Distributed Learning of Finite Gaussian Mixtures

IASM-BIRS workshop: Harnessing the power of latent structure models and modern big data learning

Qiong Zhang Institute of Statistics and Big Data, RUC

> Hangzhou, China December 14, 2023

Joint work with Dr. Jiahua Chen Zhang, Q., & Chen, J. (2022). Distributed learning of finite gaussian mixtures. *The Journal of Machine Learning Research*, 23(1), 4265-4304.

- A family of distributions.
- Let $\mathscr{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric family.
- The finite mixture model of ${\mathscr F}$ has it density function:

$$f(x;G) := \int f(x;\theta) \, dG(\theta) = \sum_{k=1}^{K} w_k f(x;\theta_k)$$

- A family of distributions.
- Let $\mathscr{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric family.
- The finite mixture model of \mathcal{F} has it density function:

$$f(x; \mathbf{G}) := \int f(x; \theta) \, dG(\theta) = \sum_{k=1}^{K} w_k f(x; \theta_k)$$

Vixing distribution

 $G = \sum w_k o_{\theta_k}$ k

- A family of distributions.
- Let $\mathscr{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric family.
- The finite mixture model of \mathcal{F} has it density function:

$$f(x; \mathbf{G}) := \int f(x; \theta) \, dG(\theta) = \sum_{k=1}^{K} w_k f(x; \theta_k)$$
Vixing distribution

 $G = \sum_{i=1}^{n}$

$$W_k \delta_{\theta_k}$$

k Mixing weight

- A family of distributions.
- Let $\mathscr{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric family.
- The finite mixture model of \mathcal{F} has it density function:

$$f(x; \mathbf{G}) := \int f(x; \theta) \, dx$$

J Mixing distribution

G =K

Order (assumed to be known) $dG(\theta) = \sum_{k=1}^{n} w_k f(x; \theta_k)$ k=1 Subpopulation parameter

$$w_k \delta_{\theta_k}$$

Mixing weight

- A family of distributions.
- Let $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric family.
- The finite mixture model of \mathcal{F} has it density function:

$$f(x; \mathbf{G}) := \int f(x; \theta) \, dx$$

Mixing distribution

k

Finite Gaussian Mixture

$$\mathscr{F} = \{\phi(x; \mu, \Sigma) = |2\pi\Sigma|^{-1/2} \exp\{-\frac{1}{2}\exp\{-\frac{$$

Order (assumed to be known) $dG(\theta) = \sum_{k=1}^{K} w_k f(x; \theta_k)$ k=1 Subpopulation parameter $G = \sum w_k \delta_{\theta_k}$

Mixing weight

$(x - \mu)^{\mathsf{T}} \Sigma^{-1} (x - \mu)/2 \} : \mu \in \mathbb{R}^d, \Sigma > 0 \}$ CDF $\Phi(x; G)$

Reason to parameterize by G

Consider the 2-component mixture

$$\phi(x;G) = 0.4\phi$$

• One may want to use a vector such as to parametrize the mixture

Such parameterization may lead to unidentifiable model

- Let $\xi_1 = (0.4, -1, 2, 0.6, 1, 1)$ and $\xi_2 = (0.6, 1, 1, 0.4, -1, 2)$
- Note $\xi_1 \neq \xi_2$ but $\phi(x;\xi_1) = \phi(x;\xi_2)$
- The mixing distribution G does not have this issue

$\phi(x; -1,2) + 0.6\phi(x; 1,1)$

 $\xi = (0.4, -1, 2, 0.6, 1, 1)$

Finite mixture model in machine learning

Clustering

Latent variable representation

$$\begin{cases} X | Z = k \sim f(x; \theta_k) \\ P(Z = k) = w_k \end{cases}$$

Posterior distribution of the latent variable

$$P(Z = k | X = x) \propto w_k f(x; \theta_k)$$

Clustering

$$\kappa(x;G) = \operatorname{argmax}_{j \in [K]} w_j f(x;\theta_j)$$

Finite mixture model in machine learning

Clustering

Latent variable representation

$$\begin{cases} X | Z = k \sim f(x; \theta_k) \\ P(Z = k) = w_k \end{cases}$$

Posterior distribution of the latent variable

$$P(Z = k | X = x) \propto w_k f(x; \theta_k)$$

Clustering

$$\kappa(x;G) = \operatorname{argmax}_{j \in [K]} w_j f(x;\theta_j)$$

D	E
Δ	r
	۲

1.0 ~

0.5 **-**

0.0

0.4

0.3 **-**

> 0.2-

0.1 **-**

0.0

Density function credit: Geoffrey McLachlan and David Peel – Finite Mixture Models

ensity Approximation

parametric model that approximates density functions with various shapes

Finite mixture model in machine learning

Density function credit: Geoffrey McLachlan and David Peel — Finite Mixture Models

Local datasets

Local datasets

IID observations from $f(x; \theta^*)$

IID observations from $f(x; \theta^*)$

• Aggregation for real valued parameters:

IID observations from $f(x; \theta^*)$

IID observations from $f(x; \theta^*)$

• Aggregation for real valued parameters:

• Under GMM:

• Parameter space is formed by discrete distributions with K support points.

$$\bar{\theta} = \sum_{m=1}^{M} \lambda_m \hat{\theta}_m$$

IID observations from $f(x; \theta^*)$

Aggregation for real valued parameters:

Under GMM:

Parameter space is formed by discrete distributions with K \bullet support points.

$$\bar{\theta} = \sum_{m=1}^{M} \lambda_m \hat{\theta}_m$$

IID observations from $f(x; \theta^*)$

• Aggregation for real valued parameters:

- Under GMM:
 - support points.
 - Let $\overline{G} =$

$$\bar{\theta} = \sum_{m=1}^{M} \lambda_m \hat{\theta}_m$$

Parameter space is formed by discrete distributions with K

$$\sum \lambda_m \hat{G}_m$$

• Average mixture: $\phi(x; \bar{G}) = \sum \lambda_m \phi(x; \hat{G}_m)$

IID observations from $f(x; \theta^*)$

Aggregation for real valued parameters:

- Under GMM:
 - \bullet support points.
 - Let $\overline{G} =$
 - Average

$$\bar{\theta} = \sum_{m=1}^{M} \lambda_m \hat{\theta}_m$$

Parameter space is formed by discrete distributions with K

=
$$\sum \lambda_m \hat{G}_m$$

= mixture: $\phi(x; \bar{G}) = \sum \lambda_m \phi(x; \hat{G}_m)$ Good estimate for

IID observations from $f(x; \theta^*)$

Aggregation for real valued parameters:

Under GMM:

Parameter space is formed by discrete distributions with K support points.

Unsatisfactory for revealing latent structure • Let G =• Average mixture: $\phi(x; \bar{G}) = 2$ $\lambda_m \phi(x; \hat{G}_m)$ Good estimate for true mixture

$$\bar{\theta} = \sum_{m=1}^{M} \lambda_m \hat{\theta}_m$$

IID observations from $f(x; \theta^*)$

Aggregation for real valued parameters:

Under GMM:

support points.

• Let
$$\overline{G} =$$

$$\bar{\theta} = \sum_{m=1}^{M} \lambda_m \hat{\theta}_m$$

Parameter space is formed by discrete distributions with K

Research problem: aggregate local estimates under GMM

Two potential aggregation approaches

Let $\rho(\ \cdot \ , \ \cdot \)$ be a divergence function that measures the similarity between two distributions

Two potential aggregation approaches

Barycentre: "average" of mixing distributions

$$\bar{G}^{C} = \operatorname{arginf}_{G}$$
 (analogy of $\bar{x}_{1:n} = \operatorname{argmin}_{x} \sum_{i=1}^{n} ||x_{i} - x||^{2}$, m

Let $\rho(\cdot, \cdot)$ be a divergence function that measures the similarity between two distributions

 $\sum_{G \in \mathbb{G}_K} \sum \lambda_m \rho(\hat{G}_m, G)$ т nedian $(x_{1:n}) = \operatorname{argmin}_x \sum_{i=1}^n |x_i - x|$ in Euclidean space)

Two potential aggregation approaches

Barycentre: "average" of mixing distributions \bullet

$$\bar{G}^{C} = \operatorname{arginf}_{G \in \mathbb{G}_{K}} \sum_{m} \lambda_{m} \rho(\hat{G}_{m}, G)$$
(analogy of $\bar{x}_{1:n} = \operatorname{argmin}_{x} \sum_{i=1}^{n} ||x_{i} - x||^{2}$, $\operatorname{median}(x_{1:n}) = \operatorname{argmin}_{x} \sum_{i=1}^{n} ||x_{i} - x||$ in Euclidean space)

Reduction: approximate average mixture by an order K mixture \bullet

 $\bar{G}^R = \operatorname{arginf}_{G \in \mathbb{G}_{\mathcal{V}}} \rho(\bar{G}, G)$

Let $\rho(\cdot, \cdot)$ be a divergence function that measures the similarity between two distributions

Connection of two aggregation approaches

• When

then

However, exact solution is computationally intractable

$$(\Phi(\,\cdot\,;G_1) \| \Phi(\,\cdot\,;G_2))$$

(x;G_1) log $\frac{\phi(x;G_1)}{\phi(x;G_2)} dx$

 $\bar{G}^C = \bar{G}^R$

Aggregate two mixing distributions with identical subpopulations

Aggregate two mixing distributions with identical subpopulations

Which divergence?

- We propose to aggregate via the **reduction** approach
 - \bar{G}^{R}

$$R^{R} = \operatorname{arginf}_{G \in \mathbb{G}_{K}} \rho(\overline{G}, G).$$

11

Which divergence?

• We propose to aggregate via the **reduction** approach

 \bar{G}^{R}

• Which divergence $\rho(\cdot, \cdot)$ should we pick?

$$R = \operatorname{arginf}_{G \in \mathbb{G}_K} \rho(\overline{G}, G).$$

11

Which divergence?

• We propose to aggregate via the **reduction** approach

 \bar{G}^{R}

- Which divergence $\rho(\cdot, \cdot)$ should we pick?
 - Key observation:
 - divergence is hard to compute between mixtures
 - divergence is easy to compute between Gaussians

$$G = \operatorname{arginf}_{G \in \mathbb{G}_K} \rho(\overline{G}, G).$$

11
Which divergence?

• We propose to aggregate via the **reduction** approach

 \bar{G}^{R}

- Which divergence $\rho(\cdot, \cdot)$ should we pick?
 - Key observation:
 - divergence is hard to compute between mixtures
 - divergence is easy to compute between Gaussians
- The divergence we used: composite transportation divergence
 - A byproduct of optimal transport

$$G = \operatorname{arginf}_{G \in \mathbb{G}_K} \rho(\overline{G}, G).$$

11

Proposed method

Composite transportation divergence and proposed method

Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019) Let $\Phi(x; G) = \sum_{n=1}^{N} w_n \Phi(x; \theta_n)$ and $\Phi(x; \tilde{G}) = \sum_{m=1}^{M} \tilde{w}_m \Phi(x; \tilde{\theta}_m)$ and $c(\cdot, \cdot) : \mathscr{F} \times \mathscr{F} \to \mathbb{R}_+$ be the cost function which is a divergence on \mathscr{F} . The Composite transportation divergence between $\Phi(x;G)$ and $\Phi(x;\tilde{G})$ is defined to be $\mathcal{T}_{c}(\Phi(\ \cdot\ ;G),\Phi(\ \cdot\ ;\tilde{G})) = \min \left\{ \sum_{n,m} \pi_{nm} c(\Phi) \right\}$

$$\mathbb{P}(\cdot;\theta_n), \Phi(\cdot;\tilde{\theta}_m)): \sum_m \pi_{nm} = w_n, \sum_n \pi_{nm} = \tilde{w}_m \left\{ \right\}$$

Composite transportation divergence and proposed method

Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019) Let $\Phi(x; G) = \sum_{n=1}^{N} w_n \Phi(x; \theta_n)$ and $\Phi(x; \tilde{G}) = \sum_{m=1}^{M} \tilde{w}_m \Phi(x; \tilde{\theta}_m)$ and $c(\cdot, \cdot) : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_+$ be the cost function which is a divergence on \mathscr{F} . The Composite transportation divergence between $\Phi(x;G)$ and $\Phi(x;\tilde{G})$ is defined to be $\mathcal{T}_{c}(\Phi(\ \cdot\ ;G),\Phi(\ \cdot\ ;\tilde{G})) = \min\left\{ \sum_{n,m} \pi_{nm} c(\Phi) \right\}$

Our proposed aggregated estimator is $\bar{G}^{R} = \operatorname{arginf}_{G \in \mathbb{G}_{\nu}} \mathcal{T}_{c}(\Phi(\,\cdot\,;\bar{G}),\Phi(\,\cdot\,;G)) := \operatorname{arginf}_{G \in \mathbb{G}_{\nu}} \mathcal{T}_{c}(G)$

$$\Phi(\cdot;\theta_n), \Phi(\cdot;\tilde{\theta}_m)): \sum_m \pi_{nm} = w_n, \sum_n \pi_{nm} = \tilde{w}_m \right\}$$

Composite transportation divergence and proposed method

Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019) Let $\Phi(x; G) = \sum_{n=1}^{N} w_n \Phi(x; \theta_n)$ and $\Phi(x; \tilde{G}) = \sum_{m=1}^{M} \tilde{w}_m \Phi(x; \tilde{\theta}_m)$ and $c(\cdot, \cdot) : \mathcal{F} \times \mathcal{F} \to \mathbb{R}_+$ be the cost function which is a divergence on \mathscr{F} . The Composite transportation divergence between $\Phi(x;G)$ and $\Phi(x;\tilde{G})$ is defined to be > $\mathcal{T}_{c}(\Phi(\ \cdot\ ;G),\Phi(\ \cdot\ ;\tilde{G})) = \min\left\{ \sum_{n,m} \pi_{nm} c(\Phi) \right\}$

Our proposed aggregated estimator is $\bar{G}^{R} = \operatorname{arginf}_{G \in \mathbb{G}_{\nu}} \mathcal{T}_{c}(\Phi(\,\cdot\,;\bar{G}),\Phi(\,\cdot\,;G)) := \operatorname{arginf}_{G \in \mathbb{G}_{\nu}} \mathcal{T}_{c}(G)$

> How to compute the aggregated estimator numerically?

$$\Phi(\cdot;\theta_n), \Phi(\cdot;\tilde{\theta}_m)): \sum_m \pi_{nm} = w_n, \sum_n \pi_{nm} = \tilde{w}_m \right\}$$

Space of Gaussian distributions

A glance at the numerical computation

$$\operatorname{rginf}_{G \in \mathbb{G}_{K}} \mathcal{T}_{c}(G)$$

(), $\Phi(\cdot; \tilde{\theta}_{m})$) : $\sum_{m} \pi_{nm} = w_{n}, \sum_{n} \pi_{nm} = \tilde{w}_{m}$

14

A glance at the numerical computation

- \bullet
- We find
 - Step I: A simplified equivalent objective with a closed form
 - Step 2: an MM algorithm to minimize the simplified objective

$$\operatorname{rginf}_{G \in \mathbb{G}_{K}} \mathcal{T}_{c}(G)$$

(), $\Phi(\cdot; \tilde{\theta}_{m})$) : $\sum_{m} \pi_{nm} = w_{n}, \sum_{n} \pi_{nm} = \tilde{w}_{m}$

Bilevel optimization: the **objective function** itself involves another optimization problem

14

Step I: Simplified Optimization Problem

Step I: Simplified Optimization Problem

$$\begin{aligned} \mathcal{J}_{c}(G) &= \sum_{n,m} \pi_{nm}^{*}(G)c(\Phi(\,\cdot\,;\bar{\theta}_{n}),\Phi(\,\cdot\,;\theta_{m})) \text{ where} \\ \pi_{nm}^{*}(G) &= \begin{cases} \bar{w}_{n} & m = \operatorname{argmin}_{m'}c(\bar{\Phi}_{n},\Phi_{m'}) \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

$$\begin{aligned} \text{Closed form} \\ \eta_{n}, \Phi(\,\cdot\,;\theta_{m}) &: \sum_{m=1}^{M} \pi_{nm} = \bar{w}_{n}, \sum_{n=1}^{N} \pi_{nm} = w_{m} \\ \eta_{n} &= w_{n} \end{cases} \end{aligned}$$

Step I: Simplified Optimization Problem

$$\mathcal{J}_{c}(G) = \sum_{n,m} \pi_{nm}^{*}(G)c(\Phi(\cdot;\bar{\theta}_{n}),\Phi(\cdot;\theta_{m})) \text{ where}$$

$$\pi_{nm}^{*}(G) = \begin{cases} \bar{w}_{n} & m = \operatorname{argmin}_{m}c(\bar{\Phi}_{n},\Phi_{m'}) \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{C}\text{losed form}$$

$$a_{n}, \Phi(\cdot;\theta_{m}) : \sum_{m=1}^{M} \pi_{nm} = \bar{w}_{n}, \sum_{n=1}^{N} \pi_{nm} = w_{m} \end{cases},$$

$$f): G \in \mathbb{G}_{K} \} = \inf\{\mathcal{J}_{c}(G): G \in \mathbb{G}_{K}\}$$

$$= \sum_{m=1}^{N} \pi_{nm}^{*}(\bar{G}^{R})$$

n=1

Step I: Simplified Optimization Problem

Pros

- The subpopulation parameters and mixing weights can be updated separately \bullet
- Allows for an efficient MM algorithm (update G and $\pi^*(G)$ iteratively) \bullet

$$\mathcal{J}_{c}(G) = \sum_{n,m} \pi_{nm}^{*}(G)c(\Phi(\cdot;\bar{\theta}_{n}), \Phi(\cdot;\theta_{m})) \text{ where}$$
$$\pi_{nm}^{*}(G) = \begin{cases} \bar{w}_{n} & m = \operatorname{argmin}_{m'}c(\bar{\Phi}_{n}, \Phi_{m'})\\ 0 & \text{otherwise} \end{cases}$$
$$Closed form$$
$$q_{n}(\cdot;\theta_{m}): \sum_{m=1}^{M} \pi_{nm} = \bar{w}_{n}, \sum_{n=1}^{N} \pi_{nm} = w_{m} \end{cases},$$
$$f_{n}(G) \in \mathbb{G}_{K} = \inf\{\mathcal{J}_{c}(G): G \in \mathbb{G}_{K}\}$$
$$= \sum_{n=1}^{N} \pi_{nm}^{*}(\bar{G}^{R})$$

nin
$$\left\{\sum_{n,m} \pi_{nm} c(\Phi(\cdot;\bar{\theta}_n), \Phi(\cdot;\theta_m):\sum_m \pi_{nm} = \bar{w}_n\right\}$$

$$\min\left\{\sum_{n,m}\pi_{nm}c(\Phi(\,\cdot\,;\bar{\theta}_n),\Phi(\,\cdot\,;\theta_m):\sum_m\pi_{nm}=\bar{w}_n\right\}$$

• Majorization function at $G^{(t)}$

$$(G \mid G^{(t)}) = \sum_{n,m} \pi_{nm}^* (G^{(t)}) c(\Phi(\cdot; \bar{\theta}_n), \Phi(\cdot; \theta_m))$$

$$\min\left\{\sum_{n,m}\pi_{nm}c(\Phi(\ \cdot\ ;\bar{\theta}_n),\Phi(\ \cdot\ ;\theta_m):\sum_m\pi_{nm}=\bar{w}_n\right\}$$

• Majorization function at $G^{(t)}$

$$(G \mid G^{(t)}) = \sum_{n,m} \pi_{nm}^* (G^{(t)}) c(\Phi(\cdot; \bar{\theta}_n), \Phi(\cdot; \theta_m))$$

$$^{(t)}) = \begin{cases} \bar{w}_n & m = \operatorname{argmin}_{m'} c(\Phi(\ \cdot\ ; \bar{\theta}_n), \Phi(\ \cdot\ ; \theta_{m'}^{(t)})) \\ 0 & \text{otherwise} . \end{cases}$$

• Closed-form solution: $G^{(t+1)} = \operatorname{argmin}_{G} \mathscr{K}_{c}(G \mid G^{(t)})$.

3 machine each fit a 2 component mixture

3 machine each fit a 2 component mixture

• **Majorization step**: for a given $G^{(t)}$, the optimal transportation plan $\pi^*(G^{(t)})$ is

$$\pi_{nm}^*(G^{(t)}) = \begin{cases} \bar{w}_n & \text{if } m = \operatorname{argmin}_{m'} c(\bar{\Phi}_{nm}) \\ 0 & \text{o.w.} \end{cases}$$

• **Majorization step**: for a given $G^{(t)}$, the optimal transportation plan $\pi^*(G^{(t)})$ is

$$\pi_{nm}^*(G^{(t)}) = \begin{cases} \bar{w}_n & \text{if } m = \operatorname{argmin}_{m'} c(\bar{\Phi}_{nm}) \\ 0 & \text{o.w.} \end{cases}$$

• **Majorization step**: for a given $G^{(t)}$, the optimal transportation plan $\pi^*(G^{(t)})$ is

$$\pi_{nm}^*(G^{(t)}) = \begin{cases} \bar{w}_n & \text{if } m = \operatorname{argmin}_{m'} c(\bar{\Phi}_{nm'}) \\ 0 & \text{o.w.} \end{cases}$$

• **Minimization step**: for a given π , the subpopulation parameters are

$$\Phi_m^{(t+1)} = \operatorname{arginf}_{\Phi} \sum_n \pi_{nm}^* (G^{(t)}) c(\bar{\Phi}_n, w_m^{(t+1)}) = \sum_n \pi_{nm}^* (G^{(t)})$$

• **Majorization step**: for a given $G^{(t)}$, the optimal transportation plan $\pi^*(G^{(t)})$ is

$$\pi_{nm}^*(G^{(t)}) = \begin{cases} \bar{w}_n & \text{if } m = \operatorname{argmin}_{m'} c(\bar{\Phi}_{nm}) \\ 0 & \text{o.w.} \end{cases}$$

• **Minimization step**: for a given π , the subpopulation parameters are Barycenter of Gaussians (analytical form)

$$\Phi_m^{(t+1)} = \operatorname{arginf}_{\Phi} \sum_n \pi_{nm}^* (G^{(t)}) c(\bar{\Phi}_n, w_m^{(t+1)}) = \sum_n \pi_{nm}^* (G^{(t)})$$

• **Majorization step**: for a given $G^{(t)}$, the optimal transportation plan $\pi^*(G^{(t)})$ is

$$\pi_{nm}^*(G^{(t)}) = \begin{cases} \bar{w}_n & \text{if } m = \operatorname{argmin}_{m'} c(\bar{\Phi}_{nm}) \\ 0 & \text{o.w.} \end{cases}$$

• **Minimization step**: for a given π , the subpopulation parameters are Barycenter of Gaussians (analytical form)

$$\Phi_m^{(t+1)} = \operatorname{arginf}_{\Phi} \sum_n \pi_{nm}^* (G^{(t)}) c(\bar{\Phi}_n, w_m^{(t+1)}) = \sum_n \pi_{nm}^* (G^{(t)})$$

• **Majorization step**: for a given $G^{(t)}$, the optimal transportation plan $\pi^*(G^{(t)})$ is

$$\pi_{nm}^*(G^{(t)}) = \begin{cases} \bar{w}_n & \text{if } m = \operatorname{argmin}_{m'} c(\bar{\Phi}_{nm}) \\ 0 & \text{o.w.} \end{cases}$$

• **Minimization step**: for a given π , the subpopulation parameters are Barycenter of Gaussians (analytical form)

$$\Phi_m^{(t+1)} = \operatorname{arginf}_{\Phi} \sum_n \pi_{nm}^* (G^{(t)}) c(\bar{\Phi}_n, w_m^{(t+1)}) = \sum_n \pi_{nm}^* (G^{(t)})$$

Algorithm convergence

 $\Delta > 0$ and Φ^* the following set is compact:

Then

(i) $\mathscr{J}_c(G^{(t+1)}) \leq \mathscr{J}_c(G^{(t)})$ for any t.

(ii) if G^* is a limiting point of $G^{(t)}$, then $G^{(t)} = G^*$ implies $\mathscr{J}_c(G^{(t+1)}) = \mathscr{J}_c(G^*)$.

- Suppose the cost function $c(\cdot, \cdot)$ is continuous in both arguments. For any constant
 - $\{\Phi: c(\Phi, \Phi^*) \leq \Delta\}.$

18

Our full recipe

1. Obtain local estimates \hat{G}_m

- 2. Form plain average $\bar{G} = \sum_{m} \lambda_m \hat{G}_m$
- 3. Choose CTD

$$\rho(\bar{G},G) = \min\left\{\sum_{n,m} \pi_{nm} \mathsf{D}_{\mathsf{KL}}(\Phi(\,\cdot\,;\bar{\theta}_n) \| \Phi(\,\cdot\,;\theta_m)) : \sum_n \pi_{nm} = w_m, \sum_m \pi_{nm} = \bar{w}_n\right\}$$

4. Use MM algorithm to find \bar{G}^R

Statistical assurance

C1 The data are IID observations from $\Phi(x; G^*)$ with order K

C5 The **cost** function satisfies local triangular inequality

$$A^{-1} \| \Phi_1 - \Phi_2 \|^2 \le c(\Phi_1, \Phi_2) \le A \| \Phi_1 - \Phi_2 \|^2$$

Under conditions C1-C5, up to permutations, we have

$$\bar{\Phi}^R - \Phi_k^* = O_p(N^{-1/2}), \quad \bar{w}^R - w_k^* = O_p(N^{-1/2})$$

- **C3** The local machine sample ratios $\lambda_m = N_m/N$ have nonzero limits as $N \to \infty$

Numerical results

Simulation setting

- Generate 100 random Gaussian mixtures of dimension d = 50 and K = 5
- We set the "degree of overlap" (MaxOmega) between subpopulation to be 1%, 5%, 10%

where $o_{i|i} = \mathbb{P}(w_i \phi(X; \theta_i) < w_i \phi(X; \theta_i) | X \sim f(\cdot; \theta_i))$ is the pairwise overlap

- Total sample size $N = 2^{21}$ (~ 10⁶)
- The number of local machines are set to M = 4, 16, 64

- MaxOmega = max $\{o_{j|i} + o_{i|j}\}$ $i,j \in [K]$

Estimators for comparison

- **Global:** the estimator based on the full dataset ullet
- *Median*: the "best" local estimator
- **Reduction:** our method with KL divergence as cost function
- **KLA** (Liu et al. 2013)
- **Coreset** (Lucic et al. 2018)

Estimators for comparison

- **Global:** the estimator based on the full dataset
- *Median*: the "best" local estimator
- **Reduction:** our method with KL divergence as cost function •
- **KLA** (Liu et al. 2013) \bullet

Existing methods in literature

Coreset (Lucic et al. 2018) lacksquare

Simulation results

Simulation results

Simulation results

Real data: NIST clustering

Real data: NIST clustering

K=10

M=10

Real data: NIST clustering

ARI: similarity between true label vs predicted cluster based on fitted mixture

K=10

M=10

Summary of our contribution

- Developed a novel aggregation method for split-and-conquer learning of finite mixture models.
- Theoretically shown the aggregated estimator is
 - computationally efficient.
 - root-n consistent when the order is known.
- Empirically demonstrated the superior performance of the proposed estimator.

Summary of our contribution

- Developed a novel aggregation method for split-and-conquer learning of finite mixture models.
- Theoretically shown the aggregated estimator is
 - computationally efficient.
 - root-n consistent when the order is known.
- Empirically demonstrated the superior performance of the proposed estimator.

Thank you!

