
Distributed Learning of Finite Gaussian Mixtures

Qiong Zhang

Institute of Statistics and Big Data, RUC

IASM-BIRS workshop: Harnessing the power of latent structure models and modern big data learning

Hangzhou, China

December 14, 2023

Joint work with Dr. Jiahua Chen

Zhang, Q., & Chen, J. (2022). Distributed learning of finite gaussian mixtures.

The Journal of Machine Learning Research, 23(1), 4265-4304.

2

3

Finite mixture models
• A family of distributions.

• Let be a parametric family.ℱ = {f(x; θ) : θ ∈ Θ}
• The finite mixture model of has it density function: ℱ

f(x; G) := ∫ f(x; θ) dG(θ) =
K

∑
k=1

wk f(x; θk)

3

Finite mixture models
• A family of distributions.

• Let be a parametric family.ℱ = {f(x; θ) : θ ∈ Θ}
• The finite mixture model of has it density function: ℱ

f(x; G) := ∫ f(x; θ) dG(θ) =
K

∑
k=1

wk f(x; θk)
Mixing distribution

G = ∑
k

wkδθk

3

Finite mixture models
• A family of distributions.

• Let be a parametric family.ℱ = {f(x; θ) : θ ∈ Θ}
• The finite mixture model of has it density function: ℱ

f(x; G) := ∫ f(x; θ) dG(θ) =
K

∑
k=1

wk f(x; θk)
Mixing distribution Subpopulation parameter

G = ∑
k

wkδθk
Mixing weight

3

Finite mixture models
• A family of distributions.

• Let be a parametric family.ℱ = {f(x; θ) : θ ∈ Θ}
• The finite mixture model of has it density function: ℱ

f(x; G) := ∫ f(x; θ) dG(θ) =
K

∑
k=1

wk f(x; θk)
Mixing distribution Subpopulation parameter

Order (assumed to be known)

G = ∑
k

wkδθk
Mixing weight

3

Finite mixture models
• A family of distributions.

• Let be a parametric family.ℱ = {f(x; θ) : θ ∈ Θ}
• The finite mixture model of has it density function: ℱ

f(x; G) := ∫ f(x; θ) dG(θ) =
K

∑
k=1

wk f(x; θk)
Mixing distribution Subpopulation parameter

Order (assumed to be known)

G = ∑
k

wkδθk
Mixing weight

Finite Gaussian Mixture
ℱ = {ϕ(x; μ, Σ) = |2πΣ |−1/2 exp{ − (x − μ)⊤Σ−1(x − μ)/2} : μ ∈ ℝd, Σ > 0}

PDF CDF ϕ(x; G) Φ(x; G)

4

Reason to parameterize by G

Consider the 2-component mixture

ϕ(x; G) = 0.4ϕ(x; − 1,2) + 0.6ϕ(x; 1,1)

• One may want to use a vector such as

to parametrize the mixture

• Such parameterization may lead to unidentifiable model

• Let

• Note but

• The mixing distribution does not have this issue

ξ = (0.4, − 1,2,0.6,1,1)

ξ1 = (0.4, − 1,2,0.6,1,1) and ξ2 = (0.6,1,1,0.4, − 1,2)
ξ1 ≠ ξ2 ϕ(x; ξ1) = ϕ(x; ξ2)

G

Finite mixture model in machine learning
Clustering

{X |Z = k ∼ f(x; θk)
P(Z = k) = wk

Latent variable representation

P(Z = k |X = x) ∝ wk f(x; θk)
Posterior distribution of the latent variable

5

Clustering
κ(x; G) = argmaxj∈[K]wj f(x; θj)

Density Approximation
A parametric model that approximates density functions with various shapes

Density function credit: Geoffrey McLachlan and David Peel — Finite Mixture Models

Finite mixture model in machine learning
Clustering

{X |Z = k ∼ f(x; θk)
P(Z = k) = wk

Latent variable representation

P(Z = k |X = x) ∝ wk f(x; θk)
Posterior distribution of the latent variable

5

Clustering
κ(x; G) = argmaxj∈[K]wj f(x; θj)

Density Approximation
A parametric model that approximates density functions with various shapes

Density function credit: Geoffrey McLachlan and David Peel — Finite Mixture Models

Finite mixture model in machine learning
Clustering

{X |Z = k ∼ f(x; θk)
P(Z = k) = wk

Latent variable representation

P(Z = k |X = x) ∝ wk f(x; θk)
Posterior distribution of the latent variable

5

Clustering
κ(x; G) = argmaxj∈[K]wj f(x; θj)

Goal: learn mixing distribution G

6

Split-and-conquer

Local inference

Local machine

6

Split-and-conquer

Local inference

Transmission

Local machine Central machine

6

Split-and-conquer

Aggregation

 Privacy gain

 Low transmission cost

Local inference

Transmission

Local machine Central machine

6

Split-and-conquer

Aggregation

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

7

Split-and-conquer under Gaussian mixtures

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

̂θ1

̂θ2

̂θ3

̂θM

Local estimates
λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

• Under GMM:

• Parameter space is formed by discrete distributions with K
support points.

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

• Under GMM:

• Parameter space is formed by discrete distributions with K
support points.

• Let Ḡ = ∑ λmĜm

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

• Under GMM:

• Parameter space is formed by discrete distributions with K
support points.

• Let Ḡ = ∑ λmĜm

• Average mixture: ϕ(x; Ḡ) = ∑ λmϕ(x; Ĝm)

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

• Under GMM:

• Parameter space is formed by discrete distributions with K
support points.

• Let Ḡ = ∑ λmĜm

• Average mixture: ϕ(x; Ḡ) = ∑ λmϕ(x; Ĝm)

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

Good estimate for true mixture

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

• Under GMM:

• Parameter space is formed by discrete distributions with K
support points.

• Let Ḡ = ∑ λmĜm

• Average mixture: ϕ(x; Ḡ) = ∑ λmϕ(x; Ĝm)

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

Good estimate for true mixture

Unsatisfactory for revealing latent structure

̂θ1

̂θ2

̂θ3

̂θM

Local estimates • Aggregation for real valued parameters:

 θ̄ =
M

∑
m=1

λm
̂θm

• Under GMM:

• Parameter space is formed by discrete distributions with K
support points.

• Let Ḡ = ∑ λmĜm

• Average mixture: ϕ(x; Ḡ) = ∑ λmϕ(x; Ĝm)

• Research problem: aggregate local estimates under GMM

λ1 = N1/N

λ2 = N2/N

λ3 = N3/N

λM = NM /N

𝒳2

𝒳3

𝒳1

𝒳M

Local datasets

IID observations from f(x; θ*)

7

Split-and-conquer under Gaussian mixtures

Good estimate for true mixture

Unsatisfactory for revealing latent structure

8

Let be a divergence function that measures the similarity between two distributionsρ(⋅ , ⋅)

Two potential aggregation approaches

8

Let be a divergence function that measures the similarity between two distributionsρ(⋅ , ⋅)

• Barycentre: “average” of mixing distributions

 ḠC = arginfG∈𝔾K ∑
m

λmρ(Ĝm, G)

(analogy of in Euclidean space)x̄1:n = argminx

n

∑
i=1

∥xi − x∥2, median(x1:n) = argminx

n

∑
i=1

|xi − x |

Two potential aggregation approaches

8

Let be a divergence function that measures the similarity between two distributionsρ(⋅ , ⋅)

• Barycentre: “average” of mixing distributions

 ḠC = arginfG∈𝔾K ∑
m

λmρ(Ĝm, G)

(analogy of in Euclidean space)x̄1:n = argminx

n

∑
i=1

∥xi − x∥2, median(x1:n) = argminx

n

∑
i=1

|xi − x |

• Reduction: approximate average mixture by an order K mixture

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

Two potential aggregation approaches

9

• When

ρ(G1, G2) = DKL(Φ(⋅ ; G1)∥Φ(⋅ ; G2))

= ∫ ϕ(x; G1)log ϕ(x; G1)
ϕ(x; G2)

dx

then

 ḠC = ḠR

• However, exact solution is computationally intractable

Connection of two aggregation approaches

10

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 2

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 1

Aggregate two mixing distributions with
identical subpopulations

Barycenter approach may not be ideal

10

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 2

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 1

Aggregate two mixing distributions with
identical subpopulations

ϕ(x; − 1,1)
ϕ(x; 1,1)

0.5

“Intuition”

Barycenter approach may not be ideal

10

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 2

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 1

Aggregate two mixing distributions with
identical subpopulations

“Barycentre”

ϕ(x; − 1,1)

0.4

0.6

ϕ(x; 2/3,1)
ϕ(x; − 1,1)

ϕ(x; 1,1)

0.5

“Intuition”

Barycenter approach may not be ideal

10

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 2

0.4

0.6

ϕ(x; − 1,1) ϕ(x; 1,1)
Local machine 1

Aggregate two mixing distributions with
identical subpopulations

“Barycentre”

ϕ(x; − 1,1)

0.4

0.6

ϕ(x; 2/3,1)

The reduction approach does not have this issue
regardless of the divergence.

ϕ(x; − 1,1)
ϕ(x; 1,1)

0.5

“Intuition”

Barycenter approach may not be ideal

Which divergence?
• We propose to aggregate via the reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G) .

11

Which divergence?
• We propose to aggregate via the reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G) .

• Which divergence should we pick?ρ(⋅ , ⋅)

11

Which divergence?
• We propose to aggregate via the reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G) .

• Which divergence should we pick?ρ(⋅ , ⋅)
Key observation:

divergence is hard to compute between mixtures

divergence is easy to compute between Gaussians

11

Which divergence?
• We propose to aggregate via the reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G) .

• Which divergence should we pick?ρ(⋅ , ⋅)
Key observation:

divergence is hard to compute between mixtures

divergence is easy to compute between Gaussians

• The divergence we used: composite transportation divergence

A byproduct of optimal transport

11

Proposed method

Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019)

Let and and be the cost function which is

a divergence on . The Composite transportation divergence between and is defined to be

Φ(x; G) =
N

∑
n=1

wnΦ(x; θn) Φ(x; G̃) =
M

∑
m=1

w̃mΦ(x; θ̃m) c(⋅ , ⋅) : ℱ × ℱ → ℝ+

ℱ Φ(x; G) Φ(x; G̃)

𝒯c(Φ(⋅ ; G), Φ(⋅ ; G̃)) = min ∑
n,m

πnmc(Φ(⋅ ; θn), Φ(⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

13

Composite transportation divergence and proposed method

Space of Gaussian distributions
Φ(⋅ ; θ1)

Φ(⋅ ; θ2)

Φ(⋅ ; θN)
Φ(⋅ ; θ̃1) Φ(⋅ ; θ̃2)

Φ(⋅ ; θ̃M)

Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019)

Let and and be the cost function which is

a divergence on . The Composite transportation divergence between and is defined to be

Φ(x; G) =
N

∑
n=1

wnΦ(x; θn) Φ(x; G̃) =
M

∑
m=1

w̃mΦ(x; θ̃m) c(⋅ , ⋅) : ℱ × ℱ → ℝ+

ℱ Φ(x; G) Φ(x; G̃)

𝒯c(Φ(⋅ ; G), Φ(⋅ ; G̃)) = min ∑
n,m

πnmc(Φ(⋅ ; θn), Φ(⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

13

Composite transportation divergence and proposed method

Our proposed aggregated estimator is

ḠR = arginfG∈𝔾K
𝒯c(Φ(⋅ ; Ḡ), Φ(⋅ ; G)) := arginfG∈𝔾K

𝒯c(G)

Space of Gaussian distributions
Φ(⋅ ; θ1)

Φ(⋅ ; θ2)

Φ(⋅ ; θN)
Φ(⋅ ; θ̃1) Φ(⋅ ; θ̃2)

Φ(⋅ ; θ̃M)

Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019)

Let and and be the cost function which is

a divergence on . The Composite transportation divergence between and is defined to be

Φ(x; G) =
N

∑
n=1

wnΦ(x; θn) Φ(x; G̃) =
M

∑
m=1

w̃mΦ(x; θ̃m) c(⋅ , ⋅) : ℱ × ℱ → ℝ+

ℱ Φ(x; G) Φ(x; G̃)

𝒯c(Φ(⋅ ; G), Φ(⋅ ; G̃)) = min ∑
n,m

πnmc(Φ(⋅ ; θn), Φ(⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

13

Composite transportation divergence and proposed method

How to compute the aggregated
estimator numerically?

Our proposed aggregated estimator is

ḠR = arginfG∈𝔾K
𝒯c(Φ(⋅ ; Ḡ), Φ(⋅ ; G)) := arginfG∈𝔾K

𝒯c(G)

Space of Gaussian distributions
Φ(⋅ ; θ1)

Φ(⋅ ; θ2)

Φ(⋅ ; θN)
Φ(⋅ ; θ̃1) Φ(⋅ ; θ̃2)

Φ(⋅ ; θ̃M)

14

A glance at the numerical computation

𝒯c(G) = min ∑
n,m

πnmc(Φ(⋅ ; θn), Φ(⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

ḠR = arginfG∈𝔾K
𝒯c(G)

Our optimization problem

• Bilevel optimization: the objective function itself involves another optimization problem

• We find

• Step I: A simplified equivalent objective with a closed form

• Step 2: an MM algorithm to minimize the simplified objective

14

A glance at the numerical computation

𝒯c(G) = min ∑
n,m

πnmc(Φ(⋅ ; θn), Φ(⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

ḠR = arginfG∈𝔾K
𝒯c(G)

Our optimization problem

Given for letḠ, G ∈ 𝔾K,

𝒥c(G) = min
π ∑

n,m
πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) :

M

∑
m=1

πnm = w̄n,
N

∑
n=1

πnm = wm ,

15

Step I: Simplified Optimization Problem
Numerical algorithm

Given for letḠ, G ∈ 𝔾K,

𝒥c(G) = min
π ∑

n,m
πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) :

M

∑
m=1

πnm = w̄n,
N

∑
n=1

πnm = wm ,

15

Step I: Simplified Optimization Problem
Numerical algorithm

 where

𝒥c(G) = ∑
n,m

π*nm(G)c(Φ(⋅ ; θ̄n), Φ(⋅ ; θm))

π*nm(G) = {w̄n m = argminm′
c(Φ̄n, Φm′

)
0 otherwise .

Closed form

Given for letḠ, G ∈ 𝔾K,

𝒥c(G) = min
π ∑

n,m
πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) :

M

∑
m=1

πnm = w̄n,
N

∑
n=1

πnm = wm ,

We have

 inf{𝒯c(G) : G ∈ 𝔾K} = inf{𝒥c(G) : G ∈ 𝔾K}
with mixing distribution

 wm =
N

∑
n=1

π*nm(ḠR)

15

Step I: Simplified Optimization Problem
Numerical algorithm

 where

𝒥c(G) = ∑
n,m

π*nm(G)c(Φ(⋅ ; θ̄n), Φ(⋅ ; θm))

π*nm(G) = {w̄n m = argminm′
c(Φ̄n, Φm′

)
0 otherwise .

Closed form

Given for letḠ, G ∈ 𝔾K,

𝒥c(G) = min
π ∑

n,m
πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) :

M

∑
m=1

πnm = w̄n,
N

∑
n=1

πnm = wm ,

We have

 inf{𝒯c(G) : G ∈ 𝔾K} = inf{𝒥c(G) : G ∈ 𝔾K}
with mixing distribution

 wm =
N

∑
n=1

π*nm(ḠR)

15

Step I: Simplified Optimization Problem
Numerical algorithm

 where

𝒥c(G) = ∑
n,m

π*nm(G)c(Φ(⋅ ; θ̄n), Φ(⋅ ; θm))

π*nm(G) = {w̄n m = argminm′
c(Φ̄n, Φm′

)
0 otherwise .

Closed form

• Pros

• The subpopulation parameters and mixing weights can be updated separately

• Allows for an efficient MM algorithm (update G and iteratively)π*(G)

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

h(x |x(t)) ≥ g(x)
h(x(t) |x(t)) = g(x(t))

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

h(x |x(t)) ≥ g(x)
h(x(t) |x(t)) = g(x(t))

x(t+1)

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

x(t+1)

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

x(t+1)

• Objective

𝒥c(G) = min ∑
n,m

πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) : ∑
m

πnm = w̄n

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

x(t+1)

• Objective

𝒥c(G) = min ∑
n,m

πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) : ∑
m

πnm = w̄n

• Majorization function at
G(t)

𝒦c(G |G(t)) = ∑
n,m

π*nm(G(t))c(Φ(⋅ ; θ̄n), Φ(⋅ ; θm))

with

π*nm(G(t)) = {w̄n m = argminm′
c(Φ(⋅ ; θ̄n), Φ(⋅ ; θ(t)

m′
))

0 otherwise .

Numerical algorithm

16

Step II: MM Algorithm (iteratively update transportation plan and the target location)

g(x)

x(t)

x(t+1)

• Objective

𝒥c(G) = min ∑
n,m

πnmc(Φ(⋅ ; θ̄n), Φ(⋅ ; θm) : ∑
m

πnm = w̄n

• Majorization function at
G(t)

𝒦c(G |G(t)) = ∑
n,m

π*nm(G(t))c(Φ(⋅ ; θ̄n), Φ(⋅ ; θm))

with

π*nm(G(t)) = {w̄n m = argminm′
c(Φ(⋅ ; θ̄n), Φ(⋅ ; θ(t)

m′
))

0 otherwise .

• Closed-form solution: G(t+1) = argminG𝒦c(G |G(t)) .

Numerical algorithm

17

Concrete MM steps

3 machine each fit a 2 component mixture

17

Concrete MM steps

3 machine each fit a 2 component mixture

• Majorization step: for a given , the optimal
transportation plan is

G(t)

π*(G(t))

π*nm(G(t)) = {w̄n if m = argminm′
c(Φ̄n, Φ(t)

m′
)

0 o.w.

17

Concrete MM steps

3 machine each fit a 2 component mixture

• Majorization step: for a given , the optimal
transportation plan is

G(t)

π*(G(t))

π*nm(G(t)) = {w̄n if m = argminm′
c(Φ̄n, Φ(t)

m′
)

0 o.w.

17

Concrete MM steps

3 machine each fit a 2 component mixture

• Majorization step: for a given , the optimal
transportation plan is

G(t)

π*(G(t))

π*nm(G(t)) = {w̄n if m = argminm′
c(Φ̄n, Φ(t)

m′
)

0 o.w.

• Minimization step: for a given , the subpopulation
parameters are

π

Φ(t+1)
m = arginfΦ ∑

n
π*nm(G(t))c(Φ̄n, Φ)

w(t+1)
m = ∑

n
π*nm(G(t))

17

Concrete MM steps

3 machine each fit a 2 component mixture

• Majorization step: for a given , the optimal
transportation plan is

G(t)

π*(G(t))

π*nm(G(t)) = {w̄n if m = argminm′
c(Φ̄n, Φ(t)

m′
)

0 o.w.

• Minimization step: for a given , the subpopulation
parameters are

π

Φ(t+1)
m = arginfΦ ∑

n
π*nm(G(t))c(Φ̄n, Φ)

w(t+1)
m = ∑

n
π*nm(G(t))

17

Concrete MM steps

Barycenter of Gaussians (analytical form)

3 machine each fit a 2 component mixture

• Majorization step: for a given , the optimal
transportation plan is

G(t)

π*(G(t))

π*nm(G(t)) = {w̄n if m = argminm′
c(Φ̄n, Φ(t)

m′
)

0 o.w.

• Minimization step: for a given , the subpopulation
parameters are

π

Φ(t+1)
m = arginfΦ ∑

n
π*nm(G(t))c(Φ̄n, Φ)

w(t+1)
m = ∑

n
π*nm(G(t))

17

Concrete MM steps

Barycenter of Gaussians (analytical form)

3 machine each fit a 2 component mixture

• Majorization step: for a given , the optimal
transportation plan is

G(t)

π*(G(t))

π*nm(G(t)) = {w̄n if m = argminm′
c(Φ̄n, Φ(t)

m′
)

0 o.w.

• Minimization step: for a given , the subpopulation
parameters are

π

Φ(t+1)
m = arginfΦ ∑

n
π*nm(G(t))c(Φ̄n, Φ)

w(t+1)
m = ∑

n
π*nm(G(t))

17

Concrete MM steps

Barycenter of Gaussians (analytical form)

3 machine each fit a 2 component mixture

Suppose the cost function is continuous in both arguments. For any constant
 and ∗ the following set is compact:

Then

(i) for any .

(ii) if is a limiting point of , then implies

c(⋅ , ⋅)
Δ > 0 Φ*

{Φ : c(Φ, Φ*) ≤ Δ} .

𝒥c(G(t+1)) ≤ 𝒥c(G(t)) t

G* G(t) G(t) = G* 𝒥c(G(t+1) = 𝒥c(G*) .

18

Algorithm convergence

Our full recipe
1. Obtain local estimates

2. Form plain average

3. Choose CTD

4. Use MM algorithm to find

Ĝm

Ḡ = ∑
m

λmĜm

ρ(Ḡ, G) = min ∑
n,m

πnmDKL(Φ(⋅ ; θ̄n)∥Φ(⋅ ; θm)) : ∑
n

πnm = wm, ∑
m

πnm = w̄n

ḠR

19

C1 The data are IID observations from with order K

C3 The local machine sample ratios have nonzero limits as

C5 The cost function satisfies local triangular inequality

Under conditions C1-C5, up to permutations, we have

Φ(x; G*)

λm = Nm/N N → ∞

A−1∥Φ1 − Φ2∥2 ≤ c(Φ1, Φ2) ≤ A∥Φ1 − Φ2∥2

Φ̄R − Φ*k = Op(N−1/2), w̄R − w*k = Op(N−1/2)

20

Statistical assurance

Numerical results

• Generate 100 random Gaussian mixtures of dimension and

• We set the “degree of overlap” (MaxOmega) between subpopulation to be 1%, 5%, 10%

 where is the pairwise overlap

• Total sample size ()

• The number of local machines are set to

d = 50 K = 5

MaxOmega = max
i,j∈[K]

{oj|i + oi|j}

oj|i = ℙ(wiϕ(X; θi) < wjϕ(X; θj) |X ∼ f(⋅ ; θi))

N = 221 ∼ 106

M = 4, 16, 64

22

Simulation setting

• Global: the estimator based on the full dataset

• Median: the “best” local estimator

• Reduction: our method with KL divergence as cost function

• KLA (Liu et al. 2013)

• Coreset (Lucic et al. 2018)

23

Estimators for comparison

• Global: the estimator based on the full dataset

• Median: the “best” local estimator

• Reduction: our method with KL divergence as cost function

• KLA (Liu et al. 2013)

• Coreset (Lucic et al. 2018)

23

Estimators for comparison

Existing methods in literature

24

Our

Simulation results

Better

24

Our

Simulation results

Better

24

Our

Simulation results

Better

d=50

CNN

Split-and-Conquer

25

Real data: NIST clustering

d=50

CNN

Split-and-Conquer

25

K=10 M=10

Real data: NIST clustering

d=50

CNN

Split-and-Conquer

25

Better

ARI: similarity between true label vs predicted cluster based on fitted mixture

Our

K=10 M=10

Real data: NIST clustering

• Developed a novel aggregation method for split-and-conquer learning of finite
mixture models.

• Theoretically shown the aggregated estimator is

• computationally efficient.

• root-n consistent when the order is known.

• Empirically demonstrated the superior performance of the proposed estimator.

26

Summary of our contribution
Link to our paper

• Developed a novel aggregation method for split-and-conquer learning of finite
mixture models.

• Theoretically shown the aggregated estimator is

• computationally efficient.

• root-n consistent when the order is known.

• Empirically demonstrated the superior performance of the proposed estimator.

26

Summary of our contribution

Thank you!

Link to our paper

