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“ ”… the method that performs consistently well across all dimensions is random forests, 
followed by neural nets, boosted trees, and SVMs.  [11 datasets]

- Caruana, Karampatziakis, Yessenalina (2008)

“ ”The classifiers most likely to be the best are the random forest versions.  
[121 data sets, 179 models]

- Fernandez-Delgado, Cernadas, Barro, Amorim (2014)

“ ”The post-hoc test underlines the impressive performance of Gradient Tree 
Boosting, which significantly outperforms every algorithm except Random Forest 
at the p < 0.01 level.  [165 data sets, 13 models]

- Olson, Randal S., et al. (2018)



A decision tree is a piecewise constant model obtained 
from recursive partitioning of the covariate space
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Random forests (RFs) and Gradient Boosted Trees 
combine decision trees in an ensemble

X1> b

X2> a
+ + …



Drawbacks of RFs / gradient boosting

● Unclear how to perform uncertainty quantification

● Greedy splitting criterion may lead to ensemble models being stuck in local optima

● Inefficiency with additive structure [Tan, Agarwal, Yu (2021)]

Overcome these drawbacks using a Bayesian formulation of tree ensembles



How does BART work?

Bayesian nonparametric regression

Step 1: Define prior on space of 
regression functions

Step 2: Combine prior and data 
likelihood to get posterior

Step 3: “Sample” from posterior 
using MCMC

Randomized tree ensemble method

Trees in ensemble are grown using 
probabilistic moves



BART has become widely used in the applied 
statistics community
● Social sciences [Green and Kern (2010), Yeager et al. (2018), Dorie et al. 

(2019), …]
● Biostatistics [Wendling et al. (2018), Starling et al. (2020), …]

● Several popular software implementations: dbarts, BART, bartCause, 
bartMachine (15K combined monthly downloads)



Theoretical analysis of BART

BART posterior has good predictive and inferential properties

● Posterior concentration around true regression function at minimax rate
○ Sobolev/Holder smoothness [Rockova and Saha, 2019], [Linero and Yang, 2018 ], [Rockova 

and van der Pas, 2020], …
○ Anisotropic and heterogeneous smoothness [Jeong and Rockova, 2020], [Rockova and 

Rousseau, 2023], …

● Variable selection consistency [Linero, 2018], [Liu et al., 2021]

However: Can only access the posterior approximately via MCMC.



Theoretical analysis of BART

BART posterior has good predictive and inferential properties

However: Can only access the posterior approximately via MCMC.

We would like to know:

● How close is the approximate posterior to the true posterior?

● How long must we run the chain to achieve convergence?

Or in technical terms, what is the mixing time of the BART MCMC? 



Seems to be “folklore” in the literature, but no rigorous study

Problem: MCMC chain does not mix well

“... while this algorithm is often effective, it does not always mix well, 
and recent work suggests that it can be important to run many chains 
(as many as 10 or 12) to encourage proper mixing (Carnegie 2019)...”

“... warm-start initialization yields considerable improvement in the 
estimation, which may indicate inadequate chain length of BART (that 
is, poor mixing)...”



Rest of this talk:
1. How does BART work? 

2. How to frame computational lower bounds for BART?

3. Hitting time lower bounds for BART and practical 
takeaways



Part 1: How does BART work? (more details)

A. Parameterization of space of regression trees

B. Priors and likelihoods

C. MCMC algorithm



Parameterization of space of regression trees
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Binary tree structure 

● Tree topology ?
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Parameterization of space of regression trees

X1> b

X2> a
Binary tree structure 

● Tree topology
● Splitting rule for each internal node

Values on each leaf in partition

Assume covariate space is *

*In practice, BART “discretizes” features



Prior for tree structure

Defined in terms of stochastic process

● Start with trivial tree
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Defined in terms of stochastic process

● Start with trivial tree

Features: {1, 2, ….               d}i

Thresholds: {1, 2, ….               m-1}a

● With probability p, split root node (else 
stop)

Xi> a

● If node is split, draw split feature and 
threshold uniformly at random, i.e.



Prior for tree structure

Defined in terms of stochastic process

● Start with trivial tree

● With probability p, split root node (else 
stop)

● If node is split, draw split feature and 
threshold uniformly at random, i.e.

Xi> a

Features: {1, 2, ….               d}

Thresholds: {1, 2, ….               m-1}

i

a

● Repeat with each newly created node

Xj> b



Prior for leaf values 

Data likelihood

Independent Gaussian likelihood for errors in 

responses

…

…

Independent Gaussian priors for the leaf values



MCMC algorithm

Decompose posterior

Have closed form expression

Will use Metropolis-Hastings. 4 proposal moves:

1. Grow Xi> a

Xj> b

Xi> a

Xj> b

Xk> c
 Grow

Hence just need to perform MCMC for space of trees        to sample from
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Decompose posterior

Have closed form expression

Will use Metropolis-Hastings. 4 proposal moves:
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2. Prune

3. Change

4. Swap

Xi> a

Xj> b
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Xj> b

Xi> a
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MCMC algorithm

Decompose posterior

Have closed form expression

Will use Metropolis-Hastings. 4 proposal moves:

1. Grow

2. Prune

3. Change

4. Swap

Hence just need to perform MCMC for space of trees        to sample from

Pick a move at random

Apply accept-reject filter



BART with multiple trees

Convention: Use m trees

Parameterization and priors:

● Each tree is parameterized in the same way as before

● Regression function f is defined as the sum of the functions for each tree

MCMC
● Combine Gibbs sampling with Metropolis-Hastings



BART with multiple trees

Iteration 1: ……

Iteration 2: …

…Iteration 0:

Convention: Use 100 burn-in iterations, then 1000 iterations for computing “posterior”



Part 2: How to frame computational lower bounds?

A. Prior work on mixing time lower bounds for BART

B. What is wrong with this definition?

C. How to fix it?



A frequentist analysis of computational lower bounds

Assume we observe training dataset comprising n i.i.d. samples

Warning: Generative distribution can and will be different from Bayesian 
parameterization!



Defining the mixing time

Q - Transition kernel

π - Stationary distribution
t - time step of the Markov 
chain

T - initialization
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T - initialization



Previous result with

Theorem (informal): Mixing time for BART with 
one tree grows exponentially in the sample size.

[Ronen, Saarinen, Tan, Duncan, Yu (2022)]

“ ”This paper has the potential to be a significant contribution to the BART literature. 
However, I believe that the paper is missing a crucial discussion about whether 
mixing in tree space is practically relevant or even necessary.

- Reviewer #3



What is wrong with            

?

Whereas BART MCMC initializes 
from empty tree ensemble

Whereas what we care about is 
the realized regression function

1. Worst case over all 
initializations

2. MCMC is over space of tree 
parameters



BART tree parameters are not identifiable



BART tree parameters are not identifiable



Fix this using hitting times for highest posterior 
density regions (HPDR)

Proposition: OPT is a HPDR and BART posterior 
concentrates on OPT as n → ∞.

Tan, Ronen, Saarinen, Duncan, Yu (2023, in preparation)



Part 3: Hitting time lower bounds and takeaways

A. Proof recipe

B. 3 hitting time lower bounds

C. Practical takeaways



Proof recipe



Result 1: Lower bounds for additive models

Def: (Additive model)

Theorem 1 (informal): If  f* is additive, m ≤ m’, then

Recall: BART model is

If furthermore, m < m’, and we allow only grow and prune moves, then



Simulate f* linear, with m’ = 5.



Simulate f* linear, with m’ = 5.

(m < m’) Inefficient representation 
[Tan et al. (2021)]

m’ = 5

(m ≤ m’) Theorem 1 shows 
computational bottleneck

(m ≤ ?) Simulation shows 
computational bottleneck persists



Other results

Assume only grow and prune moves are allowed.

Theorem 2 (informal): If  f* contains a pure interaction, then

OPT*: All trees with zero bias
E.g. XOR function



Other results

Theorem 2 (informal): If  f* contains a pure interaction, then

Assume only grow and prune moves are allowed.

Theorem 3 (informal): If we fit BART with only one tree (i.e. 
m=1),  then



What do our results mean for practice?

Short-term

● Should run multiple MCMC chains and average the results

● Should not take BART credible intervals at face value

Long-term

● BART sampler has large room for improvement

○ Temperature control

○ Using “informed” proposals instead of uniform proposals

○ More global proposal moves



Key Contributions

● Created framework for meaningful computational lower bounds for BART

● First analysis of BART with multiple trees

● Provide HPDR hitting time lower bounds for BART under three different 
settings, show that they grow with sample size

● Extensive simulation study (in the paper)

● Obtain insights on why BART sampler may experience computational issues 
and suggests how to overcome them.

Paper to appear on arxiv soon (a few weeks)!


