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Problem: between-group variability in text

▶ Detecting variability in online customer reviews

“Younger travelers, women, and travelers with
less review expertise tend to give more positive
reviews to hotels” (Leung and Yang, 2020)

▶ Classical studies use numerical ratings, but text
reviews are more informative, especially for
hedonic products such as books, movies, and
hotels (Chevalier and Mayzlin, 2006)
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DNN models v.s. Statistical models

Successes of LLM were only
reported under:

▶ Supervised learning

▶ Strong signals

▶ Extremely large
(pre-)training data

▶ Interpretability is not
required
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Multinomial modeling of word counts

▶ The dictionary has p distinct words

▶ The N words in a document are sampled with
replacement, using a probability mass function
(PMF) Ω = (Ω(1),Ω(2), . . . ,Ω(p))′

▶ Let X (j) denote the total count of word j

It follows that

X ∼ Multinomial
(

N︸︷︷︸
#words

, Ω︸︷︷︸
PMF

)
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The hypothesis testing problem

There are n documents:

Xi ∼ Multinomial(Ni , Ωi), 1 ≤ i ≤ n

▶ Documents are divided into K known groups

▶ The within-group mean PMF:

µk =
1∑

i∈Sk Ni

(∑

i∈Sk
NiΩi

)
∈ Rp

▶ Test the null hypothesis

H0 : µ1 = µ2 = . . . = µK
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The challenges

Xi ∼ Multinomial(Ni ,Ωi), i ∈ S1 ∪ S2 ∪ · · · ∪ SK .

H0 : µ1 = µ2 = . . . = µK , µk : within-group mean

▶ H0 is highly composite, since Ωi ’s can be
different from each other within each group

▶ High dimensionality, especially, allowing p ≫ N̄

▶ K can be any number between 2 and n

▶ Word frequencies are unbalanced (Zipf’s law)
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Re-formulation to testing against ρ2 = 0

Let nk=|Sk | and N̄k=
1
nk

∑
i∈Sk Ni . Define

ρ2 :=
1

nN̄

K∑

k=1

nkN̄k∥µk−µ∥2, with µ =
1

nN̄

n∑

i=1

NiΩi

Our plan:

▶ An unbiased estimator of ρ2

▶ A test statistic with asymptotic distribution of
N(0, 1) under H0 (where ρ2 = 0)
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An unbiased estimator of ρ2

Let µ̂= 1
nN̄

∑n
i=1 Xi and µ̂k=

1
nk N̄k

∑
i∈Sk Xi . A raw estimator is

T0 =
1

nN̄

K∑

k=1

nkN̄k∥µ̂k − µ̂∥2

Lemma: Suppose Xi ∼ Multinomial(Ni ,Ωi) and
X1,X2, . . . ,Xn are independent.

▶ E[T0]=ρ2+
∑K

k=1

(
1

nk N̄k
− 1

nN̄

)∑
i∈Sk

∑p
j=1 NiΩij(1− Ωij).

▶ Ωij(1− Ωij) = E
[

1
Ni (Ni−1)

Xij(Ni − Xij)
]
.
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An unbiased estimator of ρ2

DEbiased and Length-adjusted Variability Estimator

T = T0 −
K∑

k=1

( 1

nkN̄k

− 1

nN̄

)∑

i∈Sk

p∑

j=1

Xij(Ni − Xij)

Ni − 1

Theorem 1 (unbiasedness): E[T ] = ρ2.
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Regularity conditions

Condition 1:

min
1≤i≤n

Ni ≥ 2, max
1≤i≤n

∥Ωi∥∞ ≤ 1−c0, max
1≤k≤K

nkN̄k

nN̄
≤ 1−c0.

Condition 2:

αn = o(1), βn = o(1), and
∥µ∥44
K∥µ∥4 = o(1)

where αn := max
{∑K

k=1
∥µk∥33
nk N̄k

,
∑K

k=1
∥µk∥2
n2k N̄

2
k

}/(∑K
k=1 ∥µk∥2

)2
,

βn := max
{∑K

k=1

∑
i∈Sk

N2
i

n2k N̄
2
k
∥Ωi∥33,

∑K
k=1 ∥Σk∥2F

}/
(K∥µ∥2).
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Using DELVE to test against H0

Theorem 2 (parameter-free limiting null): Let

V = 2
K∑

k=1

∑

i∈Sk

p∑

j=1

( 1

nk N̄k

− 1

nN̄

)2
[
NiX

2
ij

Ni − 1
− NiXij(Ni − Xij)

(Ni − 1)2

]

+
4

n2N̄2

∑

k ̸=ℓ

∑

i∈Sk

∑

m∈Sℓ

p∑

j=1

XijXmj + 2
K∑

k=1

∑

(i,m)∈S2
k

i ̸=m

p∑

j=1

( 1

nk N̄k

− 1

nN̄

)2

XijXmj .

Suppose H0 is satisfied. As nN̄ → ∞ and p → ∞,

T/
√
V →d N(0, 1)
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Simulations
Ωi are i.i.d. drawn from Dirichlet(ϕ1p) within each group.18

Fig. 1: Histograms of DELVE (top panels) and DELVE+ (bottom panels) statistics in
Experiments 1.1-1.3. In each plot, the blue and orange histograms correspond to the null
and alternative hypotheses, respectively; and the green curve is the density of N(0, 1).

i.i.d. from Dirichlet(p,�1p). Third, we draw Ni
iid⇠ Uniform[Nmin, Nmax] and set ⌦null

i =
µ, where µ := 1

nN̄

P
i Ni⌦

alt
i . Last, we generate X1, . . . , Xn using Model (1). We consider

three sub-experiments. In Experiment 1.1, (n, p, K, Nmin, Nmax,�) = (50, 100, 5, 10, 20, 0.3).
In Experiment 1.2, � is changed to 1, and the other parameters are the same. When
� = 1, ⌦alt

i are drawn from the uniform distribution of the standard probability simplex;
in comparison, � = 0.3 puts more mass near the boundary of the standard probability
simplex. In Experiment 1.3, we keep all parameters the same as in Experiment 1.1,
except that (p, K) are changed to (300, 50). For each sub-experiment, we generate 2000
data sets under the null hypothesis and plot the histogram of the DELVE test statistic
 (in blue); similarly, we generate 2000 data sets under the alternative hypothesis and
plot the histogram of  (in orange). The results are contained in Figure 1.

In all sub-experiments, when the null hypothesis holds, the histograms of DELVE and
DELVE+ fit the standard normal density reasonably well. This supports our theory in
Section 3.1. Second, when (p, K) increase, the finite sample e↵ect becomes slightly more
pronounced (c.f., Experiment 1.3 versus Experiment 1.1). Third, the tests have power in
di↵erentiating two hypotheses. As � decreases or K increases, the power increases, and
the two histograms become further apart. Last, in the alternative hypothesis, DELVE+
has smaller mean and variance than DELVE. By Lemma 2, they have similar asymptotic
behaviors. The simulations suggest that they have noticeable finite-sample di↵erences.

Experiment 2 (Power curve). Similarly as in Experiment 1, we divide {1, 2, . . . , n}
into K equal-size groups and draw Ni ⇠ Uniform[Nmin, Nmax]. In this experiment, ⌦i’s
are generated in a di↵erent way. Under H0, we draw µ ⇠ Dirichlet(p/2,�1p/2) and set

⌦null
i = µ̃, where µ̃j = 1

2µj for j  p/2 and µ̃j = 1
2µj�p/2 for j � p/2+1. Under H1, fixing

some ⌧n 2 [0, 1], we draw z1, . . . , zK , b1, . . . , bp/2
iid⇠ Rademacher(1/2) and let ⌦alt

ij =

µ̃j(1 + ⌧nzkbj), for i in group k and 1  j  p/2, and let ⌦alt
ij = µ̃j(1 � ⌧nzkbj�p/2) for
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Minimax optimality of DELVE

Theorem 3: Define ω2
n = ρ2/∥µ∥2 and

SNRn ≡
nN̄∥µ∥2ω2

n√∑K
k=1 ∥µk∥2

(
≍ nN̄ω2

n√
Kp

, if ∥µk∥ ≍ 1√
p

)

▶ (Power) If SNRn → ∞, then T/
√
V →P ∞;

and the level-α DELVE test has an asymptotic
level of α and an asymptotic power of 1.

▶ (Lower bound) If SNRn → 0, for any test, the
sum of type I and type II errors converges to 1.
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Comparison with other testing ideas

▶ The likelihood ratio (LR) test is only applicable
in a special case:

Ωi = µk , for i ∈ Sk =⇒ H0 : Ωi ≡ µ

▶ The naive test based on T0 is non-optimal:

T0 = T + “bias”

There exists a parameter regime in which the
“bias” term dominates the “signal” in T
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Power comparison with the LR test

The LR test is only defined in the special case where Ωi = µk within each
group. Under H0, µ ∼ Dirichlet(p/2, ϕ1p/2). Under H1, perturb half

entries in µ by ±τn to obtain µ1, . . . , µK . Write λ = nN̄∥µ∥τ 2n /
√
K . For

DELVE, the cut-off is the 0.95 quantile of N(0, 1). For LR, we use the
optimal cut-off value from simulating H0 for 500 times.
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Applications in statistical inference

We show that DELVE can be used for:

▶ Global testing for a topic model (K = n)
Hofmann (1999), Blei, Ng, and Jordan (2003)

▶ Authorship attribution challenge (K = 2)
Mosteller & Wallace (1963), Kipnis (2021), Donoho & Kipnis
(2021)

▶ Closeness testing between two discrete
distributions (K = 2)
Chan, Diakonikolas, Valiant, and Valiant (2014), Bhattacharya
and Valiant (2015), Balakrishnan and Wasserman (2019)
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Example 1: global detection of topics

The topic model (Hoffman, 1999; Blei et al., 2003):

Ωi =
r∑

k=1

wi(k)Ak ⇐⇒ Ω = [A1, . . . ,Ar ]︸ ︷︷ ︸
p×r

[w1, . . . ,wn]︸ ︷︷ ︸
r×n

Global testing: r = 1 v.s. r > 1
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A special case of our problem with K = n:

Ωi

{
are all equal to A1, when r = 1

range in the convex hull of A1, . . . ,Ar , when r > 1

▶ DELVE has a full power if nN̄2/p → ∞. Furthermore, a
matching lower bound is proved.

▶ Previous works (e.g., Ke and Wang; Bing et al.) showed
that A is estimable if nN̄/p → ∞

n
nN̄2/p → 0 nN̄2/p → ∞

nN̄/p → 0
nN̄/p → ∞

Not detectable
Detectable but 
not estimable Estimable
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Example 2: Authorship attribution
1238 A. KIPNIS

FIG. 1. Word frequencies of three authorship sources. The two panels show a random sample of 60 words out
of the 500 most common ones in one of the disputed articles (gray), the corpus of known Hamilton articles (blue),
and the corpus of known Madison articles (red) out of the first 77 Federalist Papers. We attribute the disputed
article by measuring the global discrepancy between its word frequencies to each corpus of known authorship.

the form of alternatives considered in analyzing and developing classical tests of homogene-
ity is quite general, whereas the important differences in word frequencies between authors
may be concentrated on a sparse subset. Namely, relatively few words, out of possibly thou-
sands, may indicate a change of authorship. Consequently, a test that adapts well to sparsity
seems promising in this application. In addition to the rareness of discriminating words, the
evidence that each such word provides is weak; no single word serves as a decisive discrim-
inating feature. To summarize, we are facing the problem of detecting a rare change in the
distribution of a large set of possibly weak features. HC has long been known to detect sig-
nals of a rare/weak nature (Donoho and Jin (2004, 2015), Arias-Castro, Candès and Plan
(2011), Mukherjee, Pillai and Lin (2015), Li and Siegmund (2015), Jin and Ke (2016)). This
motivates us to adapt HC to our purpose of detecting changes between word frequency tables.

1.2. Binomial allocation model. We think about a document as an ordered list of words.
Given a vocabulary W , the word-frequency table associated with the document D is denoted
by {N(w|D),w ∈ W }, where N(w|D) records the total number of occurrences the word w
in D.

Consider two documents D1 and D2. For each occurrence of a word w ∈ W in either
document, place in a database the labelling pair (w, l) where w denotes the word and l the
label “1” or “2,” according to which document contains that occurrence. Suppose that, under
the null hypothesis, different occurrences are independent and that each is equally likely to
originate from “1” (respectively, “2”), only accounting for the relative size of D1 compared
to D2 minus occurrences of w. Equivalently, occurrences of w are obtained by sprinkling the
records in the database with the labels removed across the remaining locations in the large
document obtained by concatenating D1 and D2. In this case,

N(w|D1) ∼ Bin(n,p),

Mosteller & Wallace (1963), Kipnis (2022)
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Xi ∼ Multinomial(Ni ,Ωi), η = (nN̄)−1
∑n

i=1NiΩi

Gi ∼ Multinomial(Mi , Γi), θ = (mM̄)−1
∑m

i=1MiΓi

▶ H0: η = θ

▶ H1: rare/weak signals (Donoho and Kipnis, 2021):

∣∣√ηj −
√

θj
∣∣
{
= 0, j /∈ S ,

≥ βn, j ∈ S ,
with |S | ≪ p

|S |
|S | ≪ p |S | ≫ p

DELVE test
p

HC-based test
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Applications in real corpora

▶ Amazon movie reviews

▶ MADStat: abstracts of 83K statistical papers
from 36 journals in 1975-2015

Ji and Jin (2016) The co-authorship and citation networks of statisticians (with
discussions). Annals of Applied Statistics.

Ji, Jin, Ke & Li (2022) Co-citation and co-authorship networks of statisticians (with
discussions). Journal of Business & Economic Statistics.

Ke, Ji, Jin & Li (2023+) Recent advances in text analysis. Annual Review of
Statistics and its Applications (in press).

https://github.com/ZhengTracyKe/MADStat

https://github.com/ZhengTracyKe/MADStat
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Example 1: Amazon movie reviews

Maurya (2018)
Example: movie reviews

(581 reviews) (731 reviews) (204 reviews)

• For each review, form its vector  of word countsXiFor each movie, we apply DELVE in two ways:

▶ Diversity of reviews: each review is a group (K = n).

▶ Difference between star ratings: all reviews with the
same star rating are treated as a group (K = 2).
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Diversity of reviews

Rank Title Z -Score Total reviews
1 Prometheus 34.44 813
2 Expelled: No Intelligence Allowed 34.17 830
3 V for Vendetta 32.24 815
4 Sin City 31.72 828
5 No Country for Old Men 30.57 819
...

...
...

...
16 John Adams 20.78 857
17 Cars 19.98 902
18 Food, Inc. 17.81 876
19 Jeff Dunham: Arguing with Myself 4.96 860
20 Jeff Dunham: Spark of Insanity 4.46 877

For the 500 most-reviewed movies, the mean of DELVE z-scores is 19.97,
and the standard deviation of 5.07.
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Difference between star ratings
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Example 2: MADStat (Phase I by Ji and Jin (2016))

For each author, we apply DELVE with K = n. The Z-score measures the
semantic diversity of an author’s abstracts. For all authors in the dataset,
the mean of DELVE Z-scores is 4.52 and the standard deviation is 2.94.
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Difference between years

In the cell (x , y), we compare Peter Hall’s abstracts from time
x with his abstracts from time y . The heatmap shows the
value of the DELVE Z -score with K = 2 for each cell.

Year Title Journal
2004 Low order approximations in deconvolu-

tion and regression with errors in variables
JRSSB

2004 Nonparametric inference about service
time distribution from indirect measure-
ments

JRSSB

2004 Cross-validation and the estimation of
conditional probability densities

JASA

2004 Nonparametric confidence intervals for re-
ceiver operating characteristic curves

Biometrka

2004 Bump hunting with non-Gaussian kernels AOS
2004 Attributing a probability to the shape of a

probability density
AOS
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Summary

▶ Between-group variability in multinomials
▶ H0: µ1 = µ2 = . . . = µK (K ranges from 2 to n)

▶ The DELVE test
▶ parameter-free limiting null
▶ optimal detection boundary

▶ This simple idea is widely useful
▶ Global detection of topics
▶ Authorship attribution
▶ Closeness testing of two discrete distributions
▶ Patterns in online customer reviews
▶ Evolution of text abstracts of an author

Cai, T. T., Ke, Z. T., & Turner, P. (2023). Testing High-dimensional Multinomials
with Applications to Text Analysis. JRSS-B (to appear).


