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Section 1: The Problem



Introduction

Let us start from the linear regression.

Y = α+ xTβ + ε,

A hypothesis test:

H0 : β = 0, or equivalently, β1 = · · · = βp = 0,

versus
H1 : β 6= 0.
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Introduction

The cardiomyopathy microarray data (n = 30): Redfern et al.
(2000) 1 and Segal et al. (2003)2.
The overexpression of G protein-coupled receptor Ro1 in
hearts of adult mice would lead to a lethal dilated
cardiomyopathy.
Are the gene expressions (p = 6, 319) really predictive for the
gene expression level of Ro1?
This amounts to testing H0 : β = 0, versus H1 : β 6= 0 in the
linear model Y = α+ xTβ + ε.

1Redfern, C.H., et al. (2000). Conditional expression of a gi-coupled receptor
causes ventricular conduction de-lay and a lethal cardiomyopathy. Proceedings
of the National Academy of Sciences, 97(9), 4826-4831.

2Segal, M.R., Dahlquist, K.D., and Conklin, B.R. (2003). Regression approaches
for microarray data analysis. Journal of Computational Biology, 10(6), 961-980.
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Introduction

Three challenges: (1) High dimensions
p = 6, 319 and n = 30.
If p is small relative to n, the classical F -test can be used to
infer the overall significance of linear regression coe�cients.
Zhong and Chen (2011) 3 showed that the power of F -test is
adversely impacted by an increasing ratio p/n even when
p < n− 1.
In “large p, small n" situations, F -test is no longer
applicable.

3Zhong, P. S. and Chen, S. X. (2011). Tests for high-dimensional regression
coe�cients with factorial designs. Journal of the American Statistical
Association, 106(493), 260-274.
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Introduction

To accommodate the high-dimensionality issue, Zhong and
Chen (2011) modified the F -test and suggested using

p∑
s=1

cov2(Y,Xs).

The test statistic they use is

ZCn,p = {4(n)4}−1
p∑
s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(Xis −Xjs)(Xks −Xls).
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Introduction

Three challenges: (2) Nolinear dependence
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Introduction

To take nonlinear dependence into account, Zhang, Yao and
Shao(2018)4 considered tesing

H0 : E(Y | Xs) = E(Y ) almost surely, for all 1 ≤ s ≤ p.

Zhang, Yao and Shao(2018) suggested using the summation
of martingale di�erence divergence, which can be used to
measure arbitrarily nonlinear mean dependence,

p∑
s=1

MDD(Y | Xs)
2,

where
MDD(Y | X)2 = −E[{Y − E(Y )}{Y ′ − E(Y ′)}|X −X ′|].

4Zhang, X., Yao, S., and Shao, X. (2018). Conditional mean and quantile
dependence testing in high dimension. The Annals of Statistics, 46(1), 219-246.
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Introduction

The test statistic of Zhang, Yao and Shao(2018) is built upon

ZYSn,p = {4(n)4}−1
p∑
s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(|Xis −Xls|

+|Xjs −Xks| − |Xis −Xks| − |Xjs −Xls|).
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Introduction

Three challenges: (3) Covariate heteroscedasticity
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The standard deviation of each gene expression level, which
ranges from 17.34 to 18,437.96.
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Introduction

The heterogeneous variances of covariates can seriously
a�ect the performances of the testing procedures, whose
test statistics are not invariant after scale transformations of
the covariates.
Standardizing each covariate by its corresponding variance
before applying the tests can achieve the scale-invariance.
Since the sample variance is only root-n consistent, such a
standardization causes asymptotically nonnegligible
bias-terms when p diverges to infinity much faster than n.
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Introduction

Our Ambition: Address the above three challenges
simultaneously.
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Section 2: Conditional Mean Inde-
pendence Test



Conditional Mean Independence Test

Equivalence
E(Y | X) = E(Y )⇔ cov{Y, I(X < x)} = 0 for all x.

The cumulative covariance CCov(Y | X) is defined as
CCov(Y | X) = E[cov2{Y, I(X < X̃) | X̃}],;

where (X̃, Ỹ ) is an independent copy of (X,Y ).
It is equivalent to Pearson correlation if X and Y are jointly
normal, and CCov(Y | X) is zero if and only if
E(Y | X) = E(Y ).
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Conditional Mean Independence Test

To test H0 : E(Y | Xs) = E(Y ) for all 1 ≤ s ≤ p, it is natural
to use the summation of all marginal cumulative
covariances,

p∑
s=1

CCov(Y | Xs),

A straightforward estimate is given by

Wn,p = n−3
p∑
s=1

n∑
j=1

[
n∑
i=1

(
Yi − Y

)
{I(Xis < Xjs)− Fn,s(Xjs)}

]2
,

where
Y = n−1

∑n
i=1 Yi, and Fn,s(Xjs) = n−1

∑n
i=1 I(Xis < Xjs).
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Conditional Mean Independence Test

It can be verified that Tn,p is unbiased, which is given by

Tn,p = {4(n)5}−1
p∑
s=1

n∑
(i,j,k,l,r)

(Yi − Yj)(Yk − Yl)

×ψ(Xis, Xjs, Xrs)ψ(Xks, Xls, Xrs),

where (n)m = n(n− 1) . . . (n−m+ 1) for 1 ≤ m ≤ n, and
ψ(X1, X2, X3) = I(X1 < X3)− I(X2 < X3).
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Conditional Mean Independence Test

A fast algorithm:

Tn,p = {(n)5}−1
[
(n− 2)(n− 3)

p∑
s=1

n∑
j=2

( j−1∑
i=1

Ẏ(i)s

)2
+ 2

p∑
s=1

n∑
j=2

{(
nj − 2n− 2j + 2

)
Ẏ(j)s

j−1∑
i=1

Ẏ(i)s

}

−
p∑
s=1

n∑
j=2

{(
n2 − 2nj − n+ 4j − 4

) j−1∑
i=1

Ẏ 2
(i)s

}
− {n(n2 − 3n+ 8)/3}

p∑
s=1

n∑
i=1

Ẏ 2
(i)s + 2

p∑
s=1

n∑
i=1

(i− 1)2Ẏ 2
(i)s

]
.
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Conditional Mean Independence Test

Theorem 1: Asymptotic null distribution
Under the null hypothesis and certain regularity conditions, as
n, p→∞,

{n(n− 1)/2}1/2 Tn,p/S
D−→ N(0, 1).
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Conditional Mean Independence Test

Next we provide an estimate for S2.

S2
n,p = {4cnn(n− 1)}−1

n∑
i 6=j

K0(Ẏi, Ẏj)
2
[ p∑
s=1

K1{Fn,s(Xis), Fn,s(Xjs)}
]2
,

where K0(Y1, Y2) = {Y1 − E(Y )}{Y2 − E(Y )},
K1{Fn,s(X1s), Fn,s(X2s)} =
F 2
n,s(X1s) + F 2

n,s(X2s)− 2 max{Fn,s(X1s), Fn,s(X2s)}+ 2/3, and
Fn,s(·) is the empirical cumulative distribution function of Xs.
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Conditional Mean Independence Test

Theorem 2: Ratio consistency
Under certain regularity conditions, as n, p→∞,

S2
n,p/S

2 P−→ 1.

Therefore, under H0,

{n(n− 1)/2}1/2 Tn,p/Sn,p
D−→ N(0, 1).
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Section 3: Asymptotic Relative Ef-
ficiency



Asymptotic Relative Efficiency

The modified F -statistic under linear model assumption:
Zhong and Chen (2011)

ZCn,p = {4(n)4}−1
p∑
s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(Xis −Xjs)(Xks −Xls).

The martingale di�erence divergence without model
assumptions: Zhang, Yao and Shao (2018)

ZYSn,p = {4(n)4}−1
p∑
s=1

n∑
(i,j,k,l)

(Yi − Yj)(Yk − Yl)(|Xis −Xls|

+|Xjs −Xks| − |Xis −Xks| − |Xjs −Xls|).
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Asymptotic Relative Efficiency

We study the asymptotic powers of these three tests under
high-dimensional linear models, and anticipate that similar
conclusions can be drawn from nonlinear models.
Let us consider the model

Y = xTβ + ε,

where β = (β1, . . . , βp)
T, x =(X1, . . . , Xp)

T ∼ N(0,Σ), where
Σ = diag(d1, . . . , dp), E(ε) = 0 and var(ε) = σ2.

19 28



Asymptotic Relative Efficiency

All three test statistics are asymptotically standard normal.
The power of the three tests under the local alternatives is

Ψn,p = {1 + o(1)}Φ (−zα + SNR) ,

I SNRNEW =
{

15n(n− 1)/(4π2σ4p)
}1/2 p∑

s=1
dsβ

2
s .

I SNRZC =
{
n(n− 1)/(2σ4)

}1/2 p∑
s=1

d2sβ
2
s

( p∑
s=1

d2s

)−1/2

.

I SNRZYS

=
[
n(n− 1)/{8σ4(1−

√
3 + π/3)}

]1/2 p∑
s=1

d
3/2
s β2

s

( p∑
s=1

ds

)−1/2

.
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Asymptotic Relative Efficiency

In the homoscedastic case, d1 = . . . = dp.
ARE(NEW,ZC) ≈ 0.872,
ARE(NEW,ZYS) ≈ 0.979,
ARE(ZYS,ZC) ≈ 0.891.
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Asymptotic Relative Efficiency

For simplicity, we assume that all non-zero coe�cients βs
have the same magnitude, that is,
βs = κI(1 ≤ s ≤ q), s = 1, . . . , p,, q ∈ {1, . . . , p} is fixed.
We further assume the condition

p = o

{
min

( p∑
s=1

d2s,

p∑
s=1

ds
)}
.

Consider an explicit scenario: There is a parameter δ > 0 not
depending on the dimension p such that

ds � sδ, for s = 1, . . . , p.

22 28



Asymptotic Relative Efficiency

In the ultrahigh dimension setting log p � nθ, the signal to
noise ratios of three tests are

SNRZC � (log p)1/θp−(1+2δ)/2,

SNRZYS � (log p)1/θp−(1+δ)/2, and
SNRNEW � (log p)1/θp−1/2.

The explicit order of asymptotic relative e�ciency:

ARE(NEW,ZC) � pδ,

ARE(NEW,ZYS) � pδ/2, and
ARE(ZYS,ZC) � pδ/2.

ARE(NEW,ZC)→∞ and ARE(NEW,ZYS)→∞, as p→∞.
The asymptotic powers of three tests arranged in a
descending order: our proposed test, ZYS test and ZC test.
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Section 4: Numerical Studies



Numerical Studies

We consider three models:

Yi = xT
iβ1 + εi, (1)

Yi = 3(xT
iβ3) + exp(xT

iβ4/2) + exp(xT
iβ2 − 1)εi, (2)

Yi = (xT
iβ5) exp(xT

iβ2/
√

2) + exp(xT
iβ5/

√
2q) + εi, (3)

where xi = (Xi1, . . . , Xip)
T is generated from the MA model

Xis = sδ/2{ρ1Zis + ρ2Zi(s+1) + · · ·+ ρTZi(s+T−1)},

for δ ≥ 0, T = 8 and s = 1, . . . , p.
(Zi1, . . . , Zi(p+T−1))

T is drawn from a (p+ T − 1)-dimensional
standard normal distribution.
{ρk}Tk=1 are generated independently from the uniform
distribution on [0, 1] and are kept fixed once generated.
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Numerical Studies

Table: Empirical sizes and powers for linear model at significance level
5%, where δ controls the degree of heteroscedasticity.

Normal error Gamma error

(n, p) Hypothesis δ ZC ZYS NEW ZC ZYS NEW
(120, 1116) H0 0.00 0.047 0.048 0.044 0.052 0.049 0.052

0.25 0.043 0.041 0.044 0.057 0.052 0.052
0.50 0.042 0.044 0.044 0.058 0.053 0.052
0.75 0.039 0.046 0.044 0.064 0.057 0.052
1.00 0.039 0.047 0.044 0.063 0.057 0.052

Non-sparseH1 0.00 0.849 0.814 0.797 0.842 0.811 0.794
0.25 0.731 0.918 0.981 0.749 0.909 0.979
0.50 0.466 0.912 1.000 0.471 0.918 0.999
0.75 0.246 0.830 1.000 0.251 0.836 1.000
1.00 0.139 0.655 1.000 0.150 0.661 1.000

SparseH1 0.00 0.670 0.612 0.593 0.643 0.620 0.602
0.25 0.231 0.452 0.796 0.242 0.452 0.796
0.50 0.101 0.303 0.933 0.110 0.304 0.941
0.75 0.063 0.190 0.982 0.079 0.201 0.989
1.00 0.056 0.133 0.998 0.063 0.131 1.000
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Real data analysis revisited

The cardiomyopathy microarray data contains 6,319 gene
expression levels from 30 mice.
We aim to test whether these genes are really predictive to
the expression level of Ro1.
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Real data analysis

We divide the whole dataset into two subsets with n1 = 16
and n2 = 14.
On the first subset, we screen out unimportant genes by
marginally testing the conditional mean independence
between the expression levels of each gene and Ro1.
The Benjamini-Hochberg procedure is applied to control the
false discovery rate at 0.001.
We randomly pick 6, 7, 8, 9 and 10 samples from the second
subset of data and test the overall e�ects of selected genes.
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Real data analysis

Table: The empirical powers for ZC, ZYS tests and our proposed test.
random samples ZC ZYS NEW

6 0.363 0.105 0.463
7 0.432 0.328 0.731
8 0.569 0.632 0.912
9 0.692 0.845 0.980
10 0.831 0.975 1.000
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