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Hydrodynamic stability

Classical problem:
Stability of laminar flows at high Reynolds number.
Some classical laminar flows:

@ Plane Couette flow: (y,0,0)
@ Plane Poiseuille flow: (1 —y2,0,0)
@ Pipe Poiseuille flow: (0,0,1 - r?)
These are steady solutions of the Navier-Stokes equations:
otv—vAv+v-Vv+VP =0 in Ry xQ,
V-v=0 in RyXxQ,
v=0 on 09,

where v = Re™! < 1 is the viscosity coefficient.
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Linear stability

Consider the linearized NS system around the laminar flow:
oiu— L,u=0.

Let U solve the eigenvalue problem: £, U = AU. The system is
linearly stable if ReA < 0 and unstable if ReA > 0.

@ Plane Couette flow: stable for any Reynolds number(Romanov,
Funk. Anal. 1973);

@ Plane Poiseuille flow: stable for Reynolds number less than
5772(orszag, JFM 1971), and unstable for high Reynolds num-
ber(Grenier et al, Adv Math 2016);

@ Pipe Poiseuille flow: stable at high Reynolds number(chen-
Wei-Zhang, CPAM 2023).

Conjecture: Pipe Poiseuille flow is stable for any Reynolds number.
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Nonlinear stability

Transition threshold problem(refethen et al, Science 1993): Given a
norm || - ||x, find a g = B(X) such that

lugllx < Re™® = stability.

3-D Couette flow in Q = Tx R x T:

@ If X is Gevrey class, then g < 1(Bedrossian-Germain-Masmoudi, Mem
AMS 2021).

@ If X = HN, then g < %(Bedrossian-Germain-Masmoudi, Ann Math 2017).
@ If X = H?, then B < 1(Wei-Zhang, CPAM 2021).

3-D Couette flow in Q =T x [-1,1] x T:
@ If X = H?, then B < 1(Chen-Wei-Zhang, Mem AMS in press).
3-D Plane Poiseuille flow in Q =T x [-1,1] X T:

o If X = H2, then ﬁ < %(Chen—Ding—Lin—Zhang, preprint).
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The linearized NS system

We consider general monotone shear flows (u(y), 0) satisfying
(M) ueH30,1), u'(y)>cy forsome cy>0.

The linearized 2D NS system around (u(y),0) in Q@ = T x [0, 1]
takes as follows

v+ Av =0,
where
Ayv = P( — VAV 4 u(y)dxv + (vzayu,O))

with D(A,) = H3(Q) N H} () and P Leray-Helmhotz projection.
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The linearized NS system

Let w = dxv2 -9, v' be the vorticity and ¢ be the stream function
so that

Aqb =w, V = (_ayq), ang)).
Then the linearized NS system can be written as

81‘0) + -va — 0/
AP =w, IxPly—01 =dyPly—01 =0, (1)
a)(ol X/ y) - CUO(X/ y)’

where
Lyw = (— vA + u(y)dx — u”(y)8xA_1)w.
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We are concerned with the following three problems:
@ Linear stability
@ Linear inviscid damping
@ Linear enhanced dissipation

The later two mechanisms play a crucial role in the transition
threshold problem.
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Linear inviscid damping

The linearized 2-D Euler equation around Couette flow:
wi + ydxw = 0= w(t, X, y) = wo(x —ty,y).
In 1907, Orr found that
IVa(t)ll e >0 as t— oo

This is so called inviscid damping, which is an analogue of
Landau damping in plasma physics.
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Linear enhanced dissipation

The linearized 2-D NS around Couette flow:
diw —vAw + ydxw =0, w(0) = wo.
It holds that
(e < Ce™* gl

This decay rate v3 is much faster than the diffusion rate v. This
is so called enhanced dissipation.
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Main results: linear stability

We define
m(v) = inf {Red : A,v = Av,v € D(A,)},
Me(v) = inf {Re/\ AV =Av,ve D(AV),f vdx = o}.
T

Theorem 1. (Chen-Wei-Zhang, CMP 2023)

Assume that Lg = u(y)dx — U’ (y)dxA~" has no embedding
eigenvalues or eigenvalues. There exist0 < vy <1andc >0
independent of v so that if 0 < v < v4, then it holds that

m(v) > cv, me(v) = cvi.
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Main results: linear stability

Some remarks.

@ Linear stability for concave monotone shear flows(Aimog-Heiffer,
ARMA 2021).
@ If the flow is monotone and concave, then £g has no em-
bedding eigenvalues or eigenvalues.
. 1
@ The spectral gap estimate mg(v) > cvs corresponds to the
enhanced dissipation phenomenon.
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Main results: enhanced dissipation

Theorem 2. (Chen-Wei-Zhang, CMP 2023)

Assume that Lg = u(y)dx — U’ (y)dxA~" has no embedding
eigenvalues or eigenvalues. Let w solve (1) with the initial data
wo € HyHy" and [ wo(x,y)dx = 0. There exist0 < vy < 1,0 <
€g < 1 so thatif0 <v < vy, then it holds that

1/31

1/3t 3
e e e ] < Ol + Ol -

Remark. Similar estimates have been established for the linearized
NS system around Couette flow (Chen-Li-Wei-Zhang, ARMA 2020). These
estimates play a crucial role in nonlinear stability of Couette flow.
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Main results: inviscid damping

Taking the Fourier transform in x, the linearized NS system is
reduced to

drw — v(8}2, —a®)w + ia(u(y)a) - u”(p) =0,
W= (95 -a®)p, Ply=01 = dydly=01 =0, (2)
@(0,y) = wo(y).

For a # 0, the Rayleigh operator R, is defined by

Ry = (05 = 0®) " (u)(d5 ~ 0®) = u” ()
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Main results: inviscid damping

Theorem 3. (Chen-Wei-Zhang, CMP 2023)

Let|a| = 1. Assume that R, has no embedding eigenvalues or
eigenvalues. Let (w, ¢) solve (2) with wg € H', (wg,e*¥) = 0.
There exist0 <v1 <1,0<e1 <£1/2suchthatif0 <v <vq, then
it holds that

109y, ad)(Dllz < Clad™2(1 + 1)~ =19 woll 2 + lellewoll 2)

Remark.

@ When v = 0, the inviscid damping was proved in (Wei-Zhang-
Zhao, CPAM 2018);

@ The decay estimate of ||a¢||, > should not be optimal;

@ The result is new even for the linearized NS system with
Navier-slip boundary condition.

Z.Zhang Peking university Linear inviscid damping and enhanced dissipation



Orr-Sommerfeld equation

The key ingredient of the proof is to solve the Orr-Sommerfeld(OS)
equation:

— (% - a®)w +ia((u(y) - \)w — u"y) = F,
w = (05 - a?)y,
Yly—0,1 = dyPly—0,1 = 0.

Here A = A, +iAj e C.
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Resolvent estimates

If ad; > —eo(voz2)%, then we have

19y, a)llz < Cv 2l IFll s,
1@y, a)ll2 < Cv8lal™3||Fl|,2,
1@y, a)ll,2 < Clal2lI(3, F, aF)ll,z.

In particular, when F = 0, the OS equation has only trivial solu-
tion, which implies the linear stability and

wl—

me(v) > cv3.
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Resolvent estimates

In our work(cChen-Li-Wei-Zhang, ARMA 2020), a key idea is that we first
solve the OS equation with Navier-slip boundary condition:

~ V(05— a®)w +ia((u-w - u"y) = F,
(95 - a®) = W, Wly—o1 = Yly=01 =0,

and then match the boundary condition via constructing the bound-
ary correctors.
Main advantages:

@ Energy method due to favorable boundary conditions, es-
pecially in the case when nonlocal term u”’y = 0.

@ Boundary correctors via solving the Airy equation, which
has the explicit solution.
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Resolvent estimates

Resolvent estimates with Navier-slip BC:
@ FeH™:
valal3|I(y’, a)liie + (va?)s|wlle < Cv8|af3||Fly-.
@ Fel?:
velad Iy, ap)llz + (va?)3liwli e < CIIF]IL.
@ FeH"

velal3 ]Iy, ap)ll e + (va?)3 Wil e < CvElal 3 ||(F/, aF)|,2.
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Resolvent estimates

Formal prediction via scaling analysis:

Consider the OS equation in a boundary layer of order 6. In this
inner layer, we have

voew ~ 52w, a(u-A)w ~adw if A~ 6.

These two terms should have the same scale, which gives 6 =
(v/a)'/3. Thus, in the inner layer, the solution w behaves as
follows

adw = a(v/a)'Bw = (va?)Bw ~ F.
This shows that

1
(va®)3|wll 2 < ClIFI|.2.
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Compactness method

The proof of the following cases are relatively easy:

@ va? > 1: viscous term is dominant;
@ a > 1: nonlocal term could be viewed as a perturbation;
@ A, is far away from the range of u.

The most difficult case is that
a<M, 0<aldi<e Arelu(0)—-2Mz,u(1)+2My],
where Mo = ||ul|ys + [[U”’]|L~. Our goal is to show that

1Yl < ClFllA-
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Compactness method

If the conclusion is not true, then for any ¢, — 0, there exists
n € H3(0,1) N H}(0,1), wy € H{(0,1), and 0 < vy, andin < €n,
Arn € [u(0) —2Mo, u(1) + 2Mz], an € [1, M] such that

- Vn(82 a?)wp + 1an((u —An)Wp — u”¢n) =F,,
(8}2/ - an)'abn =Wp, Ap=Arn+idjs

with
Wnllgr =1, NFallg < 1/n.

Linear inviscid damping and enhanced dissipation
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Compactness method

We may take a subsequence(still denote by {vn, an, An, Pn, Wn}),
such that vy, Ajp — 0 with A;, >0, and A;p — A, ap — a, and

IFnllyr — 0, and ¢, — 1 weakly in H'(0,1).
Let up = u—Arn, cn = Ajn. Then we have
2 2 . . 7 _
— Vn(ay - an)Wn + I(Xn((Un - lgn)Wn - Un lpn) == Fn,
v —a2yp=w, Imu,=0
with
vn =1, Fp— 0 in H'(0,1).
up—u—-A in H30,1), ¢,=>0,¢c,—0.

Z.Zhang Peking university Linear inviscid damping and enhanced dissipation



Compactness method

To conclude a contradiction, we need to prove that
@ ¢ — P in H'(0,1): similar to the proof of limiting absorption
principle in [Wei-zhang-Zhao, Ann PDE 2019).
@ A is an embedding eigenvalue of R,: for any ¢ € Hg(o, 1),

1 1 au”’
a f (¥'¢" + a®Pp)dy + p.v. f Y ay
0 o U- A
+

i @UYRW) _

ya:t(rn)=A) u(yn)
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Compactness method

We rewrite the equation of w, as follows
_Vna}%w” + lan(Un - lgn)Wn == Fn + lanu;-,,l]bn - Vnarz-’Wn
2
= gn - VnO(an.

A natural idea is to test the function ¢/(u, —icn) to the above
equation. However, the integration by parts will lead to many
singular terms near the point where u = A.

Our key idea is to consider

1
f (= vnd2Wn + ian(Un — icn)Wn)(Unp)dy
0
where

( - Vnaf/ + ian(Un - 1gn))Un — (Xn + 0(1 )
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Compactness method

Let J, solve —vd5d, + ianydn = an, where

Jn(y) = fo et/ Qan) g,

Construct a function V,, so that
(V2)2Vy = up—icn, |Vl 2= &.
Then Hu(y) = Jn(Vy) solve
~vnd2Hp + iatn(Un — icn)Hn + vady Ha V[ V5 = (V5)2atn.

So, Uy = Ha/(V4)2.
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Compactness method

Then we have

f1 ( — vnd5Wp + ian(Up — iCn)Wn)Mdy
n ’
0 y (Vn)2
1 (= vn@2Hn + ian(Un — icn)Hn + vady Ha Vi [ Vi)
f Wn 7\2
0 (vn)

! dyH ’ ! ’
y™n [ ¢ P

- | vawn—; ,d+fv8wH( )d.

J;nnvn (Vn) g 0 nynn(vr,,)z g

It is easy to show that

dy

. ! > . . Hn(P
lim f (_VnayWn+lan(Un _lgn)Wn)—,zdy
0 (Va)

]
_ ’ 7 2
= afo (Y'@" + a“Pp)dy.
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Compactness method

(Gn — vnaawy)

Lot Galy) = =2 % The Fubini theorem gives
n
1 Hn
[ (on=vaa2mn)ray - f Gn(y)Hn(y)dy
0 (V})?
—-+00
:f (f G 1tVn y)dy) —ypt3 /(San)dt
0
It holds that

—+00 1
lim f (f Gn(y)e—itvn(y)dy) o—vnt®/(3an) 4t
n—-+o0 0 0

_ LSoleo) fo igo () (¥)

7 (yo) uy) -1

{yo:u(y0)-A=0}
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Boundary layer corrector

To match the boundary conditions, we construct the boundary
layer corrector by solving the homogeneous OS equation

— (92 — a®)w; +ia((u-A)w; - u") =0, ie(1,2),
(05— a®)pi=w;, ily—01=0, ief1,2}
dyPily=0 =1, dytily=1 =0, Jdyyoly—0 =0, dyaly—1 = 1.
Then we can decompose w as
w(y) = wna(y) + c1wi(y) + cawa(y),

where ¢y and ¢, are determined by

1 : _

1 .
sinh(a
Co = _f WNade
0

sinh(a) 7~
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Boundary layer corrector

The key ingredient is to find two linearly independent solutions
of the homogeneous OS equation:

— (3% - )W + ia((u - 1)W) - u”V¥;) = 0.
To this end, we first find two approximate solutions
Wa,i(y) = Ai(e'S Lo(y + b)), Waa(y) = Ai(e'¥ Li(y + dh)),
where

Lo = lau/ (0)/v]3, do = (u(0) — A — iva)/(1/(0)),
Ly = lau' (D), di = (u(1) - u'(1) = A —iva)/(u'(1)).
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Boundary layer corrector

We introduce the decomposition:
Wi =Wa1+ Wer, Wo=Wyo+ Wep,
where the error (We 1, We2) solves
— (% - a®)We1 +ia((u— ) Wes — U Vo)
= —ia((u - u(0) — U'(0)y) Wa1 — U"Way),
— (% - ) Wep +ia((U— V) Wep — U Vep)
= —ia((u-u(1) - U'(1)(y = 1)) Waz - u"Va2),

2 2 2
(05 —aP W1 =Wy, (05-0a°)Vep=Wep,
We,1ly=0,1 = Ve,ily=01 =0, Weoly—0,1 = Vezly—0,1 = 0.
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Thanks a lot for your attention!
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