
Continued gravitational collapse for gaseous star and
pressureless Euler-Poisson system

Feimin Huang

Joint work with Yue Yao

Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Partial Differential Equations in Fluid Dynamics, Hangzhou, August 8th, 2023

F. Huang (AMSS ) Continued gravitational collapse August 8th, 2023 1 / 25



Background

The 3-d compressible Euler-Poisson (EP) system

∂tρ+ div(ρ~u) = 0,

ρ(∂t~u + (~u · ∇)~u) +∇P(ρ) + ρ∇Φ = 0,

4Φ = 4πρ, lim
|x |→∞

Φ(t, x) = 0, (1)

where ρ, ~u, P(ρ) and Φ denote the density, velocity, pressure, and the
gravitational potential respectively. Here P(ρ) = ργ , γ > 1.

1 < γ < 4
3 , supercritical-mass;

γ = 4
3 , critical-mass;

γ > 4
3 , subcritical-mass.
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Figure: Gaseous Star, download from Baidu
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Lane-Emden solution as γ ∈ (6
5 , 2)

4
3 < γ < 2, conditional stable, Rein, ARMA, 2003;

γ = 4
3 , instable, Deng-Liu-Yang-Yao, ARMA, 2002;

6
5 ≤ γ <

4
3 , instable, Jang, ARMA 2008, CPAM 2014.

The nonlinear stability of Lane-Emden stars is still open!
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Expanding solution

affine solution for Euler system, Sideris, ARMA 2017;

affine solution for EP system as γ = 1 + 1
n or γ ∈ (1, 14

13 ),
Hadžić-Jang, CMP 2019;

stability of affine solution for γ = 4
3 , Hadžić-Jang, CPAM 2018.
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Collapse solution

The collapsing solution describes the gravitational collapse of gaseous star.

no collapse for γ > 4
3 , Deng-Liu-Yang-Yao, ARMA 2002;

homologous collapse for γ = 4
3 , Goldreich-Weber, Astro-phys. J.

1980; Makino, Transp. Theory Stat. Phys. 1992;

continued collapse for 1 < γ < 4
3 , Guo-Hadžić-Jang, ARMA, 2021.

It is noted that Guo-Hadžić-Jang’s collapsing solution is based on a special
collapse solution of the pressureless EP system

∂tρ+ div(ρ~u) = 0,

ρ(∂t~u + (~u · ∇)~u) + ρ∇Φ = 0,

4Φ = 4πρ. (2)
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Main results

In this talk, we classify all spherically symmetric solutions of pressureless
EP system into the cases of escape and collapse.

∃!v∗(r) > 0 such that

1) escape: if the initial velocity χ1(r) ≥ v∗(r), then the dust escapes away
from the gravitational force forever;

2) collapse: if χ1(r) < v∗(r), then the dust collapses at the origin in a
finite time t∗(r) even it may expand initially, i.e., χ1(r) > 0.

Moreover, we prove that there exist a class of spherically symmetric
solutions of the original EP system (1), which formulate a continued
gravitational collapse in finite time, based on the pressureless EP solutions
if χ1(r) < v∗(r).
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Problem

Consider the gaseous star surrounded by vacuum. Denote Ω(t) as the
support of ρ(t, ·) with a boundary ∂Ω(t), V∂Ω(t) as the normal velocity of
∂Ω(t), and ~n(t) as the outward unit normal vector to ∂Ω(t).

Assume a physical vacuum condition on the initial data, that is,

−∞ < ∇(
dP

dρ
(ρ)) · ~n

∣∣∣
∂Ω(t)

< 0. (3)
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Reformulated problem

Scaling transformation

ρ = ε̄−3ρ̃(s, y), ~u = ε̄−
1
2 ~̃u(s, y), Φ = ε̄−1Φ̃(s, y), (4)

where
s = ε̄−

3
2 t, y = ε̄−1x .

Then the rescaled variables (ρ̃, ~̃u, Φ̃) satisfy

∂s ρ̃+ div(ρ̃~̃u) = 0,

ρ̃(∂s~̃u + (~̃u · ∇)~̃u) + ε∇P(ρ̃) + ρ̃∇Φ̃ = 0,

4Φ̃ = 4πρ̃, lim
|x |→∞

Φ̃(t, x) = 0, (5)

where ε = ε̄4−3γ will be chosen small later, Ω̃(s) = ε
− 1

4−3γ Ω(t).
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Lagrangian coordinate

Assume Ω̃ is the unit ball {y ∈ R3 : |y | ≤ 1}. Let η : Ω̃→ Ω̃(s) be the
solution of

∂sη(s, y) = ~̃u(s, η(s, y)),

η(0, y) = η0(y). (6)

Introduce the ansatz:

η(s, y) = χ(s, r)y , r = |y |, r ∈ [0, 1] (7)

which leads to

χss +
G (r)

χ2
+ εP[χ] = 0, (8)

P[χ] :=
χ2

ωαr2
(r∂r )(ω1+αF [χ]−γ), (9)
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Continuation · · ·
where α , 1

γ−1 ,

F [χ] = χ2(χ+ r∂rχ) (10)

is the Jacobian determinant of Dη, and ω(r) is the enthalpy defined by

ω(r)α = ρ̃(χ0(r)r)F [χ0](r), χ0(r) = χ(0, r). (11)

From the continuity equation (5)1,

d

ds
(ρ̃(s, χ(s, r)y)F [χ](s, r)) = 0, (12)

which gives
ρ̃(s, χ(s, r)y) = ω(r)αF [χ]−1. (13)

Denote the mean density of the gas by

G (r) ,
1

r3

∫ r

0
4πωαs2ds. (14)
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Pressureless EP system

Consider the pressureless equation

χss +
G (r)

χ2
= 0, (15)

with initial conditions

χ(0, r) = χ0(r) = 1, χs(0, r) = χ1(r). (16)

The total energy E (s) = 1
2χ

2
s −

G(r)
χ is conserved, i.e.,

χ2
s = χ2

1 + 2G (r)(
1

χ
− 1). (17)

Let v∗(r) :=
√

2G .
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Pressureless solutions

Theorem 3.1

Let χdust(s, r) be the solution of (15).
Escape case:
(1) If χ1(r) > v∗(r), then χdust(s, r) > 0 for all s > 0. The asymptotic
behavior is

χdust(s, r) ∼
√
k0s, as s → +∞, (18)

where k0 = χ2
1 − 2G is the initial energy.

(2) If χ1(r) = v∗(r), then χdust(s, r) = (1 + 3
√

G
2 s)

2
3 .

Collapse case: If χ1(r) < v∗(r), there exists a unique t∗(r) > 0 satisfying
χdust(t

∗(r), r) = 0 such that the asymptotic behavior of the trajectory
χdust(s, r) is

χdust(s, r) ∼ (
9G

2
)

1
3 (t∗(r)− s)

2
3 , as s → t∗(r). (19)
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Remark 1

In the collapse case, χ1(r) could be positive. That is, the trajectory may
expand initially, but finally collapse to the center in a finite time.

Remark 2

Guo-Hadzic-Jang (ARMA 2021) constructed a special solution

χdust(s, r) = (1− 3
√

G
2 s)

2
3 in the case χ1(r) = −v∗(r) < 0. That is the

gaseous star collapses initially.

Since the solution consists of trajectories χdust(s, r), all smooth solutions
of pressureless Euler-Poisson system can be classified into four cases.
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(a) (b)

Figure: (a) Whole collapse. (b) Linear expansion.

(c) (d)

Figure: (c) Expansion with rate 2
3 . (d) Partial collapse and partial expansion.
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We focus on the case (a), i.e., the whole collapse. In this case, all
trajectories satisfy (19) and

χ′1(r) > 0 (20)

which guarantee the adjacent trajectories do not collide before collapse.
Assume that χ1 and the enthalpy ωα satisfy

χ1(r) = χ1(0) + c1r
n + o(rn), ωα(r) = 1− c2r

n + o(rn) (21)

in a neighbourhood of the center r = 0. The exponent n ∈ N represents
the degree of flatness of the star near the center. We also assume

dωα

dr
< 0 (22)

for any r ∈ (0, 1].
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Theorem 3.2

For any γ ∈ (1, 4
3 ), there exist classical solutions χ(s, r) of (8) defined in

Ξ = {(s, r)|1− 1
t∗(r)s > 0}. The solution χ(s, r) behaves qualitatively like

the collapsing dust solution χdust , i.e.,

1 . | χ

χdust
| . 1, 1 . | F [χ]

F [χdust ]
| . 1. (23)

Moreover, it holds that for any r ∈ [0, 1],

lim
s→t∗(r)

χ

χdust
= lim

s→t∗(r)

F [χ]

F [χdust ]
= 1. (24)

Remark 3

The case (d) in Figure 2 is extremely interesting.
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Outline of proof

Let
τ = 1− s

t∗(r)
(25)

and use the new coordinate (τ, r) instead of the original one (s, r). The
operator r∂r in the new coordinate (τ, r) is denoted by Λ, and

Λ = Mg∂τ + r∂r , (26)

where

Mg (τ, r) := (τ − 1)r∂r log(
1

t∗(r)
). (27)

Denote φ(τ, r) := χ(s, r), then

φττ +
G (r)t∗(r)2

φ2
+ εP[φ] = 0, (28)

where

P[φ] :=
φ2t∗(r)2

ωαr2
Λ(ω1+α[φ2(φ+ Λφ)]−γ). (29)
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The formula of χdust := φ0 can be rewritten as follows,

φ0 = τ
2
3 t∗(r)

2
3C (τ, r), (30)

and

C (τ, r)→ (
9G

2
)

1
3 , as τ → 0. (31)

φ0 satisfies

∂ττ (φ0) +
G (r)t∗(r)2

φ0
2

= 0. (32)
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Asymptotic form

We seek the solution φ of (28) in the asymptotic form

φ = φapp + θ :=
M∑
j=0

εjφj + θ, (33)

where M will be identified later. We expect

S(φapp) = −∂2
τφapp −

G (r)t∗(r)2

φ2
app

− εP[φapp] = o(εM). (34)

∂ττφj −
2G (r)

C 3(τ, r)τ2
φj = fj , j ∈ {1, · · · ,M}, (35)

where f1 = −P[φ0] and fj depends only on φ0, φ1, · · · , φj−1.
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Estimates on φj

Theorem 3.3

It holds that for non-negative integer l ,

|∂mτ (r∂r )lφ0| .

 τ
2
3
−m, l = 0,

τ
2
3
−mrn, l ≥ 1.

(36)

Theorem 3.4

There exists a sequence {φj}j∈{0,··· ,M} of solutions to (35) such that for
j ∈ {1, · · · ,M} and l ,m ∈ {0, 1, · · · ,K} with large K , it holds that

|∂mτ (r∂r)lφj | ≤ Cjkmτ
2
3

+jδ−mPλ,− 2
n
(
rn

τ
), (37)

where Pµ,ν(x) := xµ+ν

(1+x)µ , µ, ν ∈ R, x ≥ 0, the constants Cjkm depend on

K and M, δ = δ(n) := 2( 4
3 − γ −

1
n ) > 0 for large n, and λ > 2

n .
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Remainder equation

Set

φ = φapp +
τm

r
H, (38)

then

∂2
τH + 2

g01

g00
∂r∂τH +

2m

g00

∂τH

τ
+

d2

g00

H

τ2
− εγ c[φ]

g00

1

ωα
∂r (ω1+α 1

r2
∂r [r2H])

+ε
N0[H]

g00
=

1

g00
(S (φapp)− εLlowH + N [H])

(39)
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Theorem 3.5

Let γ ∈ (1, 4
3 ) and m be sufficiently large integer. Set

N = N(γ) = b 1
γ−1c+ 6. If (21) holds for a sufficiently large

n = n(γ) ∈ Z>0, there exist σ∗, ε∗ > 0, M = M(m, γ, n)� 1 and C0 > 0,
such that for any 0 < σ < σ∗ and 0 < ε < ε∗ the following is true: for any
κ ∈ (0, 1) and any initial data (Hκ

0 ,H
κ
1 ] satisfying

SN
κ (Hκ

0 ,H
κ
1 )(τ = κ) ≤ σ2, (40)

there exists a unique solution τ 7→ Hκ(τ, ·) to (39) on [κ, 1] satisfying

SN
κ (Hκ,Hκ

τ )(τ) ≤ C0(σ2 + ε2M+1), τ ∈ [κ, 1]. (41)
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Thanks to Theorem 3.5, we can construct a solution H on τ ∈ (0, 1] by
letting κ→ 0.

Then the classical solution to (28) can be established by

φ(τ, r) = φapp(τ, r) + τm
H(τ, r)

r
= φ0 +

M∑
j=1

εjφj(τ, r) + τm
H(τ, r)

r

on the space-time domain (τ, r) ∈ (0, 1]× [0, 1]. From Theorem 3.5 and
Theorem 3.4, it is easy to check that

1 .
∣∣∣ φ
φ0

∣∣∣ . 1, 1 .
∣∣∣ F [φ]

F [φ0]

∣∣∣ . 1

Moreover, for any r ∈ [0, 1],

lim
τ→0

φ

φ0
= lim

τ→0

F [φ]

F [φ0]
= 1. (42)
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Thank you !
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