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Applications of Ranking Inference

(a) Sports and Gaming Ranking
(b) Recommendation System and Web Search
(c) Journal Ranking, Univerisity Ranking, etc.
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An example: NBA Basketball Team Ranking

Fig 1. Estimated θ̂i for 30
teams based on 2022-23

regular season.

I Data: Win/loss (binary data)
in NBA games.

I n=30 teams, L=2-4 compar-
isons between each pair.

I (Bradley-Terry-Luce) Each
team has a latent score θi.

P(i beats j) =
eθi−θj

1 + eθi−θj
.

I Estimate θ by MLE.

I Rank teams using θ̂.
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Challenges and Open Questions

1. Potential overfitting due to insufficient comparisons.

I It can be shown that ‖θ̂i − θi‖ ≤ 1/
√
nL. (Gao et.al., 2022)

I For the NBA dataset, n = 30, L ≈ 3, and 1/
√
nL ≈ 0.1. This

is much larger than the difference between most adjacent θ̂j .

2. We are also interested in dividing teams into groups so that

I There is no significant difference within each group.

I There are significant differences between different groups.
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For Today’s Talk

I Model: An extension of BTL with group structures.

I Method: Simultaneous parameter estimation and clustering.

I Theory: Faster rate than 1/
√
nL.
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Why our goal cannot be achieved from constructing
confidence intervals?

I Many works on constructing confidence intervals for individual
θi (Han et.al., 2020, Liu et.al., 2022, Gao et.al., 2022).

I An ad hoc approach: group i and j together if CIi ∩ CIj 6= ∅.

The right shows the CIs in the ap-
plication of ranking cargo ships’
quality under wave damage inci-
dents (Firth and Menezes, 2004).
All five CIs overlap.
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1. BTL Model with Group Structures

I n items

I Each item i is assigned with a latent preference score θ∗i .

I P(i beats j) ∝ exp(θ∗i ), P(j beats i) ∝ exp(θ∗j ).

I P(i beats j) =
exp(θ∗i )

exp(θ∗i )+exp(θ∗j ) = ψ(θ∗i − θ∗j ),

where ψ(·) is the sigmoid function ψ(t) ≡ et/(1 + et).
The log-odds is given by the difference of their scores.

I L independent comparisons for each observed pair (i, j):

yij`
ind∼ Bernoulli(ψ(θ∗i − θ∗j )), l = 1, . . . , L.

I Comparison graph Aij
i.i.d.∼ Bernoulli(p). Assume p = 1.
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1. BTL Model with Group Structures

Suppose all individuals can be divided into K groups, a partition of
{1, . . . , n}, denoted as G = (G1, · · · , GK).
In each group, individuals share the same preference score,

θ∗j = θ∗G,k, for all j ∈ Gk, 1 ≤ k ≤ K.

Write θ∗G = (θ∗G,1, . . . , θ
∗
G,K)> and θG = (θG,1, . . . , θG,K)>.

I WLOG, we assume θ∗G,1 < θ∗G,2 < · · · < θ∗G,K .

I Each group has equal n/K individuals for notation simplicity
in theoretical analysis.

I When K = n, it reduces to the standard BTL model.
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1. BTL Model with Group Structures

Goal: conduct estimation and inference of the preference scores
θ∗ = (θ∗1, . . . , θ

∗
n)> from pairwise comparisons.

Assumption 1

The parameter space for θ∗ is

Θ(κ) =

{
θ ∈ Rn : max

i∈[n]
θi −min

i∈[n]
θi ≤ κ,1>n θ = 0

}
.

I Here κ is known as the dynamic range, independent of n. We
consider the fixed dynamic range regime, i.e., κ = O(1).

I 1>n θ
∗ = 0 for identifiability, as the BTL model is only identifi-

able up to a global shift in the score parameter θ.
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2. Oracle Case

♣ When the group partition G is known,

Step 1: Compute ȳij = (
∑L

`=1 yij`)/L. (win ratio)

Step 2: Obtain the negative log-likelihood function

Ln(θ) =
∑

1≤i<j≤n

[
ȳij log

1

ψ(θi − θj)
+ ȳji log

1

ψ(θj − θi)

]

=
∑

1≤i<j≤K

∑
i′∈Gi,j′∈Gj

[
ȳi′j′ log

1

ψ(θG,i − θG,j)
+ ȳj′i′ log

1

ψ(θG,j − θG,i)

]
,

where ȳji = 1− ȳij by convention.

Step 3: Define the oracle MLE under the identifiability condition:

θ̂oracle = arg min
θ:1>n θ=0

Ln(θ).
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2. MLE in the Oracle Case

Proposition 1

Suppose the parameter space for θ∗ is Θ(κ), κ = O(1). Assume
the above assumptions hold and K = o(n). Then we have

∥∥θ̂oracle − θ∗
∥∥ .

√
K + log n

Ln
, (1)

with probability at least 1−O(n−7) uniformly over all θ∗ ∈ Θ(κ).

Proposition (Existing results, e.g. Chen, Fan, Ma and
Wang(2019), Chen, Gao and Zhang(2022))

Assume np & log(n) (p=1 in our case), then w.h.p,

∥∥θ̂ − θ∗
∥∥ .

√
1

L
. (2)
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3. Methodology

♣ When the group partition G is unknown,

♣ Penalized MLE:
Likelihood function + Folded concave penalty (e.g., SCAD, Fan and
Li 2001; MCP, Zhang 2010).
A symmetric function and nondecreasing and concave on [0,∞). There

exists a constant a > 0 such that ρ(θ) is a constant for all |θ| ≥ aλ.

12 / 37



3. Methodology – Two possible penalties

♣ The fused penalty with a pilot estimator

Preordering: Construct the rank statistics {τ(j) : 1 ≤ j ≤ n}
preliminary estimator θpre, that is,

θpre
τ(1) ≤ θ

pre
τ(2) ≤ · · · ≤ θ

pre
τ(n).

θ̂ = arg min
θ:1T

nθ=0

{
1

n2
Ln(θ) +

n−1∑
j=1

pλ(|θτ(j+1) − θτ(j)|)

}
.

♣ The total variation penalty

PTV
λ (θ) =

∑
1≤i,j≤n

pλ(|θi − θj |).
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Methodology – Issues with fused penalty

Assumption 2

τ is consistent with the order of θ∗ with probability at least 1− ε0,
that is,

θ∗τ(1) ≤ θ
∗
τ(2) ≤ · · · ≤ θ

∗
τ(n).

If the above assumption holds, then under some regularity condi-
tions, θ̂ can consistently estimate the true coefficient groups of θ∗

with high probability.

8 Issues: Assumption 2 may be violated.

3 Solution: Use less information from θpre and more penalty terms.
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Methodology – CARDS Penalty

3 Ke, Fan and Wu (2015): Clustering Algorithm in Regression via
Data-driven Segmentation (CARDS).

Ordered segmentation Υ

Let δ > 0 be a pre-determined parameter, and find all indices 1 <
i2 < i3 < · · · < iL such that the gaps

θpre
τ(j) − θ

pre
τ(j−1) > δ, j = i2, . . . , iL.

Then, construct the segments

Bl = {τ(il), τ(il + 1), . . . , τ(il+1 − 1)}, l = 1, . . . , L, (3)

where i1 = 1 and iL+1 = n+ 1.
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Methodology – CARDS

Definition 1
Given a penalty function pλ(·) and tuning parameters λ1 and λ2,
the hybrid pairwise penalty corresponding to an ordered
segmentation Υ is

PΥ,λ1,λ2
(θ) =

L−1∑
l=1

∑
i∈Bl,j∈Bl+1

pλ1
(|θi − θj |)

+

L∑
l=1

∑
i,j∈Bl

pλ2
(|θi − θj |).

(4)

3 Take advantage of the order of segments B1, . . . , BL, and at the
same time allow flexibility of order shuffling within each segment.

I When L = n, it reduces to the fused penalty.
I When L = 1, namely, no prior information about θ, (4) reduces

to total variation penalty
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Methodology – CARDS

How the Assumption 2 can be relaxed?

Definition 2
An ordered segmentation Υ preserves the order of θ∗ if
maxj∈Bl

θ∗j ≤ minj∈Bl+1
θ∗j , for l = 1, . . . , L− 1.

Assumption 3

The ordered segmentation Υ, generated by the preliminary
estimator θpre and the tuning parameter δn, preserves the order of
θ∗, with probability at least 1− ε0.

We group the coefficients θpre which differ by only a small amount
into the same segment, therefore allowing some estimation error in
preliminary ranking.

17 / 37



Methodology – CARDS
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Figure 1. Illustration of the hybrid pairwise penalty and the aCARDS algorithm. Top panel: OLS coefficients and the associated ordered
segmentation. Red dots and blue crosses represent predictors from Group 1 and Group 2, respectively. Bottom panel: Solution paths of bCARDS
(left) and aCARDS (right) under misranking. The ranking and ordered segmentation are the same as in the top panel. For bCARDS, the horizontal
axis represents the parameter λ. For aCARDS, the horizontal axis represents the between-segment parameter λ1, where we fix the within-segment
parameter λ2 = 0.02. The vertical axis represents the estimated 40 regression coefficients, which are shrunk toward homogeneity (as the figures
do not start from the smallest λ, we do not see initial 40 regression coefficients).

between segments B5 and B6. So aCARDS will also shrink the
coefficient of τ (23) toward being equal to the coefficients of
other predictors in Group 2. Eventually, aCARDS will shrink
the coefficients of τ (17) and τ (18) toward being equal to the
coefficients of many other predictors in Group 2. This exam-
ple explains how the ordered segmentation and hybrid penalty
help overcome issues caused by misranking in the preliminary
estimator.

To better illustrate the effects of fused penalty and hybrid
penalty under misranking, we fix the estimated rank and or-
dered segmentation from above, and compute the solution paths
of both bCARDS and aCARDS. Note that the penalty terms
in both (5) and (8) are now fixed (hence we do not need the
parameter δ in aCARDS). For bCARDS, we let λ vary. For aC-
ARDS, we set the within-segment parameter λ2 = 0.02 and let
the between-segment parameter λ1 vary. Figure 1 displays the
solution paths. We see that although bCARDS does not include
the true grouping in the solution path owing to misranking, aC-

ARDS still achieves the true grouping, which is a benefit of the
hybrid penalty.

In practical data analysis, we need not differentiate between
two versions of CARDS, but the tuning parameter selection
process automatically tells us which version to use. This is
because bCARDS is a special case of aCARDS with δ = 0. We
only need to include 0 in the candidates of the parameter δ and
select δ in a data-driven manner (e.g., AIC, BIC, and GCV). We
call the resulting method CARDS, which involves a data-driven
selection between bCARDS and aCARDS.

2.4 CARDS Under Sparsity

In applications, we may need to explore homogeneity and
sparsity simultaneously. Often the preliminary estimator β̃ takes
into account the sparsity, namely it is obtained with a penalized
least-squares method (Fan and Li 2001; Tibshirani et al. 2005) or
sure independence screening (Fan and Lv 2008). Suppose β̃ has

Figure 1: Illustration of CARDS penalty.
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Methodology – CARDS

Procedure of CARDS:

I Preliminary Ranking: Given a preliminary estimate θpre, gener-
ate the rank mapping {τ(j) : 1 ≤ j ≤ n} such that θpre

τ(1) ≤
θpre
τ(2) ≤ · · · ≤ θ

pre
τ(n).

I Segmentation: For a tuning parameter δ > 0, construct an
ordered segmentation Υ as described in (3).

I Estimation: For tuning parameters λ1 and λ2, compute the
solution θ̂ that minimizes

Qn(θ) =
1

n2
Ln(θ) + PΥ,λ1,λ2(θ), (5)

where Ln(θ) =
∑

1≤i<j≤n

[
ȳij log

1

ψ(θi − θj)
+ ȳji log

1

ψ(θj − θi)

]
.

Remark: Fused penalty is a special case of CARDS with δ = 0.

19 / 37



4. Theory – Properties of CARDS

For given G1, . . . , GK and a segmentation Υ = {B1, . . . , BL}, de-
fine

φk = |Gk|/min

{
|Gk|2, min

l:Bl∩Gk 6=∅
{|Bl|2}

}
.

Here 1/|Gk| ≤ φk ≤ |Gk| for 1 ≤ k ≤ K.

Assumption (4)

The ordered segmentation Υ, generated by the preliminary
estimator θpre and the tuning parameter δn, preserves the order of
θ∗, with probability at least 1− ε0.
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Properties of CARDS

Theorem 1
Suppose the above assumptions hold, K = o(n). If the half
minimum gap between groups, bn, satisfies that
bn > amax{λ1n, λ2n}, and

λ1n � max
k

{Cφk
n

√
log n

Ln
+ C

√
K + log n

Ln

}
, (6)

λ2n � max
k

{ C

n|Gk|

√
log n

Ln
+ C

√
K + log n

Ln

}
, (7)

then with probability at least 1− ε0 − cn−7, the CARDS objective
function (5) has a strictly local minimizer θ̂ such that

I θ̂ = θ̂oracle ,

I
∥∥θ̂ − θ∗

∥∥ = Op(
√

(K + log n)/(Ln)).
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Properties of fused penalty

Theorem 2
Suppose the above assumptions hold, K = o(n). If the half
minimum gap between groups, bn, satisfies that bn > aλn, and

λn � C
maxk |Gk|

n

√
log n

Ln
+ C

√
K + log n

Ln
, (8)

then with probability at least 1− ε0 − cn−7, the objective function
with fused penalty has a strictly local minimizer θ̂ such that

I θ̂ = θ̂oracle ,

I
∥∥θ̂ − θ∗

∥∥ = Op(
√

(K + log n)/(Ln)).
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5. Real Data – NBA Basketball Team Ranking

I n=30 teams, L=2-4, total games=1230.
I Each pair of teams play at least 2 games, and at most 4 games.
I Each team plays 82 games, 41 each home and away.

Figure 2: NBA basketball team.
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NBA Basketball Team Ranking

♣ 2022-23 NBA regular season results
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NBA Basketball Team Ranking

Preliminary team ranking: (teams with larger scores θ rank first)

Figure 3: Preliminary estimation for NBA basketball team.

25 / 37



NBA Basketball Team Ranking

Team ranking using CARDS under homogeneity assumption:
I Use SCAD penalty, a=3.7. Group number K = 8.
I Ranking is consistent with the win/loss ratio for each team.

Figure 4: Team ranking using bCARDS under homogeneity assumption.
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NBA Basketball Team Ranking

I Prediction error = average of square of (y− ŷ), where ŷ is the
estimated probability of wining.

I 40 random splits, training data: 60% (80%); testing data: 40%
(20%).

I Comparison with pure BTL with no penalty:

Figure 5: Prediction with 60% and 80% training data.
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5. Real Data – Journal Ranking

I MADStat.

I Papers in one journal tend to cite those papers from journal
with a higher prestige.

I n=33 (exclude three probability journals AIHPP, AoP, PTRF)

I Total citations between different journals=25248, citations us-
ing 10-year window, summation of year 2014 and 2015.
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Journal Ranking

Preliminary movie ranking: (journals with smaller scores θ rank first)

Figure 6: Preliminary estimation.
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Netflix Film Ranking

Team ranking using CARDS under homogeneity assumption:
I Choose λ based on cross-validation error.
I Group number K = 11.
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5. Real Data – Netflix Film Ranking

I Dataset: “Netflix prize dataset”. Netflix held the Netflix Prize
open competition for the best algorithm to predict user ratings
for films. A total of 17770 movies from 1915-2005, and a total
of 143458 reviewers.

I Extract n=100 movies, with highest number of reviews.

I Extract 52064 users rating info, who have rated more than 50
movies among these 100 movies.

I For each pair of movies, randomly select L=50 ratings for com-
parison.
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Netflix Film Ranking

Preliminary movie ranking: (movies with larger scores θ rank first)

Figure 7: Preliminary estimation for Netflix film.
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Netflix Film Ranking

Team ranking using bCARDS under homogeneity assumption:
I Choose λ based on cross-validation error.
I Use SCAD penalty, a=3.7. Group number K = 19.

Figure 8: Movie ranking using CARDS under homogeneity assumption.
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Netflix Film Ranking

Top six Netflix films:

I Finding Nemo

I The Sixth Sense

I Lord of the Rings: The Fellowship of the Ring

I Braveheart

I The Godfather

I The Silence of the Lambs
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5. Summary

I We explore the homogeneity of scores in the BTL model, which
assume that individuals cluster into group with the same pref-
erence scores.

I Introduce CARDS penalty to estimate scores and group struc-
tures at the same time.
I More rigorous in methodology.
I Obtain faster convergence rate and sharper confidence intervals.
I Improve the prediction performance.
I Allow bias in the order of preliminary estimation.

I Statistical properties of CARDS.

I Real data analyses including sports and movies ranking to demon-
strate the efficiency and interpretation ability of our model.

I (Ongoing) Ranking inference – sharper confidence intervals.
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Thank you!

Ke, Z.T. and Tao, Y.† (2023). Homogeneity pursuit in ranking

inferences based on pairwise comparison data. Manuscript.
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