Homogeneity Pursuit in Ranking Inferences Based on Pairwise Comparison Data

Yuxin Tao

Center for Statistical Science, Tsinghua University

(Joint work with Prof. Zheng (Tracy) Ke, Harvard University)

December 14, 2023

Applications of Ranking Inference

- (a) Sports and Gaming Ranking
- (b) Recommendation System and Web Search
- (c) Journal Ranking, Universiity Ranking, etc.

An example: NBA Basketball Team Ranking

- Data: Win/loss (binary data) in NBA games.
- n=30 teams, L=2-4 comparisons between each pair.
- (Bradley-Terry-Luce) Each team has a latent score θ_i.

$$\mathbb{P}(i \text{ beats } j) = \frac{e^{\theta_i - \theta_j}}{1 + e^{\theta_i - \theta_j}}.$$

- Estimate θ by MLE.
- Rank teams using $\widehat{\theta}$.

Challenges and Open Questions

- 1. Potential overfitting due to insufficient comparisons.
 - ▶ It can be shown that $\|\widehat{ heta}_i heta_i\| \leq 1/\sqrt{nL}$. (Gao et.al., 2022)
 - For the NBA dataset, n = 30, L ≈ 3, and 1/√nL ≈ 0.1. This is much larger than the difference between most adjacent θ_j.
- 2. We are also interested in dividing teams into groups so that
 - There is no significant difference within each group.
 - There are significant differences between different groups.

For Today's Talk

- Model: An extension of BTL with group structures.
- Method: Simultaneous parameter estimation and clustering.
- **Theory:** Faster rate than $1/\sqrt{nL}$.

Why our goal cannot be achieved from constructing confidence intervals?

Many works on constructing confidence intervals for individual θ_i (Han et.al., 2020, Liu et.al., 2022, Gao et.al., 2022).

▶ An ad hoc approach: group *i* and *j* together if $CI_i \cap CI_j \neq \emptyset$.

The right shows the CIs in the application of ranking cargo ships' quality under wave damage incidents (Firth and Menezes, 2004). **All five CIs overlap**.

n items

• Each item *i* is assigned with a latent preference score θ_i^* .

 $\blacktriangleright \mathbb{P}(i \text{ beats } j) \propto \exp(\theta_i^*), \mathbb{P}(j \text{ beats } i) \propto \exp(\theta_j^*).$

• $\mathbb{P}(i \text{ beats } j) = \frac{\exp(\theta_i^*)}{\exp(\theta_i^*) + \exp(\theta_j^*)} = \psi(\theta_i^* - \theta_j^*),$ where $\psi(\cdot)$ is the sigmoid function $\psi(t) \equiv e^t/(1 + e^t).$ The log-odds is given by the difference of their scores.

• L independent comparisons for each observed pair (i, j):

$$y_{ij\ell} \stackrel{\text{ind}}{\sim} \text{Bernoulli}(\psi(\theta_i^* - \theta_j^*)), \quad l = 1, \dots, L.$$

• Comparison graph $A_{ij} \stackrel{\text{i.i.d.}}{\sim}$ Bernoulli(p). Assume p = 1.

Suppose all individuals can be divided into K groups, a partition of $\{1, \ldots, n\}$, denoted as $G = (G_1, \cdots, G_K)$. In each group, individuals share the same preference score,

$$\theta_j^* = \theta_{G,k}^*, \quad \text{ for all } j \in G_k, 1 \le k \le K.$$

Write
$$\boldsymbol{\theta}_G^* = (\theta_{G,1}^*, \dots, \theta_{G,K}^*)^\top$$
 and $\boldsymbol{\theta}_G = (\theta_{G,1}, \dots, \theta_{G,K})^\top$.

- ► WLOG, we assume $\theta^*_{G,1} < \theta^*_{G,2} < \cdots < \theta^*_{G,K}$.
- Each group has equal n/K individuals for notation simplicity in theoretical analysis.
- When K = n, it reduces to the standard BTL model.

Goal: conduct *estimation* and *inference* of the preference scores $\theta^* = (\theta_1^*, \dots, \theta_n^*)^\top$ from pairwise comparisons.

Goal: conduct *estimation* and *inference* of the preference scores $\theta^* = (\theta_1^*, \dots, \theta_n^*)^\top$ from pairwise comparisons.

Assumption 1

The parameter space for $heta^*$ is

$$\Theta(\kappa) = \left\{ \boldsymbol{\theta} \in \mathbb{R}^n : \max_{i \in [n]} \theta_i - \min_{i \in [n]} \theta_i \leq \kappa, \mathbf{1}_n^\top \theta = 0 \right\}.$$

- Here κ is known as the dynamic range, independent of n. We consider the fixed dynamic range regime, i.e., $\kappa = O(1)$.
- ▶ $\mathbf{1}_n^{\top} \boldsymbol{\theta}^* = 0$ for identifiability, as the BTL model is only identifiable up to a global shift in the score parameter $\boldsymbol{\theta}$.

2. Oracle Case

 \clubsuit When the group partition G is known,

Step 1: Compute $\bar{y}_{ij} = (\sum_{\ell=1}^{L} y_{ij\ell})/L$. (win ratio) Step 2: Obtain the negative log-likelihood function

$$L_n(\boldsymbol{\theta}) = \sum_{1 \le i < j \le n} \left[\bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \theta_j)} + \bar{y}_{ji} \log \frac{1}{\psi(\theta_j - \theta_i)} \right]$$
$$= \sum_{1 \le i < j \le K} \sum_{i' \in G_i, j' \in G_j} \left[\bar{y}_{i'j'} \log \frac{1}{\psi(\theta_{G,i} - \theta_{G,j})} + \bar{y}_{j'i'} \log \frac{1}{\psi(\theta_{G,j} - \theta_{G,i})} \right],$$

where $\bar{y}_{ji} = 1 - \bar{y}_{ij}$ by convention.

Step 3: Define the oracle MLE under the identifiability condition:

$$\widehat{\boldsymbol{\theta}}^{\mathsf{oracle}} = \underset{\boldsymbol{\theta}: \mathbf{1}_n^\top \boldsymbol{\theta} = 0}{\operatorname{arg\,min}} \quad L_n(\boldsymbol{\theta}).$$

2. MLE in the Oracle Case

Proposition 1

Suppose the parameter space for θ^* is $\Theta(\kappa)$, $\kappa = O(1)$. Assume the above assumptions hold and K = o(n). Then we have

$$\|\widehat{\boldsymbol{\theta}}^{oracle} - \boldsymbol{\theta}^*\| \lesssim \sqrt{\frac{K + \log n}{Ln}},$$
 (1)

with probability at least $1 - O(n^{-7})$ uniformly over all $\theta^* \in \Theta(\kappa)$.

Proposition (Existing results, e.g. Chen, Fan, Ma and Wang(2019), Chen, Gao and Zhang(2022)) Assume $np \ge log(n)$ (p=1 in our case), then w.h.p,

$$\|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\| \lesssim \sqrt{\frac{1}{L}}.$$
 (2)

3. Methodology

 \clubsuit When the group partition G is unknown,

Penalized MLE:

Likelihood function + Folded concave penalty (e.g., SCAD, Fan and Li 2001; MCP, Zhang 2010).

A symmetric function and nondecreasing and concave on $[0,\infty)$. There exists a constant a > 0 such that $\rho(\theta)$ is a constant for all $|\theta| \ge a\lambda$.

3. Methodology – Two possible penalties

& The fused penalty with a pilot estimator

Preordering: Construct the rank statistics $\{\tau(j) : 1 \leq j \leq n\}$ preliminary estimator θ^{pre} , that is,

$$\theta_{\tau(1)}^{\mathsf{pre}} \leq \theta_{\tau(2)}^{\mathsf{pre}} \leq \cdots \leq \theta_{\tau(n)}^{\mathsf{pre}}.$$
$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}:\mathbf{1}_{n}^{T}\boldsymbol{\theta}=0} \left\{ \frac{1}{n^{2}} L_{n}(\boldsymbol{\theta}) + \sum_{j=1}^{n-1} p_{\lambda}(|\theta_{\tau(j+1)} - \theta_{\tau(j)}|) \right\}.$$

& The total variation penalty

$$P_{\lambda}^{\mathrm{TV}}(\boldsymbol{\theta}) = \sum_{1 \leq i, j \leq n} p_{\lambda}(|\theta_i - \theta_j|).$$

Methodology – Issues with fused penalty

Assumption 2

au is consistent with the order of $heta^*$ with probability at least $1-\epsilon_0$, that is,

$$\theta^*_{\tau(1)} \le \theta^*_{\tau(2)} \le \dots \le \theta^*_{\tau(n)}.$$

If the above assumption holds, then under some regularity conditions, $\hat{\theta}$ can consistently estimate the true coefficient groups of θ^* with high probability.

Methodology – Issues with fused penalty

Assumption 2

au is consistent with the order of θ^* with probability at least $1 - \epsilon_0$, that is,

$$\theta^*_{\tau(1)} \le \theta^*_{\tau(2)} \le \dots \le \theta^*_{\tau(n)}.$$

If the above assumption holds, then under some regularity conditions, $\hat{\theta}$ can consistently estimate the true coefficient groups of θ^* with high probability.

X Issues: Assumption 2 may be violated.

Methodology – Issues with fused penalty

Assumption 2

au is consistent with the order of $heta^*$ with probability at least $1 - \epsilon_0$, that is,

$$\theta_{\tau(1)}^* \le \theta_{\tau(2)}^* \le \dots \le \theta_{\tau(n)}^*.$$

If the above assumption holds, then under some regularity conditions, $\hat{\theta}$ can consistently estimate the true coefficient groups of θ^* with high probability.

X Issues: Assumption 2 may be violated.

✓ Solution: Use less information from $\theta^{\rm pre}$ and more penalty terms.

Methodology – CARDS Penalty

✓ Ke, Fan and Wu (2015): Clustering Algorithm in Regression via Data-driven Segmentation (CARDS).

Ordered segmentation Υ

Let $\delta>0$ be a pre-determined parameter, and find all indices $1 < i_2 < i_3 < \cdots < i_L$ such that the gaps

$$\theta_{\tau(j)}^{\mathsf{pre}} - \theta_{\tau(j-1)}^{\mathsf{pre}} > \delta, \quad j = i_2, \dots, i_L.$$

Then, construct the segments

$$B_l = \{\tau(i_l), \tau(i_l+1), \dots, \tau(i_{l+1}-1)\}, \quad l = 1, \dots, L,$$
 (3)

where $i_1 = 1$ and $i_{L+1} = n + 1$.

Definition 1

Given a penalty function $p_{\lambda}(\cdot)$ and tuning parameters λ_1 and λ_2 , the **hybrid pairwise penalty** corresponding to an ordered segmentation Υ is

$$P_{\Upsilon,\lambda_1,\lambda_2}(\boldsymbol{\theta}) = \sum_{l=1}^{L-1} \sum_{i \in B_l, j \in B_{l+1}} p_{\lambda_1}(|\theta_i - \theta_j|) + \sum_{l=1}^{L} \sum_{i,j \in B_l} p_{\lambda_2}(|\theta_i - \theta_j|).$$

$$(4)$$

✓ Take advantage of the order of segments B_1, \ldots, B_L , and at the same time allow flexibility of order shuffling within each segment.

- When L = n, it reduces to the fused penalty.
- When L = 1, namely, no prior information about θ, (4) reduces to total variation penalty

How the Assumption 2 can be relaxed?

Definition 2

An ordered segmentation Υ preserves the order of θ^* if $\max_{j \in B_l} \theta_j^* \leq \min_{j \in B_{l+1}} \theta_j^*$, for $l = 1, \ldots, L - 1$.

Assumption 3

The ordered segmentation Υ , generated by the preliminary estimator θ^{pre} and the tuning parameter δ_n , preserves the order of θ^* , with probability at least $1 - \epsilon_0$.

We group the coefficients θ^{pre} which differ by only a small amount into the same segment, therefore allowing some estimation error in preliminary ranking.

Figure 1: Illustration of CARDS penalty.

Procedure of CARDS:

- ▶ Preliminary Ranking: Given a preliminary estimate θ^{pre} , generate the rank mapping $\{\tau(j) : 1 \leq j \leq n\}$ such that $\theta_{\tau(1)}^{\text{pre}} \leq \theta_{\tau(2)}^{\text{pre}} \leq \cdots \leq \theta_{\tau(n)}^{\text{pre}}$.
- Segmentation: For a tuning parameter $\delta > 0$, construct an ordered segmentation Υ as described in (3).
- Estimation: For tuning parameters λ_1 and λ_2 , compute the solution $\hat{\theta}$ that minimizes

$$Q_n(\boldsymbol{\theta}) = \frac{1}{n^2} L_n(\boldsymbol{\theta}) + P_{\Upsilon,\lambda_1,\lambda_2}(\boldsymbol{\theta}),$$
 (5)

where
$$L_n(\boldsymbol{\theta}) = \sum_{1 \le i < j \le n} \left[\bar{y}_{ij} \log \frac{1}{\psi(\theta_i - \theta_j)} + \bar{y}_{ji} \log \frac{1}{\psi(\theta_j - \theta_i)} \right]$$

Remark: Fused penalty is a special case of CARDS with $\delta = 0$.

4. Theory – Properties of CARDS

For given G_1, \ldots, G_K and a segmentation $\Upsilon = \{B_1, \ldots, B_L\}$, define

$$\phi_k = |G_k| / \min\left\{ |G_k|^2, \min_{l:B_l \cap G_k \neq \emptyset} \{|B_l|^2\} \right\}.$$

Here $1/|G_k| \le \phi_k \le |G_k|$ for $1 \le k \le K$.

Assumption (4)

The ordered segmentation Υ , generated by the preliminary estimator θ^{pre} and the tuning parameter δ_n , preserves the order of θ^* , with probability at least $1 - \epsilon_0$.

Properties of CARDS

Theorem 1

Suppose the above assumptions hold, K = o(n). If the half minimum gap between groups, b_n , satisfies that $b_n > a \max{\{\lambda_{1n}, \lambda_{2n}\}}$, and

$$\lambda_{1n} \gg \max_{k} \left\{ \frac{C\phi_{k}}{n} \sqrt{\frac{\log n}{Ln}} + C\sqrt{\frac{K + \log n}{Ln}} \right\},$$
(6)
$$\lambda_{2n} \gg \max_{k} \left\{ \frac{C}{n|G_{k}|} \sqrt{\frac{\log n}{Ln}} + C\sqrt{\frac{K + \log n}{Ln}} \right\},$$
(7)

then with probability at least $1 - \epsilon_0 - cn^{-7}$, the CARDS objective function (5) has a strictly local minimizer $\hat{\theta}$ such that

$$\begin{split} & \widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}^{\text{oracle}} \text{ ,} \\ & \mathbf{b} \ \left\| \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \right\| = O_p(\sqrt{(K + \log n)/(Ln)}) \end{split}$$

Theorem 2

Suppose the above assumptions hold, K = o(n). If the half minimum gap between groups, b_n , satisfies that $b_n > a\lambda_n$, and

$$\lambda_n \gg C \frac{\max_k |G_k|}{n} \sqrt{\frac{\log n}{Ln}} + C \sqrt{\frac{K + \log n}{Ln}}, \tag{8}$$

then with probability at least $1 - \epsilon_0 - cn^{-7}$, the objective function with fused penalty has a strictly local minimizer $\hat{\theta}$ such that

$$\begin{aligned} & \bullet \quad \widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}^{\text{oracle}} \text{ ,} \\ & \bullet \quad \left\| \widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^* \right\| = O_p(\sqrt{(K + \log n)/(Ln)}). \end{aligned}$$

5. Real Data - NBA Basketball Team Ranking

- ▶ n=30 teams, L=2-4, total games=1230.
- Each pair of teams play at least 2 games, and at most 4 games.
- Each team plays 82 games, 41 each home and away.

Figure 2: NBA basketball team.

♣ 2022-23 NBA regular season results

Conference Standings * Playoff teams

Eastern Conference	w	L	W/L%	GB	PS/G	PA/G	SRS
Milwaukee Bucks*	58	24	.707	-	116.9	113.3	3.61
Boston Celtics*	57	25	.695	1.0	117.9	111.4	6.38
Philadelphia 76ers*	54	28	.659	4.0	115.2	110.9	4.37
Cleveland Cavaliers*	51	31	.622	7.0	112.3	106.9	5.23
New York Knicks*	47	35	.573	11.0	116.0	113.1	2.99
Brooklyn Nets*	45	37	.549	13.0	113.4	112.5	1.03
Miami Heat*	44	38	.537	14.0	109.5	109.8	-0.13
Atlanta Hawks*	41	41	.500	17.0	118.4	118.1	0.32
Toronto Raptors*	41	41	.500	17.0	112.9	111.4	1.59
Chicago Bulls*	40	42	.488	18.0	113.1	111.8	1.37
Indiana Pacers	35	47	.427	23.0	116.3	119.5	-2.91
Washington Wizards	35	47	.427	23.0	113.2	114.4	-1.06
Orlando Magic	34	48	.415	24.0	111.4	114.0	-2.39
Charlotte Hornets	27	55	.329	31.0	111.0	117.2	-5.89
Detroit Pistons	17	65	.207	41.0	110.3	118.5	-7.73

Western Conference	w	L	W/L%	GB	PS/G	PA/G	SRS
Denver Nuggets*	53	29	.646	-	115.8	112.5	3.04
Memphis Grizzlies*	51	31	.622	2.0	116.9	113.0	3.60
Sacramento Kings*	48	34	.585	5.0	120.7	118.1	2.30
Phoenix Suns*	45	37	.549	8.0	113.6	111.6	2.08
Los Angeles Clippers*	44	38	.537	9.0	113.6	113.1	0.31
Golden State Warriors*	44	38	.537	9.0	118.9	117.1	1.66
Los Angeles Lakers*	43	39	.524	10.0	117.2	116.6	0.43
Minnesota Timberwolves*	42	40	.512	11.0	115.8	115.8	-0.22
New Orleans Pelicans*	42	40	.512	11.0	114.4	112.5	1.63
Oklahoma City Thunder*	40	42	.488	13.0	117.5	116.4	0.96
Dallas Mavericks	38	44	.463	15.0	114.2	114.1	-0.14
Utah Jazz	37	45	.451	16.0	117.1	118.0	-1.03
Portland Trail Blazers	33	49	.402	20.0	113.4	117.4	-3.96
Houston Rockets	22	60	.268	31.0	110.7	118.6	-7.62
San Antonio Spurs	22	60	.268	31.0	113.0	123.1	-9.82

Preliminary team ranking: (teams with larger scores θ rank first)

NBA team ranking

Figure 3: Preliminary estimation for NBA basketball team.

Team ranking using CARDS under homogeneity assumption:

- Use SCAD penalty, a=3.7. Group number K = 8.
- Ranking is consistent with the win/loss ratio for each team.

- ▶ Prediction error = average of square of $(y \hat{y})$, where \hat{y} is the estimated probability of wining.
- 40 random splits, training data: 60% (80%); testing data: 40% (20%).
- Comparison with pure BTL with no penalty:

Figure 5: Prediction with 60% and 80% training data.

MADStat.

- Papers in one journal tend to cite those papers from journal with a higher prestige.
- n=33 (exclude three probability journals AIHPP, AoP, PTRF)
- Total citations between different journals=25248, citations using 10-year window, summation of year 2014 and 2015.

Journal Ranking

Preliminary movie ranking: (journals with smaller scores θ rank first)

Figure 6: Preliminary estimation.

Netflix Film Ranking

Team ranking using CARDS under homogeneity assumption:

- Choose λ based on cross-validation error.
- Group number K = 11.

Journal ranking

Journal

5. Real Data - Netflix Film Ranking

- Dataset: "Netflix prize dataset". Netflix held the Netflix Prize open competition for the best algorithm to predict user ratings for films. A total of 17770 movies from 1915-2005, and a total of 143458 reviewers.
- Extract n=100 movies, with highest number of reviews.
- Extract 52064 users rating info, who have rated more than 50 movies among these 100 movies.
- For each pair of movies, randomly select L=50 ratings for comparison.

Netflix Film Ranking

Preliminary movie ranking: (movies with larger scores θ rank first)

Figure 7: Preliminary estimation for Netflix film.

Netflix Film Ranking

Team ranking using bCARDS under homogeneity assumption:

- Choose λ based on cross-validation error.
- Use SCAD penalty, a=3.7. Group number K = 19.

Figure 8: Movie ranking using CARDS under homogeneity assumption.

Top six Netflix films:

- Finding Nemo
- The Sixth Sense
- Lord of the Rings: The Fellowship of the Ring
- Braveheart
- The Godfather
- The Silence of the Lambs

5. Summary

- We explore the homogeneity of scores in the BTL model, which assume that individuals cluster into group with the same preference scores.
- Introduce CARDS penalty to estimate scores and group structures at the same time.
 - More rigorous in methodology.
 - Obtain faster convergence rate and sharper confidence intervals.
 - Improve the prediction performance.
 - Allow bias in the order of preliminary estimation.
- Statistical properties of CARDS.
- Real data analyses including sports and movies ranking to demonstrate the efficiency and interpretation ability of our model.
- (Ongoing) Ranking inference sharper confidence intervals.

Thank you!

Ke, Z.T. and **Tao, Y.**[†] (2023). Homogeneity pursuit in ranking inferences based on pairwise comparison data. *Manuscript.*

References

- Chen, Y., Fan, J., Ma, C., and Wang, K. (2019). Spectral method and regularized MLE are both optimal for top-K ranking. *The Annals of Statistics*, 47, 2204–2235.
- Chen, P., Gao, C., and Zhang, A. Y. (2022). Partial recovery for top-k ranking: optimality of MLE and suboptimality of the spectral method. *The Annals of Statistics*, **50**(3), 1618–1652.
- Fan, J., and Li, R. (2001). Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. *Journal of American Statistical Association*, **96**, 1348–1360.
- Gao, C., Shen, Y., and Zhang, A.Y. (2023). Uncertainty quantification in the Bradley-Terry-Luce model. *Information and Inference: A Journal of the IMA*, **12**, 1073–1140.
- Harchaoui, Z., and Lévy-Leduc, C. (2010). Multiple Change-Point Estimation With a Total Variation Penalty. *Journal of the American Statistical Association*, **105**, 1480–1493.
- Ke, Z.T., Fan, J., and Wu, Y. (2015). Homogeneity Pursuit. Journal of the American Statistical Association. 110:509, 175–194.