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ﬂ Introduction and motivation



Classification

» Goal: to assign categorical labels to unlabelled test data based on patterns and
relationships learned from a labeled training dataset.

» Classification has diverse applications, including

e email spam filtering (Delany et al., 2012; Fan et al., 2016),
e sentiment analysis (Medhat et al., 2014; Wang et al., 2016),
e image recognition (Krizhevsky et al., 2017; Pan et al., 2018).
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Training and test data-set paradigm
X: features/covariates/input variables  Y: label/response/output variable

Training data Test data

> Training data:  (X1,Y1),...,(Xn, V) & Prain(Y, X)

.
» Ideal test data:  (X,i1,Yi1)s- -+ (Xngms Yoim) ~ Pirain(Y, X)



Convention

Training and test data are often assumed to have the same distribution

Ptrain (Y, X) = Ptest (Yv X)

» Many powerful supervised learning algorithms try to estimate the common
P(Y =y|X =x).

e Decision Trees (Breiman, 1984; Friedl and Brodley, 1997; Kim and Loh, 2001),

e Random Forests (Ho, 1995; Breiman, 2001; Ham et al., 2005; Biau, 2012),

e Support Vector Machines (Cortes and Vapnik, 1995; Suykens and Vandewalle,
1999; Pavlidis et al., 2004; Cervantes et al., 2020),

e Neural Networks (Dreiseitl and Ohno-Machado, 2002; Ghosh et al., 2004;
Krizhevsky et al., 2017; Gurney, 2018).

» Then classify the test data using the estimated P(Y = y|X = x).



Challenge

However, the conventional methods face challenges or even underperform when the
training and test data-sets exhibits distributions mismatches

» Distributions mismatch or distribution shift:
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Challenge

However, the conventional methods face challenges or even underperform when the
training and test data-sets exhibits distributions mismatches

» Distributions mismatch or distribution shift:
Ptrain(Ya X) 7é Ptest (Y7 X)
» Two commonly-seen special cases

e Covariate shift: Ptrain(Y|X) = Ptcst (Y|X), Ptrain(X) 7é Ptcst (X),

e Label shift: Ptrain(XIY) = Ptest (X|Y), Ptrain(y) 7& Ptest (Y),



This talk

We focuses on the case where both covariate shift and label shift exist.



This talk

We focuses on the case where both covariate shift and label shift exist.
» The labelled training data can be reorganized as
{(Xo5, Yoy = 0} - (UK ie-15 Y1 = K = 1)}
where Xj; ~ Fi(2) = Prain(X <2|Y =k), k=0,1,...,K —1.

» In the unlabelled test data, a feature X

e may come from Fy(z), Fy(z),...,Fx_1(z), or

e does not come from any of them  (outliers)
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This talk

» Let Fx(x) denote the cdf of the outliers, and categorize them into Class K.
» In the test data, let 7, = Piest (Y = k), k=0,1,..., K.
» X in the test data follows a finite mixture model

moFo(z) + -+ -1 Fx—1(x) + 1 Fr ()

The goal is to make prediction about Y for each X in the test data J




» Applicable in fraud detection, network security, quality control, and more
» The problem of “ whether a data point in the test data is an outlier’ has
been studied extensively recently:

e Unconstrained least-squares importance fitting (uLSIF) method (Hido et al., 2011)
e CNN + ulLSIF, (Nam and Sugiyama, 2015)

e A robust outlier detection method incorporating k-NN algorithm (Li et al., 2022)

» Limitations:

e nonparametric estimation of density ratios,

e absence of a more detailed classification



Label prediction set

» The conventional classification algorithms and the outlier detection methods all
provide a prediction point for the label of each test data point.

» An alternative is to construct a prediction set: the density-level set (Cadre, 2006;
Lei et al., 2013; Rigollet & Vert, 2009; Sadinle et al., 2019)

Clx)={k:2€ A}, Ap={2|fi(x)> fra}

where

e fr(z) is the pdf corresponding to Fj(x),
o fio is the a-th quantile of f(X) for X ~ fi(z).

» C(x) may contains more than one labels.

» An z with C(x) = @ is classified as outlier.
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Label prediction set

» Weakness of the density-level set

e does not utilize information comparing different classes, potentially leading to
efficiency loss

» To overcome this problem, Guan and Tibshirani (2022) proposed the BCOPS
(balanced and conformal optimized prediction set) to construct C(x)

e Perform better because it combines information from different classes and unlabelled
test samples

» The validation of BCOPS is built on the assumption that the outliers can be
perfectly separated from the observed classes (their Assumption 6).

e Too strong to be satisfied by popular parametric models, such as normal.
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A challenge in BCOPS

Hereafter we assume K = 2 and let
Jtest () = mofo(z) + - - m f1(x) + w2 fa(x).

» To see their Assumption 6 is too strong, let n;(x) = log{ fi(x)/ ftest(x)} and
g1x(+) be the density of 7; in class k for [ € {0,1} and k € {0, 1,2}.

> Define Sy = {2z : gy om(2) > Q(C g1 0m, Fi)}, where g1y o mi(2) = gii(mi(2))
and ( is a user-specific positive constant, where they recommended ¢ = 0.2.
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A challenge in BCOPS

Hereafter we assume K = 2 and let
Jtest () = mofo(z) + - - m f1(x) + w2 fa(x).

» To see their Assumption 6 is too strong, let n;(x) = log{ fi(x)/ ftest(x)} and
g1x(+) be the density of 7; in class k for [ € {0,1} and k € {0, 1,2}.

> Define Sy = {2z : gy om(2) > Q(C g1 0m, Fi)}, where g1y o mi(2) = gii(mi(2))
and ( is a user-specific positive constant, where they recommended ¢ = 0.2.

» Their Assumption 6 requires
PZ(XGSl):Oa l=0,1,

where Py, takes probability when X ~ Fi(x).
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A challenge in BCOPS

Values of P»(Sp) and P»(S1) when Fy, is the distribution function of
N(pg, I3) with pj = (0,0,0), mo = 0.35, and m; = 0.3.

1y ) P5(So) Py(S1)
(0.25,0.25,0.25) (1.00, —0.50, —0.50) 0.480 0.422
(1.00, 1.00, 0.00) (1.00, —0.50, —0.50) 0.426 0.360
(1.00,0.30,—0.80) (—0.70,—-0.20, 1.50) 0.464 0.120
(1.00,0.30, —0.80) (1.00,—0.50, —0.50) 0.377 0.628

This motivates us to develop a new label prediction set.
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© Model, identifiability and parameter estimation
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|dentifability

» Recall that we have data from fo(z) and fi(z), and an X in the test data follows

Jrest(x) = mo fo(z) + w1 f1(x) + T2 fo().
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|dentifability

» Recall that we have data from fo(z) and fi(z), and an X in the test data follows

Jrest(z) = mofo(x) + mfi(x) + mafa(2).
» Challenge in identifiability:
e fo and f; are identifiable nonparametrically

e However, there are no direct data from f,, but only indirect data in the test data.

For a mixture model AF'(z) + (1 — A\)G(z), where X € [0,1] and F and G be two cdfs,
if G is known but \ and I are unknown, then )\ and F' are unidentifiable.

w{2r@ + 2260 b+ (- W6 = M) + (1= X)6)
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Our model assumption

We make a semiparametric density ratio model (Anderson, 1979; DRM) assumption:

fe(x) = fo(z)exp{ar + Bro(2)}, k=1, 2,

where ¢(z) is a pre-specified g-variate function and usually taken as z.
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Our model assumption

We make a semiparametric density ratio model (Anderson, 1979; DRM) assumption:
fu(@) = fo(z) exp{ax + BLp(2)}, k=1, 2,

where ¢(z) is a pre-specified g-variate function and usually taken as z.

» Satisfied by many popular parametric distribution families, including normal,
binomial, exponential, Poisson and so on.

» Closely related to discrimination analysis and problems subject to covariate
shift.



|dentifiability

Under DRM, we rewrite

ftest(x) = 7rOf()(-%') + 7r1f1(a:) + 7T2f2(.%')
= fo(x){mo + meM #@) 4 e (@)},

where v, = (au, B )" and ¢e(x) = (1,0 (z))".
Assumption 1 Let ny = > ; I(Y; = k) for k = 0,1. There exist constants co,c1,c2 € (0,1) such that

no/N = co + o(1), n1/N = c1 + o(1) and m/N = ca + 0o(1) as N — oo.
Assumption 2 89 #0, 89 #0, B9 # B85, 75 > 0, and Eq{¢c(X)¢] (X)} is finite and positive definite.

Under Assumptions 1 and 2, fo(z) and 8 = (y{, 9 , ™o, m1) are identifiable.
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Semiparametric likelihood estimation

» Under DRM, the likelihood contribution of the training data is

Lo = H{enﬁ%(xi)dFo(Xi)}
i=1
» The likelihood contribution of the test data is

N
L= ] [{770+7T1€71T¢6(X") +mae XD} (X;)
1=n+1
» The likelihood based on all data is

N
Ly x L) = H [dFo(Xi) x ¥i(1=Di 6e(Xa) o {mo + mpet Pe(Xe) 4 WQ@VIT%(XZ')}D"].
I=1
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Empirical profile likelihood function

» We use empirical likelihood to handle the baseline distribution, namely

N
Fy(x) =Y pd(X; < x).
=1

» Then the log-likelihood becomes

N
7= llog(p:) + Yi(1 = D)7 ¢e(Xy) + Dilog{my + me™ X 4 yers oe(Xiy)
1
=1

where feasible p;'s satisfy
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Semiparametric profile likelihood function

» Given 6 = (v ,73 ,m0, 1), the log-function £ takes its maximum when
1 1
N 14 a{e ¢X) _ 1} 4 Ap{ed ¢e(X0) — 1}

where (A1, \2) is the solution to

pi =

ewlT be(Xi) _q

£5)
N 1+,\]{€ﬁ¢e(X)_1}+,\2{ev;¢c(X)_1}

(2)

672 Pe(Xi) _q

N Z 1+ A {em %0 _ 1) 4 dofed @50 _ 1}

» The profile log-likelihood function of 8 is

N
0o = *Zlog[l + /\1{671T¢E(X71) —1}+ /\2{6“/27%()(7:) —1}]
k=1
_,_Z )71 be(X:) + Dilog{mo +7T1€71T¢e(xi) +7r2e’Y;¢e(Xi)}].
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Maximum likelihood estimation

» We propose to estimate € by the maximum likelihood estimator (MLE)

0= (%92, %0, M) = 0(0).
(31 » 42 » To, 1) argrenea@x (9)

» Accordingly, we have the MLE p; of p;, and the MLEs of Fy and F}:
Fo(z) = Zﬁﬂ(xi <),
Ey(z) = Zp WO XX, <2), k=12

» These estimators provides basic elements for the construction of the proposed label
prediction set.
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» Assumption 3 : The function Eqlexp{3, ¢(X)}] is finite for 8 in a neighborhood of 37
and k£ = 1,2, and the matrix W, is nonsingular.

» Assumption 4: © C R? is a closed subset, and 6° is an interior point of ©.

Under Assumptions 1-4, as N goes to infinity,
(1) VN(6—6°) — N (0, W) in distribution

(2) The stochastic process v/ N{Ex(-) — Fi.(-)} converges weakly to a Gaussian process with
mean zero for each k =0, 1, 2.
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Numerical implementation: EM algorithm

» Naturally we take the labels {Y]* :n+1<j<n+m} for the test data as
natural missing data.

» Let X denote all the observed data. It is clear that

jk
m(;) T pe(X;)

) D 00 g (1 7D — 7 Dyens” e (X)

» An EM algorithm can be constructed by standard discussions. The details are
omitted.
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© Semi-parametric label prediction
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Semi-parametric label prediction

» Following Guan and Tibshirani (2022), we consider constructing a label prediction set
C(z) € {{0},{1},{0,1}, @} for each X = z, instead of giving a label prediction point.
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Semi-parametric label prediction

» Following Guan and Tibshirani (2022), we consider constructing a label prediction set
C(z) € {{0},{1},{0,1}, @} for each X = z, instead of giving a label prediction point.

» A reasonable prediction set C(z) can be constructed as the minimizer of the
misclassification loss averaged over the out-of-sample data

min [ |C(2)] frest(z)d,
(P)
st. PkeC(X)>1-a, k=01,

where

e a € (0,1) is a prespecified mis-coverage level,

e |C(x)| be the size of C(x) , and

e the weight function fiest(x) balances classification accuracy and power of outlier
detection.
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Semi-parametric label prediction

» The solution to problem (P) is the oracle prediction set C\(x) = {k : z € Ay},
where A, is the solution to

min/[(m € Ag) frest(z)dz,
s.t. Pk(IEAk)zl—a, k=0,1.

(Pr)
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Semi-parametric label prediction

» The solution to problem (P) is the oracle prediction set C\(x) = {k : z € Ay},
where A, is the solution to

min/I(x € Ag) frest(z)dz,
s.t. Pk($€Ak)21—a, k=0,1.

(Pr)

» The set Ag,, also called the oracle acceptance set for class k, has an explicit form
in terms of density ratios vy (z) = fj(2)/ frest(2), namely,

Ay = {z : v(z) > Q (o v, Fi) }, (3)

where Q(a; h, F) is the lower o percentile of a real-valued function h(X) under
distribution F', i.e. Q(as;h, F) =sup{t: [I(h(z) < t)dF(z) < a}.
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Semi-parametric likelihood prediction Set

» We propose a semi-parametric likelihood prediction method, without
requiring the Assumption 6 of Guan and Tibshirani (2022).

» As Ay, depends only on the ordering of vi(z) = fi(2)/ frest(z), any
order-preserving transformation of vy (x) is permitted when constructing Ag..
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Semi-parametric likelihood prediction Set

» We propose a semi-parametric likelihood prediction method, without
requiring the Assumption 6 of Guan and Tibshirani (2022).

» As Ay, depends only on the ordering of vi(z) = fi(2)/ frest(z), any
order-preserving transformation of vy (x) is permitted when constructing Ag..

» We take
vo(x) = fo(z) _ L
fo(@) + frest(z) 14 mo + mexp{{ ¢e(2)} + m2 exp{y] de(x))}’
fi(z) _ exp{7y] Pe(x)}

v(@) = f1(@) + frest(z) w0+ (14 m1) exp{y] ¢e(2)} + m2 exp{rg ()}
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Semi-parametric empirical likelihood prediction Set

» Let F,i(x) denote the empirical distribution of {X; : Y; =k, D; = 0} for k =0, 1.

» Our semi-parametric empirical likelihood prediction set (SELPS) is

where

with

Clz) ={k:z e Ay},

Ay = {z : o (x) > Q(a; 0, i)},

1
1+ Fo + A1 exp{J{ de(2)} + 72 exp{; ge(x)}’
exp{¥ ¢e(2)}
o+ (14 71) exp{y{ ¢e(2)} + 72 exp{9; e (x)}
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Semi-parametric empirical likelihood prediction Set

Assumption 5: The densities fy(x) and fi(x) are upper bounded by a constant.
There exist constants 0 < €1 < €3 and €, dg, ¢ > 0 such that for k =0, 1,

61’5‘§ < |Pk(vk(X) < Q(t; Uk,Fk) + (5) — tl < 62’(5‘§, Yo € [—50,50],t S [Oz — €0+ 6].

» This assumption requires that the likelihood ratio functions v (z) are neither too
steep nor too flat around the boundary of Q(¢; v, F) uniformly for
t € [ — €, + €], where Q(a; vy, F);) corresponds to the optimal decision regions
Aps.
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Semi-parametric empirical likelihood prediction Set

Suppose that Assumptions 1-5 are satisfied. Given a mis-coverage rate o > 0, let C’(m)
be the proposed SELPS and C,(x) the oracle prediction set. Then

(i) there exists M > 0 such that

min{g,2}

P]JXEA[JZl-O&-M(%) ’ 9

(i) there exists a large enough constant D > 0 such that

min{s,2}
lim P /(\6(x)| —1Cu(@)) frest(@)dz > D <1°gN> N Y
N—oco N
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@ A simulation study
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Methods under comparison

We investigate the finite-sample performance of the proposed label prediction method
SELPS at 95% coverage level.

» BCOPS(rf): the BCOPS with random forest (rf);
» BCOPS(sel): the BCOPS with the semiparametric EL estimators;

» SELPS: our proposed semi-parametric EL prediction set
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Simulation scenarios

We set Fy, (k= 0,1,2) to be the distribution of N(ug, %), with

» 1o =(0,0,...,0)7, u1 =(2,2,0,...,0)7 and po = (—2,—-2,0,...,0)" are three
10-dimensional vectors,

» X are 10 x 10 matrices with diagonal elements being 1 and general (i, j) element
being p‘kz_]'.

e (po, p1,p2)=(0,0,0) (homogeneous case);

e (po, p1,p2)=(0,0.5,0.2) (heterogeneous case, model mis-specification).
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Simulation scenarios

We set Fy, (k= 0,1,2) to be the distribution of N(ug, %), with

» 1o =(0,0,...,0)7, u1 =(2,2,0,...,0)7 and po = (—2,—-2,0,...,0)" are three
10-dimensional vectors,

» X are 10 x 10 matrices with diagonal elements being 1 and general (i, j) element
being p‘kz_]'.

e (po, p1,p2)=(0,0,0) (homogeneous case);

e (po, p1,p2)=(0,0.5,0.2) (heterogeneous case, model mis-specification).

» In each case, for training data-set, ng = 1000 , n; = 2000 ; for training data-set ,
m = 3000, one third of which come from Fj, for £k =0, 1,2.
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An example with h
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Table: Simulation results on abstention rate R, prediction accuracy of BCOPS(rf), BCOPS(sel)
and SELPS, and their coverages in terms of coverages | and Il at the 95% prediction level

R accuracy coverage | coverage |l
Homogeneous case: (po, p1, p2) = (0,0,0)
BCOPS(rf) 0.671 0.774 0.956 0.947
BCOPS(sel) 0.746 0.810 0.965 0.961
SELPS 0.774 0.833 0.950 0.957
Heterogeneous case: (po, p1, p2) = (0,0.5,0.2)
BCOPS(rf) 0.721 0.760 0.963 0.937
BCOPS(sel) 0.763 0.766 0.957 0.936
SELPS 0.778 0.784 0.952 0.937

» Coverage | (Il) is defined by the proportion of points (z,y) with y =0 (y = 1) in

the test data whose predicted sets are either {0} ({1}) or {0, 1}.
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Simulated RMSE and bias (in paratheses) of the estimators for 7;'s

77,0/77, (7r1,7r2) 7?0 7?1 7~l'2 7?r0 7%1 7}2
Homogeneous case: (po, p1, p2) = (0,0,0)
0.333 (0.333,0.333) 0.056 0.011 0.05 0.014 0.005 0.011
(0.054) (—0.006) (—0.048) (0) (0) (0)
(0.400,0.200) 0.049 0.012 0.043 0.014 0.006 0.011
(0.046) (—0.006) (—0.041) (—0.001) (0) (0)
(0.250,0.500) 0.058 0.010 0.052 0.012 0.004 0.010
(0.057) (—0.007) (—0.050) (0) (0) (0.001)
0.500 (0.333,0.333) 0.049 0.01 0.044 0.013 0.005 0.010
(0.048) (—0.005) (—0.043) (0) (0) (0)
(0.400,0.200) 0.041 0.011 0.038 0.012 0.006 0.009
(0.039) (<0.004) (<0.035) (0) (0) (0)
(0.250,0.500) 0.054 0.009 0.048 0.011 0.004 0.009
(0.053) (=0.006) (=0.047) (—0.001) (0) (0.001)
Heterogeneous case: (po, p1,p2) = (0,0.5,0.2)
0.333 (0.333,0.333) 0.063 0.010 0.058 0.015 0.006 0.013
(0.061) (—0.005) (—0.056) (0.004) (0) (—0.003)
(0.400,0.200) 0.053 0.011 0.048 0.016 0.006 0.013
(0.051) (—0.005) (—0.046) (0.003) (0) (—0.003)
(0.250,0.500) 0.066 0.009 0.061 0.014 0.006 0.011
(0.065) (=0.005) (—0.059) (0.003) (0) (—0.003)
0.500 (0.333,0.333) 0.058 0.011 0.051 0.015 0.006 0.012
(0.056) (—0.007) (—0.050) (0.004) (—0.001) (—0.003)
(0.400, 0.200) 0.047 0.011 0.042 0.014 0.007 0.010
(0.045) (—0.006) (—0.040) (0.004) (—0.001) (—0.003)
(0.250,0.500) 0.062 0.009 0.057 0.013 0.005 0.010
(0.061) (—0.006) (—0.055) (0.003) (—0.001) (—0.002)
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© Real applications
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Real applications

In this section we further investigate the finite-sample performance of the proposed
SELPS by analyzing four real-world data-sets:

» Forest Covertype data-set,
e contains 54 features of 9,813 trees among which 3,969 are Douglas fir (class 0),
4,505 are Krummbholz (class 1), and 1,339 are Cottonwood Willow (class 2).
» Human Activity Recognition (HAR) data-set,
e contains 561 features of three activities, walking (class 0), sitting (class 1) and
standing (class 2), with sample size 1,722, 1,777, and 1,906 respectively.
» StatLog DNA data-set,
e contains 60 features of DNA fragments, including the following three categories:
donors (class 0), acceptors (class 1), and neither (class 2), with sample size being
767, 765 and 1,654, respectively.
» pendigits data-set,
e contains 16 features of pen-based recognition of handwritten digits 0, 1 and 2,
among which 779 are of digit 1, 780 are of digit 2 and 780 are of digit 0.
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Table: Real data results on abstention rate R, prediction accuracy of BCOPS(rf), BCOPS(glm) and
SELPS, their coverages in terms of coverages | and Il at the 95% prediction level, and their proportion

estimators 71, 2.

R accuracy coverage | coverage Il et o
Forest Covertype: (p,n,m, w1, m) = (54,3000, 6813,0.441,0.196)
BCOPS(rf) 0.146 0.801 0.956 0.947 0.509 0.002
BCOPS(gIm) 0.001 0.811 0.957 0.952 0.463 0.048
SELPS 0.255 0.818 0.943 0.941 0.486 0.106
StatLog DNA: (p,n,m,m,m2) = (180,800, 2386,0.153,0.693)
BCOPS(rf) 0.886 0.781 0.951 0.934 0.196 0.611
BCOPS(glm) 0.909 0.821 0.967 0.945 0.172 0.678
SELPS 0.969 0.915 0.948 0.918 0.141 0.714
HAR: (p,n,m, w1, m) = (561, 1600, 3405, 0.257,0.501)
BCOPS(rf) 0.187 0.963 0.963 0.962 0.550 0.210
BCOPS(gim) 0.080 0.711 0.973 0.983 - -
SELPS 0.249 0.967 0.980 0.954 0.268 0.488
pendigits: (p,n, m,m,m) = (16,800, 1539, 0.246, 0.507)
BCOPS(rf) 0.996 0.889 0.931 0.968 0.259 0.499
BCOPS(glm) 0.992 0.755 0.942 0.966 0.252 0.517
SELPS 1.00 0.937 0.942 0.932 0.245 0.515
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Plots of actual type | error (ATE) versus empirical misclassification rate

Forest Covertype Statlog DNA
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» The unlabelled test data follow a mixture model, and it can not be identified nonparametrically.

» We propose to model the test data by a finite semiparametric mixture model under density ratio
model

» We construct a semiparametric empirical likelihood prediction set (SELPS) for the labels in the
test data.
e All underlying parameters are identifiable.

e Our method circumvents a stringent separation assumption, which is required by
Guan and Tibshirani (2022) but is often violated by commonly-used distributions.

e We establish the consistency and asymptotic normalities of our estimators, and
asymptotic optimality of the proposed SELPS.
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