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Review of Model-X Knockoffs

Framework



Variable Selection with False Discovery Rate Control

Given response Y and p covariates X1, · · · ,Xp

Identify relevant covariates

Relevant subset H1 = {j ∈ [p] : Y 6⊥⊥ Xj |X−j}

Formulate as multiple hypothesis testing:

H0j : Xj ∈ H0 := Hc
1, j = 1, · · · , p

Aim to control FDR

FDR = E[FDP], FDP =
|Ŝ ∩H0|
|Ŝ | ∨ 1
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Existing Work

Large literature: Benjamini and Hochberg, 1995; Benjamini and

Yekutieli, 2001; Efron, 2007; Benjamini, 2010; Fan et al., 2012; ...

Most existing work relies on p-values

BH procedure sorts p-values in ascending order then chooses a cutoff

such that hypotheses with p-value below the cutoff are rejected

very popularly used

theoretically guaranteed to control FDR under p-value independence

and certain forms of dependence
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Potential problem: Valid p-value?

A fundamental assumption for p-value

based procedures: uniform distribution

of p-value under null hypothesis

However, in logistic regression with n = 500

p = 200 and under global null: non-uniform null

distribution (Candès, Fan, Janson and Lv (2018))
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Model-X Knockoffs Framework

Introduced in Candès, Fan, Janson and Lv (2018)

Bypass the use of p-values to achieve FDR control

Model-free: any model for the conditional dependence Y |X1, · · · ,Xp

Dimension free: any dimension (including p > n)

Known covariate distribution: joint distribution of X = (X1, · · · ,Xp)

is known

Guarantee finite-sample FDR control

Intuition:

Generate “fake” copies of (X1, . . . ,Xp) which are irrelevant to Y but

mimics the dependence structure of (X1, . . . ,Xp)

Act as controls for assessing importance of original variables
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Model-X Knockoff Variables

Definition (Candés, Fan, Janson and Lv, 2018)

Model-X knockoffs for the family of random variables X = (X1, · · · ,Xp)

are a new family of random variables X̃ = (X̃1, · · · , X̃p) constructed such

that

for any subset S ⊂ {1, · · · , p},

(X , X̃ )swap(S)
d
=(X , X̃ )

X̃ ⊥⊥ Y |X

Example: (X1,X2,X3, X̃1, X̃2, X̃3)swap(2,3) = (X1, X̃2, X̃3, X̃1,X2,X3)
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Example: Generating Knockoff Variables

Example: Consider X
d∼ N(0,Σ)

construct (X , X̃ )
d∼ N(0,Σaug), where

Σaug =

(
Σ Σ− diag(r)

Σ− diag(r) Σ

)

and diag(r) ≥ 0 such that Σaug > 0. Then

X̃ |X d
= N((Ip − Σ−1diag(s))X , 2diag(s)− diag(s)Σ−1diag(s))

Important observation: knockoff variables are not unique
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The Knockoffs Procedure

1 Construct model-X knockoff variables

X̃ ∼ F (·|X)

2 Compute knockoff statistics W̃j ’s

A large positive W̃j : Xj is more important than X̃j

Null variables: W̃j should be symmetric around 0

Eg: Regression Coefficient Difference

W̃j = |β̂j | − |β̂j+p|;
Marginal correlation difference W̃j = |XT

j y| − |X̃
T

j y|

3 Select relevant variables:

Find the knockoff threshold τ̂ > 0

Select only variables with W̃j ≥ τ̂

Ideal knockoffs 
procedure

Ideal distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
'𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics '𝑊!
"𝑠

Set of selected variables
𝑆
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Exact FDR Control

Theorem (Candés, Fan, Janson and Lv, 2018)

Letting

τ̂+ = min

{
t > 0 :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t}

≤ q

}
(Knockoffs+)

and setting Ŝ = {j : Wj ≥ τ̂+}, controls the usual FDR,

E

[
|Ŝ ∩H0|
|Ŝ | ∨ 1

]
≤ q.

Intuition:

FDR = E

[
#selected null variables

#selected variables

]
= E

[
#{null Wj ≥ τ̂}

#{Wj ≥ τ̂}

]
≈ E

[
#{null Wj ≤ −τ̂}

#{Wj ≥ τ̂}

]
≤ E

[
#{Wj ≤ −τ̂}
#{Wj ≥ τ̂}

]
≤ q
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Practical Implementation
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Practical Implementation

Exact knowleadge of the joint distribution of the covariates

X = (X1, . . . ,Xp) is unavailable

What if misspecified or estimated feature distribution is applied to

generate knockoffs?
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Robustness of Approximate

Knockoffs Procedure



Numerical Evidence

Y = Xβ + ε, where ‖β‖0 = 30, p = 1000 and n = 500

X
d∼ tν(0,Σ), Σi,j = ρ|i−j|

Mis-specify the covariate distribution as N(0, Σ̂) and generate X̃

from the mis-specified distribution

Knockoff statistics constructed as lasso coefficient difference

ρ 0 0.5

ν 5 10 50 100 5 10 50 100

FDR 0.203 0.204 0.194 0.179 0.145 0.162 0.171 0.157

Table 1: FDR control based on 100 replications; target q = 0.2

I Additional numerical evidence: Candès et al.(2018); Sesia et al.,

(2019); Jordon et al. (2018); Lu et al. (2018); Zhu et al. (2021);

Romano et al.(2020), ...

I Can we theoretically characterize to what extent it can be robust to

the mis-specified distribution?
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Existing results

Fan, Lv, Sharifvaghefi, and Uematsu (2020): linear model setting

where the features follow a latent factor model with parametric

idiosyncratic noise

Fan, Demirkaya, Li, and Lv (2020): theoretical guarantee on the

robustness when the features have the joint Gaussian distribution,

assuming Lipschitz continuity for the FDR function
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Barber Candés and Samworth (2020)

Approximate knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

Coupled ideal 

Ideal conditional distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
/𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics

 /𝑊!"𝑠

Set of selected variables
S

Close in distribution, but not in realizations!
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Continued

Barber, Candés and Samworth (2020):

If an approxiate feature distribution F̂ (·) is used, the resulting FDR

is bounded by

FDR ≤ min
ε≥0

{
q · eε + P

(
max
j∈H0

K̂Lj > ε
)}
,

where K̂Lj ’s measure the distance between the approximate and

coupled true conditional distributions of Xj |X−j

General results without assumption on the parametric forms of

covariate distribution
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Continued

Barber, Candés and Samworth (2020):

Two important assumptions:

F̂ (·) should be learned independently from the traning data

maxj∈H0 K̂Lj
p→ 0

These two assumptions do not always describe the practical

implementation

Independent training data may not be available

In the t-distribution example, their theory requires at least

ν2 � n min(n, p) for ensuring lim supn→∞ FDR ≤ q
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Robust Knockoffs Inference via

Coupling



Coupling Idea

Approximate knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

Coupled ideal 

Ideal conditional distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
/𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics

 /𝑊!"𝑠

Set of selected variables
S

Key coupling idea: need to be close in realization, not distribution!
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Outline for Our Theoretical Results

A specific example to illustrate the idea

General theory
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Example 1: Knockoffs for Multivariate t-Distribution

X
d∼ tν(0,Ω−1) with unknown ν and Ω−1

Precision matrix Θ := [Cov(X )]−1 = ν−2
ν Ω

Effective estimator Θ̂ constructed using data X

Common practice: construct approximate knockoffs data matrix X̂

from Gaussian distribution with matched first two moments

(N(0, Θ̂
−1

))

X̂ = X(Ip − rΘ̂) + Z(2rIp − r2Θ̂)1/2,

where r > 0 is a positive constant and Z independent of (X, y) and

consists of i.i.d. N(0, 1)

A misspecified feature distribution is used
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Example 1: Knockoff Variables Coupling

Questions: Does there exist an ideal knockoff variable matrix X̃ that is

close in realization to X̂?
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Example 1: Knockoff Variables Coupling

X̂ = X(Ip − rΘ̂) + Z(2rIp − r2Θ̂)1/2

Coupled ideal knockoffs data matrix:

X̃ = X(Ip − rΩ) + diag(
1√
Q/ν

)Z(2rIp − r2Ω)1/2,

where diag( 1√
Q/ν

) = diag( 1√
Q1/ν

, . . . , 1√
Qn/ν

) with {Qi}ni=1
d∼ X 2

ν

i.i.d.

Important: r and Z are exactly the same as those used in

constructing X̂
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Example 1: Knockoff Variables Coupling

Proposition 1. Assume max1≤j≤p(‖Ωj‖0 + ‖Θ̂j‖0) ≤ ρn almost

surely, and ρn

√
log p
n → 0 and ρnν

−1/2 → 0, and that with

probability 1− o(1), it holds that ‖Ω̂− Ω‖2 . ρn(n−1 log p)1/2.

Then as ν ≥ 9 and log p = o(n1−4/ν), we have with probability

1− o(1)

max
1≤j≤p

n−1/2‖X̂j − X̃j‖2 . ρn(n−1 log p)1/2 + ν−1/2.

The rate ρn(n−1 log p)1/2 for precision matrix estimation has been

verified in many existing works (Cai, Liu and Luo, 2011; Fan, Liao and

Liu, 2016; Fan and Lv, 2016)

ν−1/2 measures the effect of mis-specified distribution

21



Approximate knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

Coupled ideal 

Ideal conditional distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
/𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics

 /𝑊!"𝑠

Set of selected variables
S

How Ŵj ’s depend on X̂j ’s depend on the specific construction

Consider regression coefficient difference (RCD) in linear model as

an example
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Example 1: RCD Knockoff Statistics Coupling

y = Xβ + ε

ε
d∼ N(0, σ2In)

s = ‖β‖0

Sub-Gaussian features X ∈ Rp with E(X ) = 0 and Cov(X ) = Σ

Augmented design matrices X̂ aug = (X , X̂ ) and X̃ aug = (X , X̃ )
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Example 1: RCD Knockoff Statistics Coupling

Debias lasso (Zhang & Zhang, 2014) estimator β̂ = (β̂j)1≤j≤2p

based on (X̂
aug
, y):

β̂j = β̂lasso
j +

ẑ>j
(
y− X̂

aug
β̂
lasso)

ẑ>j X̂
aug

j

,

where ẑj = X̂
aug

j − X̂
aug

−j γ̂ j and γ̂ j is lasso coefficient by regressing X̂j

on X̂−j

Coupled debiased Lasso estimator β̃ = (β̃j)1≤j≤p based on (X̃
aug
, y):

β̃j = β̃lasso
j +

z̃>j
(
y− X̃

aug
β̃
lasso)

z̃>j X̃
aug

j

for 1 ≤ j ≤ 2p,

where z̃j is the score vector given by

z̃j = X̃
aug

j − X̃
aug

−j γ̃ j
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Example 1: RCD Knockoff Statistics Coupling

Key for pairing: all the regularization parameters in the lasso

algorithm used to compute β̃
lasso

and γ̃ j are the same as those

applied to compute β̂
lasso

and γ̂ j

RCD knockoff statistics Ŵj = |β̂j | − |β̂j+p|

Coupled perfect counterpart W̃j = |β̃j | − |β̃j+p|

Corollary 1. Assume conditions in Proposition 1. Under some regularity

conditions on model sparsity and restricted eigenvalues, we have with

probability 1− o(1)

max
1≤j≤p

|Ŵj − W̃j | .
(
ρn(n−1 log p)1/2 + ν−1/2︸ ︷︷ ︸

coupling error of X̂

)
× (s

√
n−1 log p)︸ ︷︷ ︸

L1 estimation error of β̂
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Example 1: FDR Control

Theorem 1. Under some regularity conditions on the model sparsity,

restricted eigenvalues and signal strength, if ν � s2(log p)2+2/γ with

γ ∈ (0, 1), we have

lim sup
n→∞

FDR(Ŝ) ≤ q.
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Example 1: Compare with Existing Result

Consider the special case of Ω = Ip and known

Barber Candés and Samworth (2020): Theorem 1 therein requires at

least ν �
√
nmin(n, p) for ensuring lim supn→∞ FDR ≤ q

Under the setting of linear regression model and RCD knockoff

statistics, our theory requires ν � s2(log p)2+2/γ for

lim supn→∞ FDR ≤ q, where 0 < γ < 1

In Barber Candés and Samworth (2020), large n means large ν; our

condition on ν is free of n

This improvement shows some potential advantage of our coupling

technique in the robustness analyses

Additional examples in our paper
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General Theory



General Theory

Three steps:

Step 1 Construct approximate knockoffs

data matrix X̂ using a working

distribution F̂ (·)
Step 2 Compute approximate knockoff

statistics {Ŵj}pj=1, where Wj is a

function of ((X, X̂), y)

Step 3 Select relevant set

Ŝ = {1 ≤ j ≤ p : Ŵj > T} with a

data-driven threshold based on

{Ŵj}pj=1

Our theory has three layers,

corresponding reversely to the different

steps above

Approximate knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

28



Layer 1: A General Theory

Practical knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

Coupled ideal 

Ideal conditional distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
/𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics

 /𝑊!"𝑠

Set of selected variables
S
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Layer 1: Continued

Condition 1 (coupling accuracy on {Ŵj}pj=1). There exist perfect

knockoff statistics {W̃j}pj=1 and a sequence bn → 0 such that

P
(

max
1≤j≤p

|Ŵj − W̃j | ≤ bn
)
→ 1

Assume general conditions on concentration of W̃j , signal strength,

and weak dependence between {W̃j}; no specific model assumptions

In addition, denote G (t) = p−1
0

∑
j∈H0

P(W̃j ≥ t) and an →∞ as

the number of strong signals. Assume

(log p)1/γ sup
t∈(0,G−1(

c1qan
p )]

G (t − bn)− G (t + bn)

G (t)
→ 0 (1)
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Layer 1: FDR Control

Theorem 2. Under the above conditions, we have

lim sup
n→∞

FDR(Ŝ) ≤ q.

A general theory of on the asymptotic FDR control for the

approximate knockoffs inference

Layer 1 is related to the third step in ARK procedure (selecting

relevant features based on {Ŵj}pj=1 )

31



Layer 2: Knockoff Variables Coupling

Approximate knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

Coupled ideal 

Ideal conditional distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
/𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics

 /𝑊!"𝑠

Set of selected variables
S
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Layer 2: Continued

X̂ ∈ Rn×p: approximate knockoff variable matrix

X̃: perfect counterpart

their realizations need to be close

Condition 2. (Coupling accuracy on X̂) There exists a perfect knockoff

data matrix X̃ and a sequence ∆n → 0 such that

P
(

max
1≤j≤p

n−1/2‖X̂j − X̃j‖2 ≤ ∆n

)
→ 1

In the t distribution example: ∆n ∼ ρn
√

(log p)/n + ν−1/2
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Layer 2: Knockoff Variables Coupling

Layer 2 is related to the second step in ARK procedure (computine

approximate knockoff statistics {Ŵj}pj=1 based on (X̂,X, y)

Different knockoff statistics depends on the feature matrix differently

We have verified that for RCD, it holds that

Condition 2⇒ max
j
|Ŵj − W̃j | ≤ op(∆n · s

√
n−1 log p)

Our paper also verified a similar result for marginal correlation

difference statistics
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Layer 3: Existence of Coupled Knockoff Variables

Approximate knockoffs 
procedure

Approximate distribution 
!𝐹(⋅ |𝑿)

Approximate knockoff variables
!𝑋 ∼ !𝐹(⋅ |𝑿) 

Approximate knockoff statistics 
*𝑊!"𝑠

Set of selected variables
-𝑆

Coupled ideal 

Ideal conditional distribution 
𝐹(⋅ |𝑿)

Ideal knockoff variables
/𝑿 ∼ 𝐹(⋅ |𝑿) 

Ideal knockoff statistics

 /𝑊!"𝑠

Set of selected variables
S
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Layer 3: Existence of Coupled Knockoff Variables

Layer 3: We present specific constructions for the coupled knockoff

variables and verify Condition 2

Layer 3 is corresponding to the first step in the ARK procedure

(Constructing knockoffs variables using approximate feature

distribution F̂ (·))

Intuition: X̂→ X̃ and Ŵj → W̃j as F̂ → F

We have shown three examples of misspecified or estimated feature

distributions that Condition 2 holds:

P
(

max
1≤j≤p

n−1/2‖X̂j − X̃j‖2 ≤ ∆n

)
→ 1
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Summary

We have investigated the robustness of the model-X knockoffs

framework

The approximate knockoffs procedure can achieve asymptotic FDR

control as the sample size diverges in the high-dimensional setting

Our theoretical analysis relies on the key idea of coupling – to pair

statistics in the approximate knockoffs procedure with those in a

perfect knockoffs procedure so that they are close in realizations

We also showcase specific constructions of such coupled approximate

and perfect knockoff variables

Our paper also contains results for k-FWER control
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Thank you!
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Example 2: Gaussian Knockoffs

X
d∼ N(0,Ω−1) with unknown precision matrix Ω

Effective estimator Ω̂ for Ω

Approximate knockoff data matrix

X̂ = X(Ip − rΩ̂) + Z(2rIp − r2Ω̂)1/2,

where r > 0 is a constant and Z = (Zi,j) ∈ Rn×p is independent of

(X, y) with i.i.d. entries Zi,j
d∼ N(0, 1)

Coupled perfect knockoff data matrix

X̃ = X(Ip − rΩ) + Z(2rIp − r2Ω)1/2,

Z and r are identical as those used in constructing X̂.



Example 2: Knockoff Variables Coupling

Proposition 2. Assume max1≤j≤p ‖(Ωj‖0 + ‖Ω̂j‖0) ≤ ρn almost surely

with ρn

√
log p
n → 0, and with probability 1− o(1), it holds that

‖Ω̂− Ω‖2 . ρn

√
log p
n . Then with probability 1− o(1)

max
1≤j≤p

n−1/2‖X̂j − X̃j‖2 . ρn

√
log p

n
.



Example 2: RCD Knockoff Statistics Coupling

Consider RCD based on debiased Lasso: Ŵj = |β̂j | − |β̂j+p|

Corollary 2. Assume conditions in Proposition 2. Under some regularity

conditions on model sparsity and restricted eigenvalues, we have with

probability 1− o(1)

max
1≤j≤p

|Ŵj − W̃j | .
(
ρn

√
log p

n

)
︸ ︷︷ ︸

coupling error of X̂

× (s
√

n−1 log p)︸ ︷︷ ︸
L1 estimation error of β̂

.



Example 2: RCD Knockoff Statistics Coupling

Conditions

It holds that |H1|−1
∑

j∈H1
P(W̃j < −t) ≤ G (t) for all

t ∈ (0,C3

√
n−1 log p) with C3 > 0 some large constant.

an :=
∣∣{j ∈ H1 : |βj | �

√
n−1 log p}

∣∣→∞.

Theorem 2. Under the above two conditions and some regularity

conditions on sparsity and restricted eigenvalues, if

sρn(log p)3/2+1/γ = o(
√
n) with γ ∈ (0, 1), we have

lim sup
n→∞

FDR(Ŝ) ≤ q.



Example 2: Compare with Existing Result

Barber Candés and Samworth (2020): Theorem 1 therein requires

an independent unlabeled training data set with sample size N

satisfying N � nρn(log p)2 for ensuring lim supn→∞ FDR ≤ q

Under the setting of linear regression model and RCD knockoff

statistics, our theory requires sρn(log p)3/2+1/γ/
√
n→ 0 for

lim supn→∞ FDR ≤ q for some 0 < γ < 1

Our technical analysis do not require data splitting or an

independent training sample
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