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Goal of this talk: Under the (compressible) Euler scaling on the (Vlasov-
Maxwell-Boltzmann).~q system (e : Knudsen number, non-dimensional),

@ to construct an almost global smooth solution such that

sup £ = Miz a 7ye ll(2nese)2ga12)

0<t<T,
+ sup [[(E%, B%) = (E.B)|zruee S&*7°
0<t<T,
with
a(t, x |v —a(t,x)? X)|
M - #(t, x,v) = ———"———
pan(txv) = oo ]3/2 A R
1 1
Te~n ——, 0<a< o,
Noe? +¢e27°2 2

where (p, I, T,E, B) is a g/oba/ smooth solution to the compress-
ible Euler-Maxwell near (1,0, 2,0,0) with a small amplitude 7o > 0
independent of €.
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Remark:

@ The robust L2 N L>(wdv) approach in low-regularity function spaces
by Guo seems not applicable in case of the non-relativistic VMB.

@ However, we are able to design e-dependent energy functional Ey (t)
and corresponding dissipation functional Dy (t) to close the a priori
estimate

t 1
sup [&v,g(t) + C/ Dnc(s) ds] < Zg2)
0<t<r 0 2

L* bound of solutions is a consequence of Sobolev embeddings.

@ e-singularity of Ey.(t) and Dy (t) occurs to the highest-order
derivatives.

4/36



Boltzmann equation (1872):
e The unknown:

F=F(t,x,v) >0, t>0,xc QCR}veR3
the velocity distribution function of particles in a rarefied gas.

e Governed by
{0t + v -Vi}F= Q(F,F) ,
—_——— ——

free transport binary collision

with the Boltzmann collision operator

Q(G.F)(v) = /R /S B(v — u,0)[G(/)F(V') — G(u)F(v)] dodu,

gain loss

where
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satisfying

v+u=v +1,

VI + [ul? = [V + [

0: deviation angle
cosf =o-

v—u _ v —u . v—u
lv—u] = v/ =u'|  |v—u|
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Collision kernel:
B(v —u,0) = |v — u|”b(cos ),

@ non-cutoff:

s

< sinfb(cos ) < Cs Vo e (0, 5],

Cb91+25 — 91+2s ’

G, >0, 0<s<l.

A physical example: For potential U(r) = r=* (¢ > 1) (inverse
power law),

s=-

-4
T A

o cutoff (H. Grad):

/2
/ sin @b(cos 0) df < .
0
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Basic properties of Q(F, F):

@ Collision invariants:

. d(v)Q(F, F)(v)dv =0 for ¢(v) =1, v, |v|2.

@ Entropy-entropy product: For a solution F = F(t,x, v) satisfying
OtF + v -V F = Q(F, F),

at/ FInFdv+Vy- | vflnFdv
R3 R3

—— [ Q(F,F)InFdv <0,
R3

where = holds iff Q(F,F) = 0 holds, iff F is taken as a local
Maxwellian:
p(t, x)

M = Mg . a(t, x,v) =
[ 71179] Ny —
’ (27RA(t, x))? 2R0(t, x)
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Long time dynamics:

It would be expected that the mesocopic motion by
OF+v-VF=Q(F,F)

is getting in large time close to the dynamics for
F(t,x,v) = M 5.9(t,x, v)

governed by the local conservation laws:
O [ S(v)F(t,x,v) dv+VX~/ vo(v)F(t,x,v)dv =0,
R3 R3

$(v) =1,v, |v[?
and the entropy inequality:

at/ FIanv+VX~/ vfin Fdv <0.
R3 R3
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These are approximately equivalent with the compressible Euler system:

0ep+ Vs - (70) = 0,

) de(pd) + V- (pi @ @) + Vp = 0,

¢ [p(0 + 31a1*)] + V- [pa(0 + 31a1)] + Vx - (pT) =0,
_ = 2 _=
p=Rpt = pb,

with the entropy inequality

AL 93/2)+VX (pdln 93/2) <0.

Rigorous justification?

Cf. Chapter 6 of Hydrodynamic Limits of the Boltzmann Equation by
Laure Saint-Raymond.

10/36



Analytical framework:

For the Boltzmann with cutoff,

@ Nishida (1978): abstract Cauchy-Kovalevskaya + spectral analysis
of linearized Boltzmann equation

@ Ukai-Asano (1983): contraction mapping with time-dependent
norm, include initial layer.
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Hilbert expansion:

We start from Boltzmann equation (cutoff, hard potentials 0 < v < 1):
1
OtF® +v -V F = =Q(F%, F°).
5

The solution F¢ is found via the Hilbert expansion:

6
Fe=Fo+» e"Fo+e°Fg,

n=1
where Fy, - - -, Fg are independent of €. As a consequence,
Vi p(t, x |v —a(t,x
Fo =M= My57(t:xv) ::p(f— xp { — 2T(t a 2
27 T(t,x))3 x)

where fluid parameters (p, i, T)(t, x) are the solutions of the compressible
Euler system. Then the remainder F3 satisfies

R _
OcFg + v ViFg ——{Q(M, FR) + Q(Fg, M)} = £ Q(F, Fg) +

linearization around a given Euler flow
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Theorem (Caflisch 1980)

Let Q =T, [5, @, T|(t,x1) be a smooth solution without vacuum to the
Euler system over [0,7] and M = M5,5,7)(t,x1, v). There is g > 0 such
that for each 0 < ¢ < gg, a smooth solution F¢ to the cutoff Boltzmann
equation 0;F° + v - V F¢ = %Q(FE,FE) with 0 < v < 1 exists for
0< t<T with
sup ||[FE = M| < Cre,
0<t<T oY

where C, is independent of .
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Proof:
@ Construct smooth profiles F; (1 < 6) iteratively:
Fi(t,x,v) < CIEP'M

in particular, F; cubic growth in large v due to v10y, Fo = vlaxﬁ.

@ Cutoff assumption is essential, so can use Grad's splitting L = —v+K.
To overcome large-velocity growth, develop a decomposition:

Fr= VMg + \/iimh
R g H

low v part  high v part

W2y i
where pi, = (2 = exp { — 2Tm} with T, > max T(t,x) so that
Um > cM. Split K correspondlngly as

Kh = X|v|§MKh + X|v\>MKh'

@ Show contraction in Hy L3°. Choice for initial data: g(0) = h(0) =0,
so Fr(0) = 0. Loss of positivity of ID and hence solutions.
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Instead of using Caflisch's decomposition, Guo-Jang-lJiang (2010) ap-
plied the L2-L>° approach:

Let Q = R3 or T3. Write F§ = V/MF®, then

DFF + vV, Fe — %{Q(M VM) + Q(V M M)}

{0tV VM,
= N £+

(+) ~ (0r, D)l v|*F*

L? estimate on € meets an obstacle.

Idea: Let
£ — £ 1 £
Fi= (L4 V) b =
w(v)
_3 lv[? =
m = (27 T) 2exp(f—), Tm <max T(t,x) <2Tp,
2T t,x

/(*)fﬁ ~ 110, Bx)al| 2| A o= (| €] 2-
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Then h® satisfies
1 — 1
Oh® + v -Vih® + —v(M)h® + =K, h* = -,
€ €
where K,,g = wK(£) and

1
N

Strategy of estimates:

{QM. \/iimg) + Q(Viimg, M)} = (v(M) + K)g.

@ Use L2 norm of € to control the low-order velocity part and L norm
of h® for the large velocity part.

@ Obtain L™ estimate for €3/2h% along the trajectory in terms of L2
norm of £, close the estimates in L2 and apply the Gronwall argument
over [0, 7].

Theorem (Guo-Jang-Jiang 2010)

sup (201, + 1F5(0)lliz, ) < Crle®2NhGluse, 155 Nz, )-

0<t<r

16/36



Guo-Jang (2010) further obtained the global higher-order Hilbert expansion

2k—1
Fe =Y c"F,+eFq
n=0

to the Vlasov-Poisson-Boltzmann system.

Theorem (Guo-Jang 2010)
There exists a solution F*(t,x, v) to the VPB system in the Euler scaling:

1
OF* +v -V F 4+ V,¢° -V, F* = EQ(FE7 F®),

Dyt = /FE dv —1,

such that
12k—-3
Feé(t,- )M - - =(t.-. )| = <-—— k>6.
o NFE(E ) =Mz (8, )l = O(6), 0<m< 55— k=6

Here [, i, T](t,x) is the smooth solution around constant equilibrium for
the hydrodynamic compressible Euler-Poisson system with T = C [)%.

v
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Problems left:

@ What happens to the non-cutoff Boltzmann or Landau equation for
which the Grad's splitting is no longer available?

Still possible to obtain L> estimates using the De Giorgi argument
instead of the direct L?-L> interplay: Alonso-Morimoto-Sun-Yang
(arXiv 2020), Guo-Hwang-Jang-Ouyang (ARMA 2020), Kim-Guo-
Hwang (PMJ 2020),...but so far unknown to employ them for the
fluid limit, as need to obtain estimate uniform in €.

@ How to extend Guo-Jang's work to the VMB system where the self-
consistent electromagnetic field satisfying the Maxwell equations is
included?

Again, L2-L> interplay fails for the fluid limit, as one loses the
Glassey-Strauss representation, although it works for the relativistic
case; see a recent work by Guo-Xiao (CMP 2021).
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Our strategy:

@ Derive an e-dependent high-order energy estimates on basis
of the macro-micro decomposition of Liu-Yu (CMP,2002) and
Liu-Yang-Yu (Phys D 2004)
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VMB system for dynamics of electrons in R3:

OF+v-VF—(E+vxB) V,F=1Q(F,F),
8tE—VX><B:fR3dev,

0:B+V, x E=0,

Ve E=np— [psFdv, V., -B=0.

@ E = E(t,x) = (E1, Ez, E3)(t, x): self-consistent electric field
@ B = B(t,x) = (B, Ba, B3)(t, x): self-consistent magnetic field

@ np > 0 is assumed to be a constant denoting the spatially uniform
density of the ionic background. Take n, = 1 without loss of gener-
ality.
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For brevity we focus on the hard sphere model for the Boltzmann collision
operator:

QF )W) = [ [ 1tv =) wllA(W)RA) ~ A(Fa(v.)} do .

where w € S? is a unit vector in R, and the velocity pairs (v, v.) before
collisions and (v/, v}) after collisions are given by

Vi=v—[(v—w) ww, V.=v.+][(v—w) ww,
in terms of the conservations of momentum and kinetic energy:

vbve=vitv, P = VP v
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VMB system for the hard sphere model, global classical solutions near
global Maxwellians:

@ T3: Guo (2003)
@ R3: Strain (2006), D.-Strain (2011)
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Corresponding to VMB, the hydrodynamic description for the motion of
electrons at the fluid level is also given by the following compressible Euler-
Maxwell system which is an important fluid model in plasma physics:

Oep+ V- (pi) =0, _
D¢(p0) + Vs - (pi © ) + Vip = —p(E + 1 x B),
0.E —V, x B = pi,
0:B+V,yxE=0,

VX-E:nb—ﬁ, VXBZO

Here the unknowns are the electron density p = p(t, x) > 0, the electron
velocity & = (i, ip, 33)(t,x), and the electromagnetic field (E,B) =
(E, B)(t, x). Moreover, p = Kp5/3 is the pressure satisfying the power law
with the adiabatic exponent v = f. We take the physical constant K =1
without loss of generality.

Remark: It can be formally derived from the VMB system in the isentropic
case for the macro fluid system:

he]|

|
Il
—

§3/2
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Euler-Maxwell system in RY, global classical solutions near constant equi-
librium:

@ Germain-Masmoudi (2014), lonescu-Pausader (2014): d = 3, elec-
trons dynamics, method of space-time resonance

@ Guo-lonescu-Pausader (2016): d = 3, two-fluid model for electrons
and ions, can be relativistic

@ Deng (2017): d = 2, electrons dynamics

@ Many others for Euler-Poisson and results in T2 or T?

24/36



Proposition (lonescu-Pausader, JEMS 2014)

Let (p,a, E, B)(t,x) be a global-in-time smooth solution to the compress-
ible Euler-Maxwell system, and let 0(t, x) = 2p?/3(t, x), then the following
estimate holds for all t > 0:

3
27
+(1+1)°{lI(p - 1,8 -

||(ﬁ—1,17,9_— E’B)HW"’Dv2

w

5 B)lwn + [1(8, E) [wn. } < Co.

Here ¥ = 101/100, no > 0 is a sufficiently small constant and Ny > 0 is a
large integer, where integer N satisfies 3 < N < Ny.

v
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Macro-micro decomposition:

For a solution (F, E, B) to (VMB). system, we define
F=My,ue+ G,

with

= fR3 Po(v)F(t, x, v) dv,

p(t )u, (t,x) fR3 ¢, F(t,x,v)dv, fori=1,23,

p(t, x )[e(t,x) 2| u(t, x },fR3w4(v)F(t,x, v)dv.

Here 1;(v) are given by collision invariants

o) =1, i) = v (1=1,2.3), dulv) = 212
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Zero-order fluid-type (compressible Euler-Maxwell) system:

Otp+ Vi - (pu) =0,
Oe(pu) + Vi - (pu®@ u) + Vup + p(E + u x B)
=— [pv@v-V,Gdv,
De[p(6 + 2\u| )N+ Vi [pu(6 + 2|u| )+ pul +pu-E

= Jas 3IvPv- VG dv,

coupled to

OE—VyxB=pu 0,B+VyxE=0,
Ve -E=1-p, V.-B=0,

where the pressure p = Rpf) = 3pf.
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From
1 1
0tG+P1(v-VG)+Pi(v-VM)—(E+vxB)-V,G = ELMG—l—gQ(G, G),
we write
G = el [Pi(v - ViM)] + L)',
©:=¢€0:G+¢ePi(v-VG)—e¢(E+vxB)-V,G—-Q(G,G).
First-order fluid-type (compressible Navier-Stokes-Maxwell) system:
Oep+ Vi - (pu) =0,
Oe(pui) + Vi - (puju) + Ox,p + p(E + u x B);
=30 0 (1(0)Dy) — fpa vilv - Vily©) dv, i=1,2,3,
Oulp(0 -+ H|ul?)] + V.- [ou(6 + 3ul?) + pu] + pu - E
3 3
=D i 0x(K(0)00) + € 327 iy O (1(0)u;Dy)
— Jos AV[Pv - Vil © dv,
coupled to

OE—-VyxB=pu, 0B+V,xE=0,
Vy-E=1—p, V,-B=0.

Here, Djj = Oy ui + Oxuj — %5,-J-VX - u.
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Macro perturbation:
(p,0,6,E,B)(t,x)=(p—p,u—a,0 —8,E —E,B— B)(t, x).
Micro perturbation:
VEF(t,x,v) = G(t,x,v) — G(t,x, v),
where G(t,x, v) is given by

lv — u>V,0 n (v—u) Vi
2R6? RO

G(t,x, v)EeL,\_ﬂlPl{w( )M}

Note: It's the linearisation of the Chapman-Enskog part eL,' [P1(v- V. M)]
around Euler-Maxwell solutions.
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We define the instant energy as

)= Y {10°. 5,6, E, B)(®)|? + 10 F(1)]?}

Ja|<N—1

S D 7 {0] e

lol+IBI<N,|B]=1

+2 > {10°(5, .6, E, B)(B)I* + [0 F (1)},

lo|=N
and the dissipation rate as

Du(t)=e > [10°(B 50D+ > [9°F(t

| 2

1<]al<n o =N
1 1
+2 > IO F(O)I% + < > log F(L)II3-
NEE o +18] <. 8121
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Theorem (D.-Yang-Yu, M3AS 23)

Let (p,a,0,E,B)(t,x) be a global smooth solution to the compressible
Euler-Maxwell system given in Proposition. Construct a local Maxwellian
Mi5,5.5/(t: x,v). Then there exists a small constant g9 > 0 such that for
each ¢ € (0,e], the Cauchy problem on the Vlasov-Maxwell-Boltzmann
system with well prepared initial data

Fe(0,x,v) = M[p,a,e_](ovxv v) >0, (E%B%)(0,x)= (Ea B)(va)v

admits a unique smooth solution (F*(t, x, v), E(t,x), B(t,x)) forall t €
[0, T.] with

_r r
4G pgea 32

&3

1
f 0, =
or ae[,2),

where generic constant C; > 1 and small constant 19 > 0 are independent
of . Moreover, it holds that F¢(t,x,v) > 0 and

1/t 1
En(t) + = / Dp(s)ds < =272,
2 J, 2

for any t € [0, T.].
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Theorem (Conti)

In particular, there exists a constant C > 0 independent of € and T,.x
such that
Fe(t,x,v) — M5 5.5/ (t, x, v)
sup {|| 22
te[0,T.] Vi
Fe(t,x,v) — M[ﬁ#—,’g](t,x, v)
+ lligor2
Vi
+|I(E° — E,B° — B)(t,x)|l.2
+I(E° — B, B = B)(t, 1)l }
< CEl a
Note: For a = 1, we get the distance in L2 [° ~ g% uniformly in the

time interval [0, T.] with T. ~ £71/# that can be almost global.
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Remark:

Although the L2 — L approach works well for the Boltzmann with cutoff
potentials, in particular, for the hard-sphere model, it cannot be applicable
to the VMB case for the hard-sphere model, since one loses the Glassey-
Strauss representation for the electric-magnetic fields E and B that is true
in the relativistic case, for instance,

(w+0) 1f|v|) dy
4w E(t, x) / / t— |y —x|,y,v)dv———
ly—x|<t JR3 (1+V OJ)2 ( | | ) |y_X|2

+ other terms,

with 0 = v and w = X=%;. The relativistic velocity ¥ is bounded,
V14| v|? ly—x]

so the expression 1+ ¥-w is bounded away from 0, Guo-Xiao (CMP 2021).
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One point of the proof:
We use the bootstrap argument. Assume

1
sup En(t) <272, ae|0,3).
0<t<T 2

We are devoted to showing
1 ‘ 1 2—2a
En(t)+ = | Dn(s)ds < =¢ .
2 /o 2

Indeed, one can prove

EN(t)—i—/OtDN(s) dsgcl(noﬂé—a)/otm(s) ds

+ Gilno + €7 + (10? + €2 72)t]e? %2

We therefore require that
1 1 1
Ci(no +€%_a) < 5 Ci[no + £7 4 (nog? +e279)t] < >
yielding
1 1

1
0, = d t<Thoxx="——""7—-
ac [ ’2), an - a 4C1 7]053 +5%—a
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The key is obtain the estimate

ERRS {aa 5,0.0.E.BYOIP + [9°F(8)| +

2 / 107 F( ||2ds}
|a|=N

t
< C(no +a%*a)/ Dn(s)ds + Clno + €2 + (1oe? + £272)t]e2~22.
0

from

0:F  v-VF (E+v><B)-VVF:1£f+1r(M—u’f)

Vi Vi NG e e Vh
LygMopy 16 Gy 1luG
+ZT(f, 7 )+€r(\/ﬁ,\/ﬁ) v
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Thank you!
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