Subsampling in Large Networks

Ping Ma Department of Statistics University of Georgia Malab.uga.edu

BIRS-IASM Workshop 2023

Transaction Networks

Billions of entities (nodes) with at least 100 billions of transactions (edges)

Protein-Protein Interaction Networks

0.5 millions of nodes

Large Networks

- Hard to visualize
- Hard to analyze
- Hard for downstream computation

Subnetwork

- A representation (or a sketch) of the large network
- Subsampling: methods for taking subnetwork from the large network

Three Settings

• The original large network is accessible

• The original large network is not accessible

• Something in between

Desirable Properties of Subsampling

- Local to global: Importance indices of nodes and/or edges are local features with global (whole network) information
- Local computation: The subsampling methods do not need to compute the importance indices of all nodes and/or edges.

Graph and Matrix

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix			
	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$			
(3)-(2)	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			

Numerical Linear Algebra

Graphon and Graphex

SBM:step function

SBM:step function

SBM:step function

SBM:graphon limit

Manifolds

Manifolds

No predetermined coordinates

- The flexibility to choose coordinates
 arbitrarily
- Ensure that any objects we define globally on a manifold do not depend on a particular choice of coordinates.

Classification Theorem of Circles

Congruence: same radius r

Local-to-Global Theorem of Circles

Circumference: $2\pi r$

Curvature

Curvature Theorems

- Classification: Two curves are congruent iff their curvatures are the same.
- Local-to-global: For a simple closed curve, the integration of its curvature is 2π .

Curvature in High Dimension

Khan (2022)

Sectional Curvature

$$L(\varepsilon) = \varepsilon \|X - Y\| \left(1 - \frac{1}{12} K(X, Y) (1 + \langle X, Y \rangle) \varepsilon^2 \right) + O\left(\varepsilon^4\right)$$

K(*X*, *Y*) is defined to be the sectional curvature of the tangent plane spanned by X and Y

Ricci Curvature

$$\operatorname{Ric}(X,X) = \frac{1}{2} \frac{(n-1)}{\omega(\mathbb{S}^{n-2})} \oint_{\|Y\|=1 \text{ and } X \perp Y} K(X,Y) \, \mathrm{d}\mathbb{S}^{n-2}(Y)$$

 $\omega(\mathbb{S}^{n-2})$ is the surface area of the (n-2)-dimensional sphere.

The Ricci curvature Ric(X,X) is (n - 1) times the average of all of the sectional curvatures of tangent planes containing X.

$$\operatorname{Ric}(X,Y) = \frac{1}{2} \left(\operatorname{Ric}(X+Y,X+Y) - \operatorname{Ric}(X,X) - \operatorname{Ric}(Y,Y) \right)$$

Ricci Curvature

 Measuring the degree to which the geometry determined by a given Riemannian metric might differ from that of ordinary Euclidean space

Transport ball B(x) to ball B(y).

$$\delta = d(x,y).$$

Transport ball B(x) to ball B(y).

The average distance is

$$\delta = d(x,y).$$

δ

Transport ball B(x) to ball B(y).

The average distance is

 $\delta = d(x,y).$

 $\frac{\varepsilon^2}{2(n+2)} \operatorname{Ric}(\bar{\mathbf{v}}_{xy})$ $-O(\varepsilon^3+\varepsilon^2\delta)$ δ =W κ

$$\begin{split} \kappa(u,v) &= 1 - \frac{W(m_u^{\alpha}, m_v^{\alpha})}{d(u,v)} \qquad W(m_u^{\alpha}, m_v^{\alpha}) = \inf_{\xi} \sum_{u,v \in V} \xi(u,v) d(u,v) \\ m_u^{\alpha}(x) &= \begin{cases} \alpha & \text{if } x = u \\ (1-\alpha)/d_u & \text{if } x \in \delta(u) \\ 0 & \text{otherwise} \end{cases} \end{split}$$

- Graphs are generated from manifold
- OR curvature on Graphs \rightarrow Ricci curvature on Manifold

Subsampling in Graphs

Edges with large curvature are within a community; Edges with small curvature are between communities

Leonid Kantorovich (1912-1986)

Леонид Витальевич Канторович

Journal of Mathematical Sciences, Vol. 133, No. 4, 2006

ON THE TRANSLOCATION OF MASSES L. V. Kantorovich* The original paper was published in Dokl. Akad. Nauk SSSR, 37, No. 7-8, 227-229 (1942). We assume that R is a compact metric space, though some of the definitions and results given below can be formulated for more general spaces. Let $\Phi(e)$ be a mass distribution, i.e., a set function such that: (1) it is defined for Borel sets, (2) it is Let $\Psi(v)$ be a more distribution, i.e., a set material matrix i.e. (v) is to sensitive the test sets (z) is a sonnegative $\Psi(v)$ be another mass distribution such that $\Psi(R) = \Phi(R)$. By definition, a transformed masses is a function $\Psi(e, v)$ defined for pairs of (D)-sets $e, e' \in R$ such that $(0, R) = \Phi(e_1)$. It is nonnegative with respect to each of its arguments, $(2) \Psi(e, R) = \Phi(e_1) \Psi(e')$. The short experiments of the experiment of the experiments of the experiment of the experim from x to y. We define the work required for the translocation of two given mass distributions as $W(\Psi, \Phi, \Phi') = \int \int r(x, x')\Psi(de, de') = \lim_{\lambda \to 0} \sum r(x_i, x'_k)\Psi(e_i, e'_k),$ where e_i are disjoint and $\sum_{1}^{n} e_i = R$, e'_k are disjoint and $\sum_{1}^{m} e'_k = R$, $x_i \in e_i$, $x'_k \in e'_k$, and λ is the largest of the numbers diam e_i (i = 1, 2, ..., n) and diam e'_k (k = 1, 2, ..., m). Clearly, this integral does exist. We call the quantity $W(\Phi, \Phi') = \inf W(\Psi, \Phi, \Phi')$ the minimal translocation work. Since the set of all functions $\{\Psi\}$ is compact, there exists a function Ψ_0 realizing this minimun, so that $W(\Phi, \Phi') = W(\Psi_0, \Phi, \Phi'),$

[Kantorovich 1942]

Kantorovich Problem

Kantorovich Problem

Transportation matrix

Distance matrix

Kantorovich Problem

Kantorovitch's Formulation

 \rightarrow Linear program, simplex $O(n^3 \log(n))$.

Wasserstein Distance

Subsampling in Graphs

Edges with large curvature are within a community; Edges with small curvature are between communities

OR Curvature Gradient-based Subsampling

 $(x^{(i+1)}, y^{(i+1)}) = \operatorname{argmax}_{(x,y) \in \Delta((x^{(i)}, y^{(i)}))} |\kappa(x, y) - \kappa(x^{(i+1)}, y^{(i+1)})|$

Experiment Results

Dataset	Prop	ORG-sub	MHRW	CSE	FFS	Snowball	RW	MDRW
Polbooks (T: 1.88 s)	10%	0.00 (T: 0.10 s)	1.20	0.62	2.68	0.48	0.33	0.00
Polblogs (T: 48.6 s)	5%	0.00 (T: 0.23 s)	1.87	0.90	2.00	0.43	1.03	0.30
PubMed (T: NA)	2%	0.00 (T: 4.42 s)	0.30	0.80	0.40	0.20	1.20	1.80

Acknowledgement

ICLR 2023

Shushan Wu

Huimin Cheng

Jiazhang Cai

Wenxuan Zhong

NSF

NIH