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2D Boussinesq equation without density diffusivity

@ p(x,t): density of incompressible fluid.
e u(x,t): velocity field of fluid.

@ The spatial domain € is either the plane R?, the torus T?, or the strip
T x [—m, 7).

@ Throughout this talk, we consider the 2D Boussinesq equation without
density diffusivity:
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@ We'll discuss the viscous case v > 0, and the inviscid case v = 0.

@ Goal: In both cases, we'll prove that solution can have small scale formation
(infinite-in-time growth of Sobolev norms) as t — oo.



he viscous case: global well-posedness and upper bounds

When v > 0, global-wellposedness of regular solutions is known:
e For Q = R?: global regularity by Hou-Li '05 in the space
(u,p) € H™ x H™1 for m > 3, and Chae '06 in H™ x H™ for m > 3.

@ For bounded Q: global regularity by Lan—Pan-Zhao '11 in H3® x H3, and
Hu—Kukavica—Ziane '13 in H™ x H™ ! for m > 2.

Upper bounds for the global solution:
@ Ju '17: For bounded Q, ||p||p: < et

o Kukavica—Wang '20: For bounded Q, ||p|lm < et and ||ul|w2r < Cp;
for R2, ||p|[ < et

@ Kukavica—Massatt—Ziane '21: For bounded €2,
[plle < Ceet, fJul|ps < Ceee.



What about lower bounds?

@ Note that the above estimates all deal with the upper bounds of solutions.

@ Question. What about lower bounds? Can solutions have small scale
formation as t — oo?

e Lower bound by Brandolese-Schonbek '12: in R?, if py does not have mean
zero, |[u(t)|/;2 ~ (1 + t)*/*. (This is due to potential energy converting to
kinetic energy, and does not imply growth in higher derivatives)

@ We are not aware of any examples of infinite-in-time growth of ||p(t)||gm in
the literature.



Small scale formation in the viscous case

Theorem (Kiselev—Park=Y. '22, preprint)

Let v > 0, Q = T2. If the smooth initial data (po, ug) satisfies the following
@ Symmetry assumptions: pg is even-odd, ugy is odd-even, ug> is even-odd

o Sign assumptions: pg = 0 for x; > 0, and po = 0 on the xp-axis. &—__

Then the global-in-time smooth solution satisfies Preserved for

: 1 o tme'!
limsupt 6 ||p(t)| g = +o0.

t— o0

Remark: Under these assumptions one can show ||p(t)]|;: has a refined

sub-exponential upper bound exp(Ct®) for some o € (0, 1), so the growth is
somewhere between algebraic and sub-exponential.
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Evolution of potential energy

Define the potential energy Ep(t) := sz pxodx, and kinetic energy
Ex(t) == [ |ul?dx.

It's well-known that the total energy is decreasing in time:
d
- (Ep() + Ex(t)) = —v[[Vu(t)][2;

This implies that [~ ||Vu(t)|[7.dt < C(v, po. uo).

Since the two equations are coupled by the gravity force, we'll track the
evolution of potential energy Ep(t) itself.

A quick computation gives £ Ep(t) = [, puadx, which is uniformly
bounded.

Let's take one more time derivative:
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Let's take one more time derivative:
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,_j 1 - J/
:;4’“) =:B(t)
Since [~ |Vu(t)|2.dt < oo, this implies [~ A(t)dt < oc.

Suppose limsup,_, _ ||[Vpl/2 < oo, we have fo B(s )ds < t1/2,

This implies [ 101p]13,_,ds < t/2, so [|01p[3
t—1/2 as t — .

7, Needs to decay to zero like

Key observation (by a Fourier argument): If ||01p(t)]| -1 < 1 and p =0 on
xp axis, we have ||p||;; > 1. More precisely, ||p|/ ;. = ||O1p(t )HH .
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This contradicts our assumption limsup,_, . |[|Vpl|2 < oo. (A more careful
argument gives us algebraic growth in time).



Inviscid 2D Boussinesq equation

@ In the inviscid case u = 0, let us work with the variables p and vorticity w:

,0t+u-Vp:O,
wt + u-Vw = —01p,

where u can be recovered from the Biot-Savart law u = V+(—A) 1w,

@ Whether smooth initial data can lead to a blow-up in T? or R? is an
outstanding open question.

@ It is well-known that away from the axis of symmetry, the 3D axisymmetric
Euler equation is closely related to 2D Boussinesq:

Dt(l’ue) = 07
D, (w—re) = r=%0,(ru”)?,

where D; := 0; + u"0, 4+ u?0, is the material derivative, and (u", u*) can be
recovered from w? /r by a similar Biot-Savart law.



Blow-up for inviscid 2D Boussinesq and 3D Euler

In the presence of boundary, or for non-smooth initial data, there are many
exciting developments on finite-time blow-up:

@ Luo—Hou '14: convincing numerical evidence for blow-up at the boundary for
3D axisymmetric Euler

Elgindi—Jeong '20: blow-up in domain with a corner
Elgindi '21: blow-up for C*® solutions for 3D Euler

Chen—Hou '21: blow-up for C*® solutions with boundary

Wang—Lai—-Gémez-Serrano—Buckmaster '22: numerics for approximate
self-similar blow-up solution using physics-informed neural networks.

@ Chen—Hou '22: stable nearly self-similar blowup for smooth solutions
(combination of analysis + computer-assisted estimates)

Question: Can one construct solutions with infinite-in-time growth for more
general class of initial data?



Infinite-in-time growth in a strip

Theorem (Kiselev—Park=Y. '22, preprint)
Let Q =T x [0, 7]. Let pg € C°(R2) be even in x;, and wy € C>(£2) be odd in
X1, with f[o 1x[0.7] wodx > 0. Assume that there exists ky > 0 such that

po > ko >0 on {0} x [0, 7], and po <0 on {w} x [0, 7]. Then the solution
satisfies the following during its lifespan:
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The proof is a soft argument, based on an interplay
between various monotone and conservative quantities.
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Monotonicity of vorticity integral

@ Let @ be the right half of the strip. Simple but useful observation:
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o Since [y, u-dl = [qwdx > kot, we have [u(t)||.~ grows at least linearly.
@ On the other hand, ||ul|;2 is bounded for all times by energy conservation.

@ Combining the boundedness of ||u||;2(g) and linear growth of faQ u - dl, we

know u must change rapidly in a small neighborhood of 0Q), leading to
super-linear growth of Vu (and w).



Infinite-in-time growth in T?

@ To our best knowledge, there has been no blow-up / infinite-in-time growth

results in T2.

@ In T?, we obtain infinite-in-time growth for a large class of initial data

satisfying certain symmetry/sign conditions:

Theorem (Kiselev—Park=Y. '22, preprint)

Let pg € C(T?) be even-odd, and wy € C°°(T?) be odd-odd. Assume py > 0
on {0} x [0, 7] with ko := sup,,cio..] P0(0,x2) > 0, and pg < 0 on {7} x [0, 7].

Then the solution satisfies the following during its lifespan:
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3D axisymmetric Euler in an annular cylinder

Using a similar idea, we obtain infinite-in-time growth for the 3D axisymmetric
Euler equation in an annular cylinder

Q={(r,0,z): re|n,2n];0 € T,zc T}.

Theorem (Kiselev—Park=Y. '22, preprint)

: : . 2
Let ujy € C°°(Q) be even in z, wy € C*(2) odd in z, with [ [~" widrdz > 0.
Assume there exists kg > 0 such that uf > ko > 0 on z =7, and |u§| < %ko on
z = 0. Then the solution to axisymmetric 3D Euler satisfies

| ()lleoe) Z 777 and  Ju(t)| (o) 2 t

during the lifespan of the solution.
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