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Billions of entities (nodes) with at least 100 billions of transactions (edges)



Protein-Protein Interaction
Networks
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0.5 millions of nodes



Large Networks

* Hard to visualize
* Hard to analyze
« Hard for downstream computation



Subnetwork

* A representation (or a sketch) of the large
network

« Subsampling: methods for taking
subnetwork from the large network



Three Settings

* The original large network is accessible

* The original large network is not accessible

« Something in between



Desirable Properties of
Subsampling

* Local to global: Importance indices of
nodes and/or edges are local features with
global (whole network) information

* Local computation: The subsampling
methods do not need to compute the
importance indices of all nodes and/or
edges.



Graph and Matrix

Laplacian matrix

Degree matrix Adjacency matrix

Labelled graph
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Numerical Linear Algebra



Graphon and Graphex

SBM:graphon limit

SBM:step function SBM:step function

SBM:step function




Manifolds
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Manifolds

No predetermined coordinates

* The flexibility to choose coordinates
arbitrarily

* Ensure that any objects we define globally
on a manifold do not depend on a
particular choice of coordinates.



Classification Theorem of

Circles
Congruence: same radius r




Local-to-Global Theorem of
Circles

Circumference: 2nrr




Curvature

k(t) = [y"(t)]

Lee (2018)



Curvature Theorems

 Classification: Two curves are congruent iff
their curvatures are the same.

* Local-to-global: For a simple closed curve,
the integration of its curvature is 2.



Curvature in High Dimension

Khan (2022)



Sectional Curvature

L(e) = ¢||X — Y| (1 - II—QK(X,Y)(I + (X, Y>>82> +0 (")

K(X, Y ) is defined to be the sectional curvature of the tangent plane
spanned by X and Y



Ricci Curvature

Ric(X, X) = 1@ ]é K(X,Y)dS"2(Y)
2w (S"2) Jiy||=1 and X 1Y

w (S"?) is the surface area of the (n—2)-dimensional sphere

The Ricci curvature Ric(X,X) is (n — 1) times the average of all of the
sectional curvatures of tangent planes containing X.

Ric(X,Y) = % (Riec(X +Y, X +Y) — Ric(X,X) - Ric(Y,Y))



Ricci Curvature

* Measuring the degree to which the

geometry determined by a given
Riemannian metric might differ from that of

ordinary Euclidean space



Olivier-Ricci Curvature

Transport ball B(x) to ball B(y).
Be()

2

The average distance is 5 [l € R.ic(f' ) 4 0(83 43 825)
Ty

- 2(n+2)

i = d(a:, y)



Olivier-Ricci Curvature

Transport ball B(x) to ball B(y).

B:(z)

The average distance is

i = d(.’II, y)

- O(e® + €%6)



Olivier-Ricci Curvature

Transport ball B(x) to ball B(y).
Be(z)

The average distance is 5 {1 l I 0(83 + g2 5)]
: 6 - d(.’L’, y)- \



Olivier-Ricci Curvature

W(mga mfj) = inf f(’U/, v)d(u, ’U)
d(u,v) : uge:V

VY

Q fr=u
mo(z) =< (1 —a)/d, ifx € f(u)
0 otherwise

« Graphs are generated from manifold
* OR curvature on Graphs — Ricci curvature on Manifold



Subsampling in Graphs
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Edges with large curvature are within a community;
Edges with small curvature are between communities



eonid Kantorovich (1912-1986)

Jleonnp ButanbeBny KaHTopoBuy

s s v o [ antorovich 1942]

ON THE TRANSLOCATION OF MASSES
L. V. Kantorovich™
The original paper was published 1 Dokl. Akad. Nouk SSSR, 37, No. 7-8, 227-229 (1942).

We assume that R is a compact metric space, though some of the definitions and results given below can be
formulated for more general spaces.

Let ®(c) be a mass distribution, i.c., a set function such that: (1) it is defined for Borel sets, (2) it is
nonnegative: ®(e) >0, (3) it is abolutely additive: if e = ey +e3+---; & Nex = 0 (i # k), then B(e) = Ble;) +
®(e;) +---. Lot #(¢') be another mass distribution such that $(R) = &(R). By definition, a translocation of
masses is a function ¥(e, &) defined for pairs of (B)-sets e,¢’ € R such that: (1) it is nonnegative and absolutely
additive with respect to each of its arguments, (2) W(e, R) = ®(e), ¥(R,¢) = ¥'(¢).

Let #(z,y) be a known conti ive function ing the work required to move a unit mass
fom z toy.

We define the work required for the translocation of two given mass distributions as

W@, @) - /jr(z.{,w(de, 4) = tim iz, ) ¥,

7R Lk

where ¢; are digjoint and 37 ¢, = R, ¢, are disjoint and 37" ¢} = R, 2 € &, 7, € ¢, and X is the largest of
the numbers diame; (i = 1,2,...,n) and diame} (k =1,2,...,m)
Clearly, this integral does exist.
We call the quantity
Wi(®,9) = igf W(¥,9,9)
the minimal translocation work. Since the set of all functions {¥} is compact, there exists a function ¥, realizing
this minimun, so that

W(, ) = W(¥o,®,9),




Kantorovich Problem

X X X X ‘k y X X X X X
4
\wss BATOV DON /
X1 XX ,
\¢’ [24 GALANIN
N : 66 ZHADOV |,
S ~a/ A

XXXXX

},_, X X X X X X / |STALINGRAD|
X X
- | SIXTH VIII XIV YEREMENKO
\ AULUS ( >Sta|ingrad Y AN
alach X X X XXX
e LI / 62 CHUIKOV
N \— A XXXX
ook XXX 7 ~ Y64 sHUMILOV
- N v X X Krasngarmets V\’k\l\<\,
)Y
97 X X X —
e X X X X
STALINGRAD AND & o - Q |57 TOLBUKHINl
VICINITY, 1942 .

BATTLE OF STALINGRAD X X \

e . 3 ) Rum.%’l\@



Kantorovich Problem

‘l‘-....




Kantorovich Problem
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Distance matrix




Kantorovich Problem

Transportation matrix Distance matrix
a1|P1A |P1B|P1C 1 dlA dlB dlC
az|P2A |P2B |P2C 2 dzA dZB dzg
as|P3A|P3B|P3c 3 |d3aldspldsc
b bg bc A B C
Constraints Cost function
vi € {1, 2,3}, Z Pij = @4 ciE) = Z Z Pijdij
JE{A,B,C} JE{A,B,C} i6{17273}
Vj € {A7 B, C}, Z Pi; = bj Problem
i€11,2,3} min C(P)
all valid P

PijZO



Kantorovitch’s Formulation

Input distributions

=3 a0y, B =351 b;by,
Points (2;);, (v;);

Weights a; > 0, b; > 0.

D im1 &= ZT:l b =1

Couplings:
U(a,b) = {P ¢R?™; P1,, =a,P"1, =b}

[Kantorovich 1942]

min {Zi,j Ci,jPi,j P e U(a, b)}

— Linear program, simplex O(n?log(n)).



Wasserstein Distance




Subsampling in Graphs
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Edges with large curvature are within a community;
Edges with small curvature are between communities



OR Curvature Gradient-based
Subsampling

(D, y D) = argmax(x,y)eA((x“),y“)))|K(x’ y) = r(xEH,y D))




Experiment Results

Dataset Prop ORG-sub MHRW CSE FFS Snowball RW MDRW
Polbooks 10% 0.00 1.20 0.62 2.68 0.48 0.33 0.00
(T: 1.88 s) (T: 0.10 s)

Polblogs 5% 0.00 1.87 0.90 2.00 0.43 1.03 0.30
(T: 48.6 s) (T: 0.23 s)

PubMed 2% 0.00 0.30 0.80 0.40 0.20 1.20 1.80

(T: NA)

(T: 4.42 s)
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