
Neyman-Pearson and equal opportunity: when efficiency meets
fairness in classification

J. Fan, X. Tong, Y. Wu, and S. Yao

Department of Data Sciences and Operations
University of Southern California



Concern for bias in algorithm



A loan example

What is the goal of credit card issuing algorithm?

Societal concerns (fairness):

◮ Applicants from every race/gender
should have the same probability
of receiving credit cards.

◮ Applicants with the same profile
should have the same outcome
despite their race/gender.

◮ Etc.

Institutional interests (efficiency):

◮ Control the financial risks.

◮ Maximize profit.

How do people balance these goals?



A loan example

What profile a bank may rely on:

payment history, annual income,..., credit score,  
neutral attributes X

gender  
sensitive attribute S

, default or not  
Y

◮ In this project, S ∈ {a, b} and Y ∈ {0, 1}
◮ Y = 1 implies “non-default” and Y = 0 implies “default”.

When a new applicant walks into the bank:

payment history, annual income,..., credit score,  
known X

gender  
known S

, default or not  
prediction goal Y

◮ Bankers want an algorithm φ(X , S) to give them Y .

◮ The resources to build such a φ(X , S) is past records
(X1, S1,Y1), (X2, S2,Y2), . . .



Fairness in machine learning

In this scenario, what is algorithmic fairness?

◮ What about not using sensitive attributes in φ at all?

Common criteria in statistical sense? [Barocas et al.(2019)]

◮ Demographic Parity (Independence):

IP(φ̂(X , S) = 1 | S = a) = IP(φ̂(X , S) = 1 | S = b)

◮ Sufficiency:

IP(Y = 1 | φ̂(X , S) = 1, S = a) = IP(Y = 1 | φ̂(X , S) = 1, S = b)

IP(Y = 1 | φ̂(X , S) = 0, S = a) = IP(Y = 1 | φ̂(X , S) = 0, S = b)

◮ Equalized odds:

IP(φ̂(X , S) ∕= Y | Y = 1, S = a) = IP(φ̂(X , S) ∕= Y | Y = 1, S = b)

IP(φ̂(X , S) ∕= Y | Y = 0, S = a) = IP(φ̂(X , S) ∕= Y | Y = 0, S = b)



Fairness in machine learning

How do statisticians train a fair algorithm?

◮ Pre-processing methods, e.g., Re-weighting method. [Han et al. (2022)]

◮ In-processing methods, e.g., Optimization with penalty term. [Domini et
al. (2018)]

◮ Post-processing methods, e.g., Calibration. [Hardt et al. (2016)]



Notations

Type I error: R0(φ̂) = IP(φ̂(X , S) = 1 | Y = 0)

◮ Probability of issuing credit card to unqualified applicants.

Type II error: R1(φ̂) = IP(φ̂(X , S) = 0 | Y = 1)

◮ Probability of NOT issuing credit card to qualified applicants.

Both IP are taken conditional on φ̂. Both quantities are random since φ̂ is
random.



Notations

Type I/II error conditional on sensitive attribute:

R s
y (φ̂) = IP


φ̂(X , S) ∕= Y | Y = y , S = s


,

Type I error disparity: L0(φ̂) = |Ra
0 (φ̂)− Rb

0 (φ̂)|

◮ Difference of probabilities that unqualified applicants from group a and b
are given credit cards.

Type II error disparity: L1(φ̂) = |Ra
1 (φ̂)− Rb

1 (φ̂)|
◮ Difference of probabilities that qualified applicants from group a and b are

NOT given credit cards.

Both disparities are random.



Equal Opportunity

The equalized odds condition(Hardt et al., (2016))

L0(φ̂) = L1(φ̂) = 0

◮ Qualified and unqualifed applicants from each group have the same
probability to get the same outcome.

The equalized odds condition means that candidates from different social
groups have the same probability to obtain both types of outcomes.
This condition is very stringent.



Equal Opportunity

The equal opportunity (EO) condition(Hardt et al., (2016))

L1(φ̂) = 0 .

We care about type II error disparity because it is the concern of the society.

◮ L0 = 0 implies default applicants from different groups are equally likely to
get credit cards.

◮ L1 = 0 implies non-default from different groups are equally likely to not
get credit cards.

◮ People will fight for what they deserve.

This condition is also impossible because φ̂ is random.



Equal Opportunity

A less stringent EO condition:

L1(φ̂) ≤ ε .

◮ This criterion addresses the fairness concern of the society.

◮ A good fair algorithm also needs to be useful, or efficient.



Neyman-Pearson classification

What do banks need from a default detection algorithm?
◮ Reduce financial risk: Do not classify too many “default” (0) as

“non-default” (1). That is, avoid issuing credit card to unqualified
applicants to control the financial risk.
◮ Reduce R0(φ̂)

◮ Increase profit: Identify as many “non-default” as possible. That is, issue
as many cards as possible to qualified applicants.
◮ Reduce R1(φ̂)

However, type I/II errors trade-off is not uncommon.



Neyman-Pearson classifcation

How to balance the two goals?

◮ Financial risk is more crucial than profit.

◮ Banks often have hard constraint for financial risk.

Banks can control the financial risk at certain level, and then maximizing the
profit.



NP and NP-EO paradigm

The Neyman-Pearson classification paradigm (Cannon et al. [2002], Scott and
Nowak [2005], Rigollet and Tong [2011], Tong et al. [2018], Yao et al. [2022])

φ∗ ∈ argmin
φ:R0(φ)≤α

R1(φ)

The NP-EO paradigm:

φ∗ ∈ argmin
φ:R0(φ)≤α
L1(φ)≤ε

R1(φ)

◮ Institutional efficiency: R0(φ) ≤ α, argminR1(φ)

◮ Societal fairness: L1(φ) ≤ ε

Does this classifier exists? If so, what does it look like?



NP-EO oracle classifier

The Neyman-Pearson Equal-Opportunity classification paradigm can be
formmulated as follows:

Theorem 1

Under mild continuity conditions for X , the NP-EO oracle classifier exists
and has the form


f (X | S = a,Y = 1)

f (X | S = a,Y = 0)
> c∗a


{S = a}

+


f (X | S = b,Y = 1)

f (X | S = b,Y = 0)
> c∗b


{S = b}

Here, f is the density function of X .



NP-EO umbrella algorithm

We have established the NP-EO oracle classifier:


f (X | S = a,Y = 1)

f (X | S = a,Y = 0)
> c∗a


{S = a}

+


f (X | S = b,Y = 1)

f (X | S = b,Y = 0)
> c∗b


{S = b}

How do we train an NP-EO classifier, especially if we want to use certain
classification algorithms, e.g., logistic regression, neural networks, etc? That is,
we want to train a classifier of the form

φ̂(X , S) =

T̂ a(X ) > ĉa


{S = a}+


T̂ b(X ) > ĉb


{S = b} ,

where T̂ a, T̂ b are scoring functions trained by user-specified classification
algorithms. Moreover, ĉa and ĉb need to be determined by data.



NP-EO umbrella algorithm

Since φ̂ is trained from data, R0(φ̂) ≤ α and L1(φ̂) ≤ ε almost surely cannot be
achieved. Instead, we seek high probability versions.

◮ high probability NP condition: IP(R0(φ̂) > α) ≤ δ.

◮ high probability EO condition: IP(L1(φ̂) > ε) ≤ γ.

◮ δ, γ are user-specified.

Here, IP is taken with respect to randomness of data.



NP-EO umbrella algorithm

𝑆 = 𝑎 𝑆 = 𝑏

𝑌 = 0

𝑌 = 1

Scoring function
training data

Left-out data

◮ The scoring function training is used to train a scoring function T̂ .

◮ T̂ a(·) = T̂ (·, a), T̂ b(·) = T̂ (·, b).
◮ Apply T̂ to all corresponding parts of left-out data.



NP-EO umbrella algorithm

Applying T̂ to left-out data:

1 𝑛𝑎0

1 𝑛𝑎1

1 𝑛𝑏0

1 𝑛𝑏1

𝒯0,𝑎:

𝒯1,𝑎:

𝒯0,𝑏:

𝒯1,𝑏:

We plan to find ĉa and ĉb among these candidates.



NP-EO umbrella algorithm

1 𝑛𝑎0

1 𝑛𝑎1

1 𝑛𝑏0

1 𝑛𝑏1

𝒯0,𝑎:

𝒯1,𝑎:

𝒯0,𝑏:

𝒯1,𝑏:

𝑘𝑎

𝑘𝑏

◮ NP umbrella algorithm [Tong et al., (2018)]: select k such that the
scoring based classifier that uses the k th order statistic among Y = 0
sample of size n satisfies high probability NP condition at any level α, δ.

◮ R0 = Ra
0 IP(S = a | Y = 0) + Ra

b IP(S = b | Y = 0). If Ra
0 and Rb

0 can be
controlled separately, R0 can also be controlled.



NP-EO umbrella algorithm

1 𝑛𝑎
0

1 𝑛𝑎
1

1 𝑛𝑏
0

1 𝑛𝑏
1

𝒯0,𝑎:

𝒯1,𝑎:

𝒯0,𝑏:

𝒯1,𝑏:

𝑡𝑝𝑖𝑣𝑜𝑡𝑎

𝑡𝑝𝑖𝑣𝑜𝑡𝑏

candidates for Ƹ𝑐𝑎

candidates for Ƹ𝑐𝑏

𝑙𝑎

𝑙𝑏

𝑖

𝑗

◮ Let r a1 (i) be Ra
1 (φ̂) if we select the i th order statistic in T 1,a as ĉa in φ̂.

◮ Let rb1 (j) be Rb
1 (φ̂) if we select the j th order statistic in T 1,b as ĉb in φ̂

◮ i > la, j > lb.



NP-EO umbrella algorithm

The EO violation rate:

IP(L1(φ̂) > δ) = IET̂ IEla,lb IP(|r
a
1 (i)− rb1 (j)| > δ | la, lb)  

≤γ

◮ Conditional on T̂ , quantities involving a are independent of quantities
involving b.

◮ For every i , j , we want to approximate the distributions of r a1 (i) | la and
rb1 (j) | lb.

◮ The distribution of r a1 (i) can be approximated by Z + (1− Z)B where Z is
a normal distribution and B is a Beta distribution. The parameters in the
distributions of Z and B are known function of i , la and n1

a .

◮ The distribution of rb1 (j) can be approximated analogously.

◮ Select i , j such that EO violation rate is smaller than γ.

◮ For all feasible pairs of i , j , select the one that minimizes the empirical
type II error.



NP-EO umbrella algorithm

Theorem 2

Under certain regularity conditions, the classifier φ̂ trained by NP-EO
umbrella algorithm satisfies

1. IP(R0(φ̂) > α) ≤ δ.

2. IP(L1(φ̂) > ε) ≤ γ + r(n1
a , n

1
b), where r(n1

a , n
1
b) converges to 0 as

n1
a , n

1
b go to infinity.



NP-EO umbrella algorithm

A bit of simulation: let X be Gaussian with different means conditional on
different values of Y and S . Set α = 0.05, δ = 0.05, γ = 0.2 and ε = 0.05.

average of
type I errors

average of
type II errors

NP violation rate EO violation rate

NP-EO 0.012 0.480 0 0.046

◮ The NP-EO umbrella algorithm is able to satisfy NP and EO condition
with desired high probability.

◮ Recall that R0(φ
∗
NP-EO) = α. However, the NP violation rate for NP-EO

umbrella algorithm is 0. This contradicts the property of NP oracle
classifier philosophically.



NP-EO umbrella algorithm - modified approach

1 𝑛𝑎
0

1 𝑛𝑎
1

1 𝑛𝑏
0

1 𝑛𝑏
1

𝒯0,𝑎:

𝒯1,𝑎:

𝒯0,𝑏:

𝒯1,𝑏:

𝑡𝑝𝑖𝑣𝑜𝑡𝑎

𝑡𝑝𝑖𝑣𝑜𝑡𝑏

candidates for Ƹ𝑐𝑎

candidates for Ƹ𝑐𝑏

𝑙𝑎

𝑙𝑏

𝑖

𝑗

◮ Note that both pivots are selected by NP umbrella algorithm, which
ensures the high probability NP condition.

◮ Both selected thresholds are larger than the pivots to guarantee high
probability NP condition.

What if we relax this guarantee?



NP-EO umbrella algorithm - modified approach

𝒯0,𝑎 ∪ 𝒯0,𝑏:

1

𝑛𝑎0 + 𝑛𝑎1

1 𝑛𝑏0
𝒯0,𝑎:

𝒯0,𝑏:

1 𝑡𝑝𝑖𝑣𝑜𝑡

𝑛𝑎0𝑘𝑎0

𝑘𝑏0

◮ Apply NP umbrella algorithm to T 0,a ∪ T 0,b and select tpivot. That is, tpivot
as a threshold controls R0 with high probability.

◮ The two separate pivots as thresholds achieve the same empirical R0.



NP-EO umbrella algorithm - modified approach

1 𝑛𝑎0

1 𝑛𝑎1

1 𝑛𝑏0

1 𝑛𝑏1

𝒯0,𝑎:

𝒯1,𝑎:

𝒯0,𝑏:

𝒯1,𝑏:

𝑘𝑎0𝑘𝑎

𝑘𝑏0

𝑘𝑎 + 1

candidates for Ƹ𝑐𝑎
𝑘𝑏 𝑘𝑏 + 1

candidates for Ƹ𝑐𝑏

◮ We look at all ka, kb such that ka + kb = k0
a + k0

b . That is, the empirical
R0 is not changed.

◮ ĉa and ĉb are selected to satisfy high probability EO condition using the
similar approximation approach.

◮ ka can be smaller than k0
a (or kb can be smaller than k0

b ). This allows us
to select smaller thresholds.



NP-EO umbrella algorithm - modified approach

Theorem 3

Under certain regularity conditions, the classifier φ̂ trained by modified
NP-EO umbrella algorithm satisfies

1. IP(R0(φ̂) > α) ≤ δ + r0(n
0
a , n

0
b).

2. IP(L1(φ̂) > ε) ≤ γ + r1(n
1
a , n

1
b), where r0(n

0
a , n

0
b) and r1(n

1
a , n

1
b)

converge to 0 as sample sizes go to infinity.



NP-EO umbrella algorithm - modified approach

Simulation: let X be Gaussian with different means conditional on different
values of Y and S . Set α = 0.05, δ = 0.05, γ = 0.2 and ε = 0.05.

average of
type I errors

average of
type II errors

NP violation rate EO violation rate

NP-EO 0.012 0.480 0 0.046
NP-EO
modified

0.039 0.387 0.033 0.029



Numerical Analysis

Real data analysis: We use the credit card dataset, where sensitive attribute is
gender, neutral attributes are payment history and othe demographic features.
α = 0.1, δ = 0.1, ε = 0.05, γ = 0.1.

average of
type I errors

average of
type II errors

NP violation rate EO violation rate

NP-EO 0.081 0.720 0.033 0.034
NP-EO
modified

0.089 0.701 0.114 0.054

NP 0.088 0.700 0.111 0.482
classic 0.633 0.059 1 0

◮ If classic paradigm is used, then with probability 1 (the goal is δ = 0.1),
the bank fails to control the financial risk under (type I error) 0.1.

◮ If NP paradigm is used, then with probability 0.482 (the goal is γ = 0.1),
the bank fails to keep the equal opportunity disparity under 0.05.

◮ If NP-EO paradigm is used, then the probability of NOT able to control
financial risk under α = 0.1 is lower than δ = 0.1, and the probability of
NOT able to control the fairness disparity under ε = 0.05 is lower than
γ = 0.1.



Thank You!



NP-EO oracle classifier

𝑐𝑏

𝑐𝑎

NP oracle classifier

𝑐𝑏#

𝑐𝑎#

Every point (ca, cb) in the first quadrant represents a classifier with threshold
pair (ca, cb)



NP-EO oracle classifier

𝑐𝑏

𝑐𝑎

NP oracle classifier

{(𝑐𝑎, 𝑐𝑏): 𝑅0 = 𝛼}

𝑐𝑏#

𝑐𝑎#

◮ R0 = IP


f (X |S=a,Y=1)
f (X |S=a,Y=0)

> ca | S = a,Y = 0

IP(S = a | Y = 0)

+ IP


f (X |S=b,Y=1)
f (X |S=b,Y=0)

> cb | S = b,Y = 0

IP(S = b | Y = 0).

◮ NP oracle classifier achieves R0 = α.



NP-EO oracle classifier

𝑐𝑏

𝑐𝑎

NP oracle classifier

NP-EO 
oracle classifier

{(𝑐𝑎, 𝑐𝑏): 𝑅0 = 𝛼}

{(𝑐𝑎, 𝑐𝑏): 𝑅1
𝑎 − 𝑅1

𝑏 = 𝜀}

𝑐𝑏′𝑐𝑏#

𝑐𝑎#

◮ Ra
1 − Rb

1 = IP


f (X |S=a,Y=1)
f (X |S=a,Y=0)

≤ ca | S = a,Y = 0


−IP


f (X |S=b,Y=1)
f (X |S=b,Y=1)

≤ cb | S = b,Y = 1


◮ Rb
1 = 1− ε at c ′b.

◮ Ra
1 (φ

∗
NP)− Rb

1 (φ
∗
NP) > ε.



NP-EO umbrella algorithm

Let t1,a be an arbitrary element in T 1,a and t1,a(i) be the i th order statistic in

T 1,a. Furthermore, let T 1,a = T̂ a(X ) | (S = a,Y = 1). Given T̂ , we have:

◮ IP(T 1,a ≤ t1,a | t1,a) is uniformly distributed.

◮ r a1 (i) = IP(T 1,a ≤ t1,a(i) | t1,a) is Beta distributed.

◮ la =


t1,a∈T 1,a {t1,a ≤ tapivot}.
◮ r a1 (i) | la has the same distribution as

F a | la + (1− F a | la)Beta(n1
a − la, n

1
a − i + 1) ,

where the distribution of F a = IP(t1,a ≤ tapivot | tapivot).



NP-EO umbrella algorithm

The distribution of F a | la is still unknown.
Recall that la =


t1,a∈T 1,a {t1,a ≤ tapivot} and F a = IP(t1,a ≤ tapivot | tapivot).

◮ la is the sum of independent Bernoulli(Fa) random variables.

◮ la/n
1
a is the maximum likelihood estimator of F a.

So how do estimate the distribution of F a | la?
◮ A naive solution: la/n

1
a . However, this ignores the randomness of tapivot .

◮ A more precise solution: Bernstein-von Mises theorem. Since the
distribution of F a | la is the posterior distribution, it is “close to” a normal
distribution, where n1

a is the cardinality of T 1,a.


