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Network Data

Network encodes relationships among individuals:

A node represents an individual.

A link between two nodes represents some connectivity.
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Network data are ubiquitous

Social network: Facebook, Twitter, collaboration network

Biological network: brain network, gene network

Information network: World Wide Web, Email network

Coauthor Network Brain Network Email Network
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Dyadic vs Polyadic Relations

Traditional network data analysis mainly focuses on dyadic relations.
However, polyadic relations that involve more than two individuals are
even more common in real-world interactions, e.g. co-author
relationships, protein-protein interactions, product purchased together
in supermarket transactions.

In current practice, polyadic relations are often projected into a dyadic
network before any analysis, which causes substantial loss of
information.
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Hypergraphs

Relations that involve more than two individuals can be naturally
represented using a hypergraph, which generalizes the traditional
network.

A hypergraph is defined by a set of nodes V and a (multi)set of
hyperedges. Each hyperedge is a subset of V, indicating existence of
a relation among the nodes in the hyperedge.

A subset of V of any size can be a hyperedge, in contrast to a
traditional network which only allows edges to represent relations
between exactly two nodes.
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Existing Methods for Hypergraphs

Node clustering using generalization of graph cuts or modularity (Li
and Milenkovic, 2017; Benson et al., 2020, 2021); hypergraph
embedding (Zhou et al., 2006; Tu et al., 2018; Maleki et al., 2021).
These algorithms are heuristic and lack statistical models or principles.

Much of hypergraph modeling effort has been on a special type of
hypergraph, the k-uniform hypergraph, where all hyperedges have the
same number of nodes k (Ghoshdastidar and Dukkipati, 2017b; Chien
et al., 2018; Kim et al., 2018; Lyu et al., 2021; Yuan and Qu, 2021).

For non-uniform hypergraphs
Node clustering (Ghoshdastidar and Dukkipati, 2017a; Ke et al., 2019;
Chodrow et al., 2021; Ng and Murphy, 2021)
Hereditary hypergraphs (Zhang and McCullagh, 2015; Lunagomez et
al., 2017), where all subsets of a hyperedge are required to appear.
Notable works not limited to k-uniform hypergraphs, hereditary
hypergraphs or clustering include Turnbull et al. (2019) and Zhen and
Wang (2021), both of which assign latent positions to nodes. However,
they do not allow for multiplicity of hyperedges.
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Our goal:

A latent space model for non-uniform, non-hereditary hypergraphs
which allows multiple hyperedges.

Motivated by observations in real-world scenarios, the proposed model
aims to promote hyperedges among sets of nodes with high diversity
in their latent positions, e.g. selection of products to purchase and
selection of tags to assign to an online item.

Account for variation in node popularity, as some nodes appear in
hyperedges much more frequently than others.
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Notation

We use V to denote the set of all nodes and let nv := |V| be the
number of nodes in V.

The collection of observed hyperedges is denoted by
E = {e1, e2, . . . , ene}, where e` ⊂ V for ` = 1, . . . , ne and ne denotes
the number of observed hyperedges.

Note that elements in E can be duplicated, as the same hyperedge
can be observed repeatedly.
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A Latent Space Model

A generative latent space model for hypergraphs, which is driven by
diversity within hyperedges and heterogeneous popularity among nodes.

Each node is associated with

a latent position vi ∈ Rd

a popularity parameter αi ∈ R+

Combining vi and αi

Define ṽ>
i = (v>

i ,
√
αiw

>
i ) ∈ Rd+nv , where wi is the ith standard basis

vector of Rnv , i.e., the ith element is equal to 1 and all other elements
are zero.
Example: nv = 3 ṽ>

1

ṽ>
2

ṽ>
3

 =

 v>
1

√
α1 0 0

v>
2 0

√
α2 0

v>
3 0 0

√
α3


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ṽ>
3

 =

 v>
1

√
α1 0 0

v>
2 0

√
α2 0

v>
3 0 0

√
α3



Ji Zhu (University of Michigan) A Latent Space Model for Hypergraphs 10 / 29



A Latent Space Model

A generative latent space model for hypergraphs, which is driven by
diversity within hyperedges and heterogeneous popularity among nodes.

Each node is associated with

a latent position vi ∈ Rd

a popularity parameter αi ∈ R+

Combining vi and αi

Define ṽ>
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A Latent Space Model

We use E to denote a generic random hyperedge and e to denote its
realization. Given any hyperedge e ⊂ V, we consider the parallelotope
formed with vectors ṽi ’s, i ∈ e and define the distribution P of a random
hyperedge E by setting

P(E = e) ∝ vol2 ({ṽi , i ∈ e}),

the square of the volume of the parallelotope formed by ṽi ’s, i ∈ e.
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Diversity and Popularity Hypergraph (DiPH) Model

Let Lnv×nv := (ṽ>i ṽj)
nv
i ,j=1. It can be shown that

vol2 ({ṽi , i ∈ e}) = det(Le),

where Le denotes the submatrix of L indexed by e, and det(·) denotes
the determinant of a matrix.

Moreover, one can also show that∑
e⊂V

det(Le) = det(L + I ).

Therefore, we have

P(E = e) =
det(Le)

det(L + I )
, for any e ⊂ V.

In addition, it is not difficult to see

Lnv×nv = (v>i vj)
nv
i ,j=1 + diag(α), where α := (α1, . . . , αnv ).
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Model Identifiability

To ensure identifiability, we constrain ‖vi‖2, i = 1, . . . , nv to be an
(unknown) constant, i.e.

‖vi‖2 = ‖vi ′‖2 > 0 for any i , i ′ ∈ 1, . . . , nv .

Under this constraint, it can be shown that α is identifiable and vi ’s are
identifiable up to a universal orthogonal transformation and individual sign
changes.
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Remarks

The parallelotope has a comparatively large volume when ‖ṽi‖2’s (i ∈ e)
are large and the directions of vectors {ṽi , i ∈ e} are well separated. Recall
ṽ>i = (v>i ,

√
αiw

>
i ) ∈ Rd+nv , and ‖ṽi‖22 = ‖vi‖22 + αi . Hence

{ṽi , i ∈ e} are well separated when {vi , i ∈ e} are well separated.

Since ‖vi‖2 is a constant as i varies, ‖ṽi‖2 depends solely on αi .
Nodes with large αi values are more likely to form hyperedges.

Example: let β := ‖vi‖22 which is a constant across i . We have

P(E = {i , i ′}) =
(αi + β)(αi ′ + β)− cos2(vi , vi ′)β

2

det(L + I )
.

We refer our model as the Diversity and Popularity Hypergraph (DiPH)
model.
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{ṽi , i ∈ e} are well separated when {vi , i ∈ e} are well separated.

Since ‖vi‖2 is a constant as i varies, ‖ṽi‖2 depends solely on αi .
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ṽ>i = (v>i ,

√
αiw

>
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Remarks

Many existing hypergraph models assume independent Bernoulli
distributions for whether there exists a hyperedge with configuration e
for all e ⊂ V (Stasi et al., 2014; Ghoshdastidar and Dukkipati, 2017a;
Zhen and Wang, 2021; Ke et al., 2019; Lyu et al., 2021), while the
DiPH model considers hyperedges as i.i.d. realizations of one
hyperedge distribution P.

The hyperedge distribution P in the DiPH model is a specially
structured (discrete) determinantal point process (DPP) (Kulesza and
Taskar, 2012). A DPP is a type of distribution over the power set of
a point set (e.g. V), and the term L for a generic DPP can be any
positive semi-definite matrix. In the DiPH model, we require L to
take the special form of Lnv×nv = (v>i vj)

nv
i ,j=1 + diag(α), which

reduces the the number of parameters from nv (nv + 1)/2 to nvd + 1.
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Model Parameter Estimation

To fit the DiPH model, we apply the maximum likelihood estimation
(MLE) to an observed hypergraph with E = {e1, e2, . . . , ene}. We assume
that e` ∼i.i.d. P for ` = 1, . . . , ne . Under the reparameterization using
Vnv×d and β by setting

Vi · :=
vi
‖vi‖2

for all i , and β := ‖vi‖22,

we have

arg max
Vnv×d ,‖Vi.‖2=1,

β>0,αi>0

− log det
(
βVV> + diag(α) + I

)
+

1

ne

ne∑
`=1

log det
(
β(VV>)e` + diag(α)e`

)
,

which allows a standard application of the projected gradient descent
(ascent) algorithm.
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Theoretical Results

Consistency: under certain regularity conditions, if nv > 2d and
{v∗1 , · · · , v∗nv } span Rd , then as ne →∞, we have

min
O∈Od

nv∑
i=1

min
s=±1
‖v̂i − sOv∗i ‖2

p−→ 0,

‖α̂− α∗‖2
p−→ 0,

min
S∈Dnv

‖L̂− SL∗S‖F
p−→ 0,

where Od is the set of all d-by-d orthogonal matrices and Dnv is the
set of all nv -by-nv diagonal matrices with diagonal entries in {−1, 1}.

Asymptotic normality: let L̃ := arg min
M∈{SL̂S |S∈Dnv }

‖M − L∗‖F . Under

certain regularity conditions, we have

√
ne · vec(L̃− L∗)

dist.−→ N (0,Σ) ,

where Σ is a function of L∗ that can be derived.
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Simulation Studies

We evaluate the following relative errors

`(V̂ ,V ∗)

‖V ∗‖F
,
`(β̂, β∗)

|β∗|
,
`(α̂, α∗)

‖α∗‖2
and

`(L̂, L∗)

‖L∗‖F
,

where

`(V̂ ,V ∗) := min
O∈Od ,S∈Dnv

‖V̂ − SV ∗O‖F , `(β̂, β∗) := |β̂ − β∗|,

`(L̂, L∗) := min
S∈Dnv

‖L̂− SL∗S‖F , `(α̂, α∗) := ‖α̂− α∗‖2,

and

V̂i . =
v̂i
‖v̂i‖2

, β̂ = ‖v̂i‖22 for all i .

Note that we evaluate the direction and the length of v̂i separately.
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Simulation Setting I: Uniformly Distributed v ∗i ’s

v∗1 , · · · , v∗nv are uniformly distributed on Sd−1.

nv = 100 and d = 2, 3 and 4

Generate γi ∼i .i .d . Beta(1, 4) and then set
√
α∗i = 0.15γi + 0.05 for

i = 1, . . . , nv . As a result, most nodes have a small popularity
parameter value (with α∗i close to 0.052), while a few nodes have a
relatively large popularity parameter value (with α∗i approaching 0.22).
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Setting I: Results

d = 2, nv = 100 and ne = 2000
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Setting I: Results

Relative errors of V̂ , β̂, α̂ and L̂.
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Setting I: Results

d = 2, nv = 100 and ne = 3000

(a) (b)

Ji Zhu (University of Michigan) A Latent Space Model for Hypergraphs 22 / 29



Simulation Setting II: Clustered v ∗i ’s

v∗1 , · · · , v∗nv have a clustered structure (d = 3).

nv = 100 nodes; each is randomly assigned to one of three clusters
with equal probability.

The latent position of node v∗i is then generated from a von
Mise-Fisher distribution parameterized by the concentration
parameter κ = 10 and one of the three mean directions (1, 0, 0),
(0, 1, 0) and (0, 0, 1).
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Setting II: Results

(c)  Clustering results
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What’s Cooking Data

Recipes on yummly.com; 39,774 recipes in total.

We focus on recipes in the Chinese cuisine, which consist of
ne = 2, 673 recipes with nv = 906 ingredients (after preprocessing).

East Asian cuisines tend to avoid compound sharing ingredients. (Ahn
et al., 2011)
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What’s Cooking

(b)(a)

(c)
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Clustering of Ingredients

Focus on 298 ingredients that have appeared 10 or more times.
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Conclusion

We proposed a new hypergraph latent space model, which allows
hyperedges with varying cardinality.

It is driven by diversity (rather than similarity) of nodes within
hyperedges.

The proposed model admits heterogeneity in the popularity of nodes.

We have established the consistency and asymptotic normality for the
MLE estimates of the model parameters.
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Thank you!
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