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Deep Learning: Alchemy or Science?

“Deep learning has led to dramatic progress on problems of
artificial intelligence . . . and triggered a new gold rush in the tech
sector. Some researchers have raised the concern that the rapid
progress has led to loss of rigor and precision.”
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Toward Deep Science: Generalization Guarantees

I Generalization/prediction/out-
of-sample/test error: measure
of how accurately an algorithm
predicts an outcome on
previously unseen data

I Decomposition of
generalization error
� Approximation error (bias)
� Estimation error (variance)
� Optimization error
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Deep Neural Networks

I Important features
� Compositional structure
� Activation function (e.g.,

ReLU)
� Deeper vs. wider

I Comparison with classical
statistical/ML models
� Linear models
� Fully nonparametric

models
� Additive models
� Single-index models
� Multi-index models
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Two-Layer ReLU Networks

I Consider a two-layer ReLU network g.�I�/WRd ! R with m hidden
units:

g.x I�/ D
mX

kD1

ak�.v
T
k x C bk /;

where the parameter � D .a1; : : : ; am; vT
1 ; : : : ; v

T
m; b1; : : : ; bm/

T and
�.z/ D max.z; 0/

I Why is the theory nontrivial?
� Nonidentifiability: consistency in parameter estimation is impossible
� Nonconvexity: global or local, which optimum?
� Overparametrization: no complexity control via sparsity
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Related Work

I Limiting behavior of two-layer networks as m!1
� Mean field approximation (Mei, Montanari and Nguyen, PNAS, 2018)
� Neural tangent kernel (Jacot, Gabriel and Hongler, NeurIPS, 2018)

I L2 risk bounds for two-layer networks with explicit regularization

� Barron (MLJ, 1994):
1

m
C

md log n

n
Classical bias–variance trade-off

� E, Ma and Wu (Comm. Math. Sci., 2019):
1

m
C log n

r
log d

n
No trade-off!

� Parhi and Nowak (TIT, 2023): n�.dC3/=.2dC3/ Minimax optimal, but
underparametrized

I Nonasymptotic bounds for deep neural networks
� Schmidt-Hieber (AOS, 2020): compositional function class
� Farrell, Liang and Misra (Econometrica, 2021): Hölder class

5/25



Overparametrization

I Classical bias–variance trade-off achieved by complexity control

I The double descent phenomenon (Belkin et al., PNAS, 2019)

Q1. How does the network perform in the overparametrized regime differently
from in the underparametrized regime?

Q2. How does the overparametrized minimum risk compare with its
underparametrized counterpart and how far is it from optimal?
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This Work

I A generalization theory for two-layer ReLU networks
� Explicit regularization: no sparsity
� Algorithm-independent: for any global optimum
� Nonasymptotic bounds: for any finite n and m
� Minimax lower bounds: achieved in the infinite-width limit
� Random feature models: curse of dimensionality, suboptimal
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Target Function Class

I The functions of interest lie in the space

G D
�

f W x 7!
Z
RdC1

�
�.vT x C b/ � �.b/

�
d˛.w/ W

kfkS �

Z
RdC1
kvk2 d j˛j.w/ <1

�
;

where w D .vT ; b/T and ˛ is a signed measure

I Approximation limits for finitely wide ReLU networks

g.x I�/ D
Z
RdC1

�
�.vT x C b/ � �.b/

�
d˛m.w/C g.0I�/;

where ˛m D
Pm

kD1 akıwk
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Model and Assumptions

I Consider the data-generating model

yi D f�.x i/C "i ; i D 1; : : : ; n

I Assumptions
1. f� 2 GM � ff 2 G W kfkS � Mg for some constant M > 0
2. x i � � independently, where � is supported in Bd

3. "i � N.0; �2
" / independently and are independent of x i
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Scaled Variation Regularization

I For any finitely wide two-layer ReLU network g.�I�/, define the scaled
variation regularizer

�.�/ D

mX
kD1

jak jkwkk2

where wk D .vT
k ; bk /

T

I Consider the regularized empirical risk minimization problem

y� D arg min
�2‚m

�
1

2n

nX
iD1

�
yi � g.x i I�/

�2
C ��.�/

�
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Approximation Rates

I The approximation rate of O.m�1=2/ in Barron (TIT, 1993) can be
improved by using Bach (JMLR, 2017):

Theorem. For any f 2 GM , there exists a network g.�I�/ of width m such
that �.�/ � 6kfkS and

kf � g.�I�/kL1.Bd / � CkfkSm�.dC3/=.2d/

for some constant C > 0 depending only on d .
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Equivalence to Ridge Regression

I By the reparametrization z� D T1.�/

zak D ak

s
kwkk2

jak j
; zwk D wk

s
jak j

kwkk2
;

the scaled variation regularizer �.�/ becomes the `2/ridge/weight decay
penalty

1

2

mX
kD1

.za2
k C kzwkk

2
2/
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Equivalence to Ridge Regression

I Proposition. Any solution y�`2
to the `2-regularized problem is a solution

to the network estimation problem. Conversely, if y� is a solution to the
network estimation problem, then T1.y�/ is a solution to the
`2-regularized problem.

I Proposition. Consider the gradient flows

d

dt
�.t/ D �r�Jn.�.t/I�/

for the two problems, both initialized at �.0/ D T1.�0/ for an arbitrary
�0 2 ‚m. Then the trajectories of the two gradient flows coincide.
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Connection to Group Lasso

I Important observation: The n hyperplanes xT
i v C b D 0 divide the

parameter space RnC1 into finitely many regions R1; : : : ;Rp, so that
D D diag.I.Xw � 0// stays constant over each Rj ; the number of these
regions

p � 2
dX

jD0

 
n � 1

j

!
� 2nd ;

where the first upper bound is sharp when X has full rank

I Taking into account the sign of a, we partition the parameter space
RdC2 into 2p regions

Qj D Œ0;1/ � Rj ; QpCj D .�1; 0/ � Rj ; j D 1; : : : ; p
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Connection to Group Lasso

I The linearity of ReLU over each Rj and optimality of y� entail:

Proposition. For any network estimator y� , if .yak ; yw
T
k /

T and .ya`; yw
T
` /

T lie
in the same cone Qj , then ywk and yw` must be collinear, that is,
ywk D c0 yw` for some constant c0 > 0.
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Connection to Group Lasso

I We therefore collect the weights in the same cone and reformulate the
problem into a group lasso:

Proposition. The network estimator y� satisfies

Jn.y�I�/ D
1

2n

y �
2pX

jD1

DjX ǰ.
y�/

2

2

C �kB.y�/k2;1;

where

ǰ.�/ D
X

kW.ak ;wT
k /

T2Qj

jak jwk ; kB.�/k2;1 D

2pX
jD1

k ǰ.�/k2:
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Generalization Bounds

I Theorem. Under Conditions 1–3, the network estimator g.�I y�/ with
� D C1�" minf

p
d log n=n;max.m�.dC3/=d ;md log n=n/g satisfies

kg.�I y�/ � f�k2
2 � C

�
kf�k2

Sm�.dC3/=d

C .�2
" C kf

�
k

2
S/min

�r
d log n

n
;

md log n

n

��
with probability at least 1 � O.n�C2/ for some constants C1;C2;C > 0.
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Generalization Bounds

I First or underparametrized valley occurs at m0 � .n=.d log n//d=.2dC3/

with minimum risk O..d log n=n/.dC3/=.2dC3//

I Second or overparametrized valley occurs at m!1 with minimum risk
O.
p

d log n=n/

I Critical point m1 �
p

n=.d log n/, after which the model complexity and
hence the variance remain constant
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Double Descent Curve

m0 m1

m

E
rr

or

Generalization
Approximation
Estimation
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m

E
rr

or
Figure: Risk curves for varying network width m with kf�k2

S=�
2
" D 1, d D 6, and

n D 1000
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Double Descent Curve

I Asymptotically, the underparametrized valley is lower:

O

��
d log n

n

�.dC3/=.2dC3/�
vs. O

�r
d log n

n

�
;

with the gap vanishing as d !1

I In finite samples, the overparametrized valley is lower whenever

� �
kf�k2

S
�2
" C kf

�k2
S
>

�
1

2

�.2dC3/=d� n

d log n

�3=.2d/

I When d � log n, this approximately requires � > 1=4, or the
signal-to-noise ratio kf�k2

S=�
2
" D �=.1 � �/ > 1=3

20/25



Minimax Lower Bounds

I The underparametrized minimum risk has been shown to be minimax
optimal over GM (Parhi and Nowak, TIT, 2023)

I The overparametrized minimum risk, however, is also minimax optimal,
over a slightly larger class of functions:

Theorem. Assume that x i � Uniform.Bd/ and "i � N.0; 1/. Then there
exists a constant C > 0 such that

inf
yf

sup
f�2G

Ekyf � f�k2
2 �

C
p

n log n
;

where the infimum is taken over all estimators.

21/25



Random Feature Models

I Random feature models provide a stochastic approximation to kernel
methods:

h�0.x I a/ D
1
p

m

mX
kD1

ak�.v
T
k x C bk /;

where wk D .vT
k ; bk /

T � �0 independently for some fixed �0 and only
a D .a1; : : : ; am/

T needs to be estimated

I Mei and Montanari (CPAM, 2022) showed the double descent curve for
random feature models when m; n; d !1 with m � n � d
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Random Feature Models

I However, random feature models suffer from the curse of dimensionality
and is suboptimal over GM :

Proposition. Under Conditions 1 and 3, there exists a universal constant
C > 0 such that

sup
f�2GM

Ekh�0.�I ya/ � f�k2
2 �

CM

dfmin.m; n/g1=d
:
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Discussion

I Unique insights from our results
� Impact of dimensionality
� Double descent with optimal regularization
� Complexity control
� Bias–variance trade-off (Derumigny and Schmidt-Hieber, AOS, 2023)

I Future work
� Deep neural networks
� Implicit regularization: noise injection, early stopping, etc.
� Classification problems
� More architectures: CNN, RNN, ResNet, etc.
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