{(r)\top} \phi_e(X_j)}}{\pi_0^{(r)} + \pi_1^{(r)} e^{\gamma_1^{(r)\top} \phi_e(X_j)} + (1 - \pi_0^{(r)} - \pi_1^{(r)}) e^{\gamma_2^{(r)\top} \phi_e(X_j)}}.$$

 An EM algorithm can be constructed by standard discussions. The details are omitted.



#### Introduction and motivation

2 Model, identifiability and parameter estimation

## Semi-parametric label prediction

## A simulation study

#### 5 Real applications

▶ Following Guan and Tibshirani (2022), we consider constructing a label prediction set  $C(x) \in \{\{0\}, \{1\}, \{0, 1\}, \emptyset\}$  for each X = x, instead of giving a label prediction point.

- ► Following Guan and Tibshirani (2022), we consider constructing a label prediction set C(x) ∈ {{0}, {1}, {0, 1}, ∅} for each X = x, instead of giving a label prediction point.
- ► A reasonable prediction set *C*(*x*) can be constructed as the minimizer of the misclassification loss averaged over the out-of-sample data

$$(\mathcal{P}) \qquad \begin{array}{l} \min \int |C(x)| f_{\mathsf{test}}(x) dx, \\ \text{s.t. } P_k(k \in C(X)) \geq 1 - \alpha, \quad k = 0, 1, \end{array}$$

where

- $\alpha \in (0,1)$  is a prespecified mis-coverage level,
- |C(x)| be the size of C(x) , and
- the weight function  $f_{\rm test}(x)$  balances classification accuracy and power of outlier detection.

▶ The solution to problem ( $\mathcal{P}$ ) is the oracle prediction set  $C_*(x) = \{k : x \in A_{k*}\}$ , where  $A_{k*}$  is the solution to

$$\begin{aligned} (\mathcal{P}_k) & \min \int I(x \in A_k) f_{\mathsf{test}}(x) dx, \\ & \text{s.t. } P_k \left( x \in A_k \right) \geq 1 - \alpha, \quad k = 0, 1. \end{aligned}$$

▶ The solution to problem ( $\mathcal{P}$ ) is the oracle prediction set  $C_*(x) = \{k : x \in A_{k*}\}$ , where  $A_{k*}$  is the solution to

$$(\mathcal{P}_k) \quad \min \int I(x \in A_k) f_{\mathsf{test}}(x) dx,$$
  
s.t.  $P_k (x \in A_k) \ge 1 - \alpha, \quad k = 0, 1.$ 

▶ The set  $A_{k*}$ , also called the oracle acceptance set for class k, has an explicit form in terms of density ratios  $v_k(x) = f_k(x)/f_{test}(x)$ , namely,

$$A_{k*} = \{x : v_k(x) \ge Q(\alpha; v_k, F_k)\},$$
(3)

where  $Q(\alpha; h, F)$  is the lower  $\alpha$  percentile of a real-valued function h(X) under distribution F, i.e.  $Q(\alpha; h, F) = \sup\{t : \int I(h(x) \le t)dF(x) \le \alpha\}.$ 

# Semi-parametric likelihood prediction Set

- ▶ We propose a semi-parametric likelihood prediction method, without requiring the Assumption 6 of Guan and Tibshirani (2022).
- ► As  $A_{k*}$  depends only on the ordering of  $v_k(x) = f_k(x)/f_{\text{test}}(x)$ , any order-preserving transformation of  $v_k(x)$  is permitted when constructing  $A_{k*}$ .

# Semi-parametric likelihood prediction Set

- We propose a semi-parametric likelihood prediction method, without requiring the Assumption 6 of Guan and Tibshirani (2022).
- ▶ As  $A_{k*}$  depends only on the ordering of  $v_k(x) = f_k(x)/f_{test}(x)$ , any order-preserving transformation of  $v_k(x)$  is permitted when constructing  $A_{k*}$ .
- We take

$$v_0(x) = \frac{f_0(x)}{f_0(x) + f_{\mathsf{test}}(x)} = \frac{1}{1 + \pi_0 + \pi_1 \exp\{\gamma_1^{\mathsf{T}} \phi_e(x)\} + \pi_2 \exp\{\gamma_1^{\mathsf{T}} \phi_e(x)\}\}},$$
  
$$v_1(x) = \frac{f_1(x)}{f_1(x) + f_{\mathsf{test}}(x)} = \frac{\exp\{\gamma_1^{\mathsf{T}} \phi_e(x)\}}{\pi_0 + (1 + \pi_1) \exp\{\gamma_1^{\mathsf{T}} \phi_e(x)\} + \pi_2 \exp\{\gamma_2^{\mathsf{T}} \phi_e(x)\}}.$$

## Semi-parametric empirical likelihood prediction Set

• Let  $F_{nk}(x)$  denote the empirical distribution of  $\{X_i : Y_i = k, D_i = 0\}$  for k = 0, 1.

Our semi-parametric empirical likelihood prediction set (SELPS) is

$$\hat{C}(x) = \{k : x \in \hat{A}_k\},\$$

where

$$\hat{A}_k = \{ x : \hat{v}_k(x) \ge Q(\alpha; \hat{v}_k, F_{nk}) \},\$$

with

$$\begin{aligned} \hat{v}_0(x) &= \frac{1}{1 + \hat{\pi}_0 + \hat{\pi}_1 \exp\{\hat{\gamma}_1^\top \phi_e(x)\} + \hat{\pi}_2 \exp\{\hat{\gamma}_2^\top \phi_e(x)\}}, \\ \hat{v}_1(x) &= \frac{\exp\{\hat{\gamma}_1^\top \phi_e(x)\}}{\hat{\pi}_0 + (1 + \hat{\pi}_1) \exp\{\hat{\gamma}_1^\top \phi_e(x)\} + \hat{\pi}_2 \exp\{\hat{\gamma}_2^\top \phi_e(x)\}} \end{aligned}$$

**Assumption 5**: The densities  $f_0(x)$  and  $f_1(x)$  are upper bounded by a constant. There exist constants  $0 < \epsilon_1 \le \epsilon_2$  and  $\epsilon$ ,  $\delta_0$ ,  $\varsigma > 0$  such that for k = 0, 1,

 $\epsilon_1 |\delta|^{\varsigma} \leq |P_k(v_k(X) \leq Q(t; v_k, F_k) + \delta) - t| \leq \epsilon_2 |\delta|^{\varsigma}, \, \forall \delta \in [-\delta_0, \delta_0], t \in [\alpha - \epsilon, \alpha + \epsilon].$ 

► This assumption requires that the likelihood ratio functions v<sub>k</sub>(x) are neither too steep nor too flat around the boundary of Q(t; v<sub>k</sub>, F<sub>k</sub>) uniformly for t ∈ [α − ε, α + ε], where Q(α; v<sub>k</sub>, F<sub>k</sub>) corresponds to the optimal decision regions A<sub>k\*</sub>.

#### Theorem 2

Suppose that Assumptions 1-5 are satisfied. Given a mis-coverage rate  $\alpha > 0$ , let  $\hat{C}(x)$  be the proposed SELPS and  $C_*(x)$  the oracle prediction set. Then

(i) there exists M > 0 such that

$$P_k(X \in \hat{A}_k) \ge 1 - \alpha - M\left(\frac{\log N}{N}\right)^{\frac{\min\{\varsigma, 2\}}{6}},$$

(ii) there exists a large enough constant D > 0 such that

$$\lim_{N \to \infty} P\left( \int (|\widehat{C}(x)| - |C_*(x)|) f_{\text{test}}(x) dx \ge D\left(\frac{\log N}{N}\right)^{\frac{\min\{\varsigma, 2\}}{6}} \right) = 0.$$

## Introduction and motivation

2 Model, identifiability and parameter estimation

3 Semi-parametric label prediction

A simulation study

## 5 Real applications

We investigate the finite-sample performance of the proposed label prediction method SELPS at 95% coverage level.

- BCOPS(rf): the BCOPS with random forest (rf);
- BCOPS(sel): the BCOPS with the semiparametric EL estimators;
- ▶ SELPS: our proposed semi-parametric EL prediction set

## Simulation scenarios

We set  $F_k$  (k = 0, 1, 2) to be the distribution of  $N(\mu_k, \Sigma_k)$ , with

- ▶  $\mu_0 = (0, 0, \dots, 0)^{\top}$ ,  $\mu_1 = (2, 2, 0, \dots, 0)^{\top}$  and  $\mu_2 = (-2, -2, 0, \dots, 0)^{\top}$  are three 10-dimensional vectors,
- ▶  $\Sigma_k$  are  $10 \times 10$  matrices with diagonal elements being 1 and general (i, j) element being  $\rho_k^{|i-j|}$ .
  - $(\rho_0, \rho_1, \rho_2) = (0, 0, 0)$  (homogeneous case);
  - $(\rho_0, \rho_1, \rho_2) = (0, 0.5, 0.2)$  (heterogeneous case, model mis-specification).

## Simulation scenarios

We set  $F_k$  (k = 0, 1, 2) to be the distribution of  $N(\mu_k, \Sigma_k)$ , with

- ▶  $\mu_0 = (0, 0, \dots, 0)^{\top}$ ,  $\mu_1 = (2, 2, 0, \dots, 0)^{\top}$  and  $\mu_2 = (-2, -2, 0, \dots, 0)^{\top}$  are three 10-dimensional vectors,
- ▶  $\Sigma_k$  are  $10 \times 10$  matrices with diagonal elements being 1 and general (i, j) element being  $\rho_k^{|i-j|}$ .
  - $(\rho_0, \rho_1, \rho_2) = (0, 0, 0)$  (homogeneous case);
  - $(\rho_0, \rho_1, \rho_2) = (0, 0.5, 0.2)$  (heterogeneous case, model mis-specification).
- ▶ In each case, for training data-set,  $n_0 = 1000$ ,  $n_1 = 2000$ ; for training data-set, m = 3000, one third of which come from  $F_k$  for k = 0, 1, 2.

# An example with heterogeneous variances ( $ho_0=0, ho_1=0.5, ho_2=0.2)$



34 / 42

Table: Simulation results on abstention rate R, prediction accuracy of BCOPS(rf), BCOPS(sel) and SELPS, and their coverages in terms of coverages I and II at the 95% prediction level

|                                                             | R     | accuracy | coverage I | coverage II |  |  |
|-------------------------------------------------------------|-------|----------|------------|-------------|--|--|
| Homogeneous case: $(\rho_0, \rho_1, \rho_2) = (0, 0, 0)$    |       |          |            |             |  |  |
| BCOPS(rf)                                                   | 0.671 | 0.774    | 0.956      | 0.947       |  |  |
| BCOPS(sel)                                                  | 0.746 | 0.810    | 0.965      | 0.961       |  |  |
| SELPS                                                       | 0.774 | 0.833    | 0.950      | 0.957       |  |  |
| Heterogeneous case: $( ho_0,  ho_1,  ho_2) = (0, 0.5, 0.2)$ |       |          |            |             |  |  |
| BCOPS(rf)                                                   | 0.721 | 0.760    | 0.963      | 0.937       |  |  |
| BCOPS(sel)                                                  | 0.763 | 0.766    | 0.957      | 0.936       |  |  |
| SELPS                                                       | 0.778 | 0.784    | 0.952      | 0.937       |  |  |

► Coverage I (II) is defined by the proportion of points (x, y) with y = 0 (y = 1) in the test data whose predicted sets are either {0} ({1}) or {0,1}.

# Simulated RMSE and bias (in paratheses) of the estimators for $\pi_k$ 's

| $n_0/n$                                                        | $(\pi_1, \pi_2)$            | $	ilde{\pi}_0$              | $\tilde{\pi}_1$                                  | $\tilde{\pi}_2$                                  | $\hat{\pi}_0$                           | $\hat{\pi}_1$                           | $\hat{\pi}_2$                                    |  |
|----------------------------------------------------------------|-----------------------------|-----------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------|--|
| Homogeneous case: $( ho_0, ho_1, ho_2)=(0,0,0)$                |                             |                             |                                                  |                                                  |                                         |                                         |                                                  |  |
| 0.333                                                          | (0.333, 0.333)              | $\underset{(0.054)}{0.056}$ | $0.011 \\ (-0.006)$                              | $\underset{(-0.048)}{0.05}$                      | 0.014                                   | 0.005                                   | 0.011                                            |  |
|                                                                | (0.400, 0.200)              | $\underset{(0.046)}{0.046}$ | $\underset{\left(-0.006\right)}{0.012}$          | $\underset{\left(-0.041\right)}{0.043}$          | $\underset{\left(-0.001\right)}{0.014}$ | 0.006                                   | 0.011                                            |  |
|                                                                | (0.250, 0.500)              | $\underset{(0.057)}{0.058}$ | $\underset{\left(-0.007\right)}{0.010}$          | $\underset{\left(-0.050\right)}{0.052}$          | 0.012                                   | 0.004                                   | $\underset{(0.001)}{0.001}$                      |  |
| 0.500                                                          | (0.333, 0.333)              | $\underset{(0.048)}{0.048}$ | $\underset{\left(-0.005\right)}{0.01}$           | $\underset{\left(-0.043\right)}{0.044}$          | 0.013                                   | 0.005                                   | 0.010                                            |  |
|                                                                | (0.400, 0.200)              | $\underset{(0.039)}{0.041}$ | $\underset{\left(-0.004\right)}{0.011}$          | $\underset{\left(-0.035\right)}{0.038}$          | $\substack{0.012\\(0)}$                 | 0.006                                   | $\underset{(0)}{0.009}$                          |  |
|                                                                | (0.250, 0.500)              | $\underset{(0.053)}{0.054}$ | $0.009 \\ (-0.006)$                              | $0.048 \\ (-0.047)$                              | $\underset{\left(-0.001\right)}{0.011}$ | 0.004                                   | 0.009<br>(0.001)                                 |  |
| Heterogeneous case: $(\rho_0, \rho_1, \rho_2) = (0, 0.5, 0.2)$ |                             |                             |                                                  |                                                  |                                         |                                         |                                                  |  |
| 0.333                                                          | (0.333, 0.333)              | $\underset{(0.061)}{0.063}$ | $\underset{\left(-0.005\right)}{0.010}$          | $\underset{\left(-0.056\right)}{0.056}$          | $\underset{(0.004)}{0.015}$             | 0.006                                   | $\underset{\left(-0.003\right)}{0.013}$          |  |
|                                                                | (0.400, 0.200)              | $\underset{(0.051)}{0.053}$ | $\underset{\left(-0.005\right)}{0.011}$          | $\underset{(-0.046)}{0.048}$                     | $\underset{(0.003)}{0.016}$             | 0.006                                   | $\underset{\left(-0.003\right)}{0.013}$          |  |
|                                                                | (0.250, 0.500)              | $\underset{(0.065)}{0.066}$ | $\underset{(-0.005)}{0.009}$                     | $\underset{\left(-0.059\right)}{0.061}$          | $\underset{(0.003)}{0.014}$             | 0.006                                   | $\underset{(-0.003)}{0.011}$                     |  |
| 0.500                                                          | $(0.333, \overline{0.333})$ | $\underset{(0.056)}{0.058}$ | $\underset{\left(-0.007\right)}{0.011}$          | $\begin{array}{c} 0.051 \\ (-0.050) \end{array}$ | $\underset{(0.004)}{0.015}$             | $0.006 \\ (-0.001)$                     | $\begin{array}{c} 0.012 \\ (-0.003) \end{array}$ |  |
|                                                                | (0.400, 0.200)              | $\underset{(0.045)}{0.047}$ | $\underset{\left(-0.006\right)}{0.011}$          | $\begin{array}{c} 0.042 \\ (-0.040) \end{array}$ | $\underset{(0.004)}{0.014}$             | $\underset{\left(-0.001\right)}{0.007}$ | $\underset{\left(-0.003\right)}{0.010}$          |  |
|                                                                | (0.250, 0.500)              | 0.062<br>(0.061)            | $\begin{array}{c} 0.009 \\ (-0.006) \end{array}$ | $\begin{array}{c} 0.057 \\ (-0.055) \end{array}$ | $\underset{(0.003)}{0.013}$             | $0.005 \\ (-0.001)$                     | $\begin{array}{c} 0.010 \\ (-0.002) \end{array}$ |  |

## Introduction and motivation

2 Model, identifiability and parameter estimation

3 Semi-parametric label prediction

A simulation study

## 5 Real applications

# Real applications

In this section we further investigate the finite-sample performance of the proposed SELPS by analyzing four real-world data-sets:

#### Forest Covertype data-set,

- contains 54 features of 9,813 trees among which 3,969 are Douglas fir (class 0), 4,505 are Krummholz (class 1), and 1,339 are Cottonwood Willow (class 2).
- Human Activity Recognition (HAR) data-set,
  - contains 561 features of three activities, walking (class 0), sitting (class 1) and standing (class 2), with sample size 1,722, 1,777, and 1,906 respectively.
- StatLog DNA data-set,
  - contains 60 features of DNA fragments, including the following three categories: donors (class 0), acceptors (class 1), and neither (class 2), with sample size being 767, 765 and 1,654, respectively.

pendigits data-set,

• contains 16 features of pen-based recognition of handwritten digits 0, 1 and 2, among which 779 are of digit 1, 780 are of digit 2 and 780 are of digit 0.

Table: Real data results on abstention rate R, prediction accuracy of BCOPS(rf), BCOPS(glm) and SELPS, their coverages in terms of coverages I and II at the 95% prediction level, and their proportion estimators  $\hat{\pi}_1$ ,  $\hat{\pi}_2$ .

|                                                                      | R                                                                            | accuracy | coverage I | coverage II | $\hat{\pi}_1$ | $\hat{\pi}_2$ |  |  |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------|------------|-------------|---------------|---------------|--|--|
|                                                                      | Forest Covertype: $(p, n, m, \pi_1, \pi_2) = (54, 3000, 6813, 0.441, 0.196)$ |          |            |             |               |               |  |  |
| BCOPS(rf)                                                            | 0.146                                                                        | 0.801    | 0.956      | 0.947       | 0.509         | 0.002         |  |  |
| BCOPS(glm)                                                           | 0.001                                                                        | 0.811    | 0.957      | 0.952       | 0.463         | 0.048         |  |  |
| SELPS                                                                | 0.255                                                                        | 0.818    | 0.943      | 0.941       | 0.486         | 0.106         |  |  |
|                                                                      | StatLog DNA: $(p, n, m, \pi_1, \pi_2) = (180, 800, 2386, 0.153, 0.693)$      |          |            |             |               |               |  |  |
| BCOPS(rf)                                                            | 0.886                                                                        | 0.781    | 0.951      | 0.934       | 0.196         | 0.611         |  |  |
| BCOPS(glm)                                                           | 0.909                                                                        | 0.821    | 0.967      | 0.945       | 0.172         | 0.678         |  |  |
| SELPS                                                                | 0.969                                                                        | 0.915    | 0.948      | 0.918       | 0.141         | 0.714         |  |  |
|                                                                      | HAR: $(p, n, m, \pi_1, \pi_2) = (561, 1600, 3405, 0.257, 0.501)$             |          |            |             |               |               |  |  |
| BCOPS(rf)                                                            | 0.187                                                                        | 0.963    | 0.963      | 0.962       | 0.550         | 0.210         |  |  |
| BCOPS(glm)                                                           | 0.080                                                                        | 0.711    | 0.973      | 0.983       | -             | -             |  |  |
| SELPS                                                                | 0.249                                                                        | 0.967    | 0.980      | 0.954       | 0.268         | 0.488         |  |  |
| pendigits: $(p, n, m, \pi_1, \pi_2) = (16, 800, 1539, 0.246, 0.507)$ |                                                                              |          |            |             |               |               |  |  |
| BCOPS(rf)                                                            | 0.996                                                                        | 0.889    | 0.931      | 0.968       | 0.259         | 0.499         |  |  |
| BCOPS(glm)                                                           | 0.992                                                                        | 0.755    | 0.942      | 0.966       | 0.252         | 0.517         |  |  |
| SELPS                                                                | 1.00                                                                         | 0.937    | 0.942      | 0.932       | 0.245         | 0.515         |  |  |

# Plots of actual type I error (ATE) versus empirical misclassification rate



► BCOPS(rf): green, dotted

► BCOPS(glm): blue, dashed

```
SELPS: red, solid
```

- ▶ The unlabelled test data follow a mixture model, and it can not be identified nonparametrically.
- We propose to model the test data by a finite semiparametric mixture model under density ratio model
- We construct a semiparametric empirical likelihood prediction set (SELPS) for the labels in the test data.
  - All underlying parameters are identifiable.
  - Our method circumvents a stringent separation assumption, which is required by Guan and Tibshirani (2022) but is often violated by commonly-used distributions.
  - We establish the consistency and asymptotic normalities of our estimators, and asymptotic optimality of the proposed SELPS.

# Thanks

Yukun Liu

East China Normal University

Email: ykliu@sfs.ecnu.edu.cn