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Finite mixture models
• A family of distributions.

• Let  be a parametric family.ℱ = {f(x; θ) : θ ∈ Θ}
• The finite mixture model of  has it density function: ℱ

f(x; G) := ∫ f(x; θ) dG(θ) =
K

∑
k=1

wk f(x; θk)
Mixing distribution Subpopulation parameter

Order (assumed to be known)

G = ∑
k

wkδθk
Mixing weight

Finite Gaussian Mixture
ℱ = {ϕ(x; μ, Σ) = |2πΣ |−1/2 exp{ − (x − μ)⊤Σ−1(x − μ)/2} : μ ∈ ℝd, Σ > 0}

PDF       CDF ϕ(x; G) Φ(x; G)
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Reason to parameterize by G

Consider the 2-component mixture

ϕ(x; G) = 0.4ϕ(x; − 1,2) + 0.6ϕ(x; 1,1)

• One may want to use a vector such as




to parametrize the mixture

• Such parameterization may lead to unidentifiable model


• Let 


• Note  but 


• The mixing distribution  does not have this issue

ξ = (0.4, − 1,2,0.6,1,1)

ξ1 = (0.4, − 1,2,0.6,1,1) and ξ2 = (0.6,1,1,0.4, − 1,2)
ξ1 ≠ ξ2 ϕ(x; ξ1) = ϕ(x; ξ2)

G



Finite mixture model in machine learning
Clustering

{X |Z = k ∼ f(x; θk)
P(Z = k) = wk

Latent variable representation

P(Z = k |X = x) ∝ wk f(x; θk)
Posterior distribution of the latent variable

5

Clustering
κ(x; G) = argmaxj∈[K]wj f(x; θj)



Density Approximation 
A parametric model that approximates density functions with various shapes

Density function credit: Geoffrey McLachlan and David Peel — Finite Mixture Models
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Finite mixture model in machine learning
Clustering

{X |Z = k ∼ f(x; θk)
P(Z = k) = wk

Latent variable representation

P(Z = k |X = x) ∝ wk f(x; θk)
Posterior distribution of the latent variable

5

Clustering
κ(x; G) = argmaxj∈[K]wj f(x; θj)

Goal: learn mixing distribution G
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Split-and-conquer under Gaussian mixtures
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• Average mixture: ϕ(x; Ḡ) = ∑ λmϕ(x; Ĝm)
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• Barycentre: “average” of mixing distributions

 ḠC = arginfG∈𝔾K ∑
m

λmρ(Ĝm, G)

(analogy of  in Euclidean space)x̄1:n = argminx

n

∑
i=1

∥xi − x∥2, median(x1:n) = argminx

n

∑
i=1

|xi − x |

• Reduction: approximate average mixture by an order K mixture

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

Two potential aggregation approaches
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• When

 
ρ(G1, G2) = DKL(Φ( ⋅ ; G1)∥Φ( ⋅ ; G2))

= ∫ ϕ(x; G1)log ϕ(x; G1)
ϕ(x; G2)

dx

then 

 ḠC = ḠR

• However, exact solution is computationally intractable

Connection of two aggregation approaches
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Barycenter approach may not be ideal
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ϕ(x; 1,1)

0.5

“Intuition”

Barycenter approach may not be ideal



Which divergence?
• We propose to aggregate via the reduction approach
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ρ(Ḡ, G) .

• Which divergence  should we pick?ρ( ⋅ , ⋅ )

11



Which divergence?
• We propose to aggregate via the reduction approach
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Which divergence?
• We propose to aggregate via the reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G) .

• Which divergence  should we pick?ρ( ⋅ , ⋅ )
Key observation:

divergence is hard to compute between mixtures

divergence is easy to compute between Gaussians

• The divergence we used: composite transportation divergence

A byproduct of optimal transport

11



Proposed method



Composite transportation divergence between two Gaussian mixtures (Chen et al. 2019) 

Let  and  and  be the cost function which is 

a divergence on . The Composite transportation divergence between  and  is defined to be 

Φ(x; G) =
N

∑
n=1

wnΦ(x; θn) Φ(x; G̃) =
M

∑
m=1

w̃mΦ(x; θ̃m) c( ⋅ , ⋅ ) : ℱ × ℱ → ℝ+

ℱ Φ(x; G) Φ(x; G̃)

𝒯c(Φ( ⋅ ; G), Φ( ⋅ ; G̃)) = min ∑
n,m

πnmc(Φ( ⋅ ; θn), Φ( ⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

13

Composite transportation divergence and proposed method

Space of Gaussian distributions
Φ( ⋅ ; θ1)

Φ( ⋅ ; θ2)

Φ( ⋅ ; θN)
Φ( ⋅ ; θ̃1) Φ( ⋅ ; θ̃2)

Φ( ⋅ ; θ̃M)
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How to compute the aggregated 
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A glance at the numerical computation

𝒯c(G) = min ∑
n,m

πnmc(Φ( ⋅ ; θn), Φ( ⋅ ; θ̃m)) : ∑
m

πnm = wn, ∑
n

πnm = w̃m

ḠR = arginfG∈𝔾K
𝒯c(G)

Our optimization problem 



• Bilevel optimization: the objective function itself involves another optimization problem


• We find

• Step I: A simplified equivalent objective with a closed form

• Step 2: an MM algorithm to minimize the simplified objective
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 where
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Closed form

• Pros 

• The subpopulation parameters and mixing weights can be updated separately


• Allows for an efficient MM algorithm (update G and  iteratively)π*(G)
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with


π*nm(G(t)) = {w̄n m = argminm′ 
c(Φ( ⋅ ; θ̄n), Φ( ⋅ ; θ(t)

m′ 
))

0 otherwise .

• Closed-form solution: G(t+1) = argminG𝒦c(G |G(t)) .

Numerical algorithm
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• Majorization step: for a given , the optimal 
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Suppose the cost function  is continuous in both arguments. For any constant 
 and ∗ the following set is compact: 





Then


(i)  for any .


(ii) if   is a limiting point of , then  implies 

c( ⋅ , ⋅ )
Δ > 0 Φ*

{Φ : c(Φ, Φ*) ≤ Δ} .

𝒥c(G(t+1)) ≤ 𝒥c(G(t)) t

G* G(t) G(t) = G* 𝒥c(G(t+1) = 𝒥c(G*) .

18

Algorithm convergence



Our full recipe
1. Obtain local estimates 


2. Form plain average 


3. Choose CTD





4. Use MM algorithm to find 

Ĝm

Ḡ = ∑
m

λmĜm

ρ(Ḡ, G) = min ∑
n,m

πnmDKL(Φ( ⋅ ; θ̄n)∥Φ( ⋅ ; θm)) : ∑
n

πnm = wm, ∑
m

πnm = w̄n

ḠR

19



C1 The data are IID observations from  with order K


C3 The local machine sample ratios  have nonzero limits as 


C5 The cost function satisfies local triangular inequality





Under conditions C1-C5, up to permutations, we have


Φ(x; G*)

λm = Nm/N N → ∞

A−1∥Φ1 − Φ2∥2 ≤ c(Φ1, Φ2) ≤ A∥Φ1 − Φ2∥2

Φ̄R − Φ*k = Op(N−1/2), w̄R − w*k = Op(N−1/2)

20

Statistical assurance



Numerical results



• Generate 100 random Gaussian mixtures of dimension  and 


• We set the “degree of overlap” (MaxOmega) between subpopulation to be 1%, 5%, 10%





 where  is the pairwise overlap


• Total sample size  ( )


• The number of local machines are set to 

d = 50 K = 5

MaxOmega = max
i,j∈[K]

{oj|i + oi|j}

oj|i = ℙ(wiϕ(X; θi) < wjϕ(X; θj) |X ∼ f( ⋅ ; θi))

N = 221 ∼ 106

M = 4, 16, 64

22

Simulation setting



• Global: the estimator based on the full dataset


• Median: the “best” local estimator


• Reduction: our method with KL divergence as cost function


• KLA (Liu et al. 2013)


• Coreset (Lucic et al. 2018)
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Estimators for comparison

Existing methods in literature
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d=50

CNN

Split-and-Conquer
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Better

ARI: similarity between true label vs predicted cluster based on fitted mixture

Our

K=10 M=10

Real data: NIST clustering



• Developed a novel aggregation method for split-and-conquer learning of finite 
mixture models.


• Theoretically shown the aggregated estimator is 


• computationally efficient.


• root-n consistent when the order is known.


• Empirically demonstrated the superior performance of the proposed estimator.
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Summary of our contribution

Thank you!

Link to our paper


