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Hydrodynamic stability

Classical problem:
Stability of laminar flows at high Reynolds number.

Some classical laminar flows:

Plane Couette flow: (y ,0,0)

Plane Poiseuille flow: (1 − y2,0,0)

Pipe Poiseuille flow: (0,0,1 − r2)

These are steady solutions of the Navier-Stokes equations:
∂tv − ν∆v + v · ∇v + ∇P = 0 in R+ × Ω,

∇ · v = 0 in R+ × Ω,

v = 0 on ∂Ω,

where ν = Re−1
≪ 1 is the viscosity coefficient.
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Linear stability

Consider the linearized NS system around the laminar flow:

∂tu − Lνu = 0.

Let U solve the eigenvalue problem: LνU = λU. The system is
linearly stable if Reλ ≤ 0 and unstable if Reλ > 0.

Plane Couette flow: stable for any Reynolds number(Romanov,

Funk. Anal. 1973);
Plane Poiseuille flow: stable for Reynolds number less than
5772(Orszag, JFM 1971), and unstable for high Reynolds num-
ber(Grenier et al, Adv Math 2016);
Pipe Poiseuille flow: stable at high Reynolds number(Chen-

Wei-Zhang, CPAM 2023).
Conjecture: Pipe Poiseuille flow is stable for any Reynolds number.
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Nonlinear stability

Transition threshold problem(Trefethen et al, Science 1993): Given a
norm ∥ · ∥X , find a β = β(X) such that

∥u0∥X ≪ Re−β =⇒ stability .

3-D Couette flow in Ω = T ×R × T:

If X is Gevrey class, then β ≤ 1(Bedrossian-Germain-Masmoudi, Mem

AMS 2021).
If X = HN, then β ≤ 3

2 (Bedrossian-Germain-Masmoudi, Ann Math 2017).
If X = H2, then β ≤ 1(Wei-Zhang, CPAM 2021).

3-D Couette flow in Ω = T × [−1,1] × T:

If X = H2, then β ≤ 1(Chen-Wei-Zhang, Mem AMS in press).

3-D Plane Poiseuille flow in Ω = T × [−1,1] × T:

If X = H2, then β ≤ 7
4 (Chen-Ding-Lin-Zhang, preprint).
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The linearized NS system

We consider general monotone shear flows (u(y),0) satisfying

(M) u ∈ H3(0,1), u′(y) ≥ c0 for some c0 > 0.

The linearized 2D NS system around (u(y),0) in Ω = T × [0,1]
takes as follows

∂tv + Aνv = 0,

where

Aνv = P
(
− ν∆v + u(y)∂xv + (v2∂yu,0)

)
with D(Aν) = H2(Ω)∩H1

0,σ(Ω) and P Leray-Helmhotz projection.
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The linearized NS system

Let ω = ∂xv2
−∂yv1 be the vorticity and ϕ be the stream function

so that

∆ϕ = ω, v = (−∂yϕ, ∂xϕ).

Then the linearized NS system can be written as
∂tω+Lνω = 0,
∆ϕ = ω, ∂xϕ|y=0,1 = ∂yϕ|y=0,1 = 0,
ω(0, x , y) = ω0(x , y),

(1)

where
Lνω =

(
− ν∆+ u(y)∂x − u′′(y)∂x∆

−1
)
ω.
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Main goals

We are concerned with the following three problems:

Linear stability
Linear inviscid damping
Linear enhanced dissipation

The later two mechanisms play a crucial role in the transition
threshold problem.
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Linear inviscid damping

The linearized 2-D Euler equation around Couette flow:

ωt + y∂xω = 0⇒ ω(t , x , y) = ω0(x − ty , y).

In 1907, Orr found that

∥V,(t)∥L2 → 0 as t →∞.

This is so called inviscid damping, which is an analogue of
Landau damping in plasma physics.
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Linear enhanced dissipation

The linearized 2-D NS around Couette flow:

∂tω − ν∆ω+ y∂xω = 0, ω(0) = ω0.

It holds that

∥ω,(t)∥L2 ≤ Ce−ν
1
3 t
∥ω0∥L2 .

This decay rate ν
1
3 is much faster than the diffusion rate ν. This

is so called enhanced dissipation.

Z. Zhang Peking university Linear inviscid damping and enhanced dissipation



Main results: linear stability

We define

m(ν) = inf
{
Reλ : Aνv = λv , v ∈ D(Aν)

}
,

me(ν) = inf
{
Reλ : Aνv = λv , v ∈ D(Aν),

∫
T

vdx = 0
}
.

Theorem 1. (Chen-Wei-Zhang, CMP 2023)
Assume that LE = u(y)∂x − u′′(y)∂x∆

−1 has no embedding
eigenvalues or eigenvalues. There exist 0 < ν1 ≤ 1 and c > 0
independent of ν so that if 0 < ν ≤ ν1, then it holds that

m(ν) ≥ cν, me(ν) ≥ cν
1
3 .
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Main results: linear stability

Some remarks.

Linear stability for concave monotone shear flows(Almog-Helffer,

ARMA 2021).
If the flow is monotone and concave, then LE has no em-
bedding eigenvalues or eigenvalues.

The spectral gap estimate me(ν) ≥ cν
1
3 corresponds to the

enhanced dissipation phenomenon.
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Main results: enhanced dissipation

Theorem 2. (Chen-Wei-Zhang, CMP 2023)
Assume that LE = u(y)∂x − u′′(y)∂x∆

−1 has no embedding
eigenvalues or eigenvalues. Let ω solve (1) with the initial data
ω0 ∈ H1

y H−1
x and

∫
T
ω0(x , y)dx = 0. There exist 0 < ν1 ≤ 1,0 <

ϵ0 ≤ 1 so that if 0 < ν ≤ ν1, then it holds that∥∥∥eϵ0ν1/3tv
∥∥∥

L∞L2 +
∥∥∥eϵ0ν1/3tv

∥∥∥
L2L2 ≤ Cν

1
3 ∥ω0∥H1

y H−1
x

+ C∥ω0∥L2
y H−1

x
.

Remark. Similar estimates have been established for the linearized
NS system around Couette flow (Chen-Li-Wei-Zhang, ARMA 2020). These
estimates play a crucial role in nonlinear stability of Couette flow.
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Main results: inviscid damping

Taking the Fourier transform in x, the linearized NS system is
reduced to

∂tω − ν(∂
2
y − α

2)ω+ iα
(
u(y)ω − u′′ϕ

)
= 0,

ω = (∂2
y − α

2)ϕ, ϕ|y=0,1 = ∂yϕ|y=0,1 = 0,

ω(0, y) = ω0(y).

(2)

For α , 0, the Rayleigh operator Rα is defined by

Rα = (∂2
y − α

2)−1
(
u(y)(∂2

y − α
2) − u′′(y)

)
.
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Main results: inviscid damping

Theorem 3. (Chen-Wei-Zhang, CMP 2023)
Let |α| ≥ 1. Assume that Rα has no embedding eigenvalues or
eigenvalues. Let (ω, ϕ) solve (2) with ω0 ∈ H1, ⟨ω0, e±αy

⟩ = 0.
There exist 0 < ν1 ≤ 1, 0 < ϵ1 ≤ 1/2 such that if 0 < ν ≤ ν1, then
it holds that

∥(∂yϕ, αϕ)(t)∥L2 ≤ C |α|−2(1 + t)−1e−ϵ1(να2)1/3t
(
∥∂yω0∥L2 + |α|∥ω0∥L2

)
.

Remark.
When ν = 0, the inviscid damping was proved in (Wei-Zhang-

Zhao, CPAM 2018);
The decay estimate of ∥αϕ∥L2 should not be optimal;
The result is new even for the linearized NS system with
Navier-slip boundary condition.

Z. Zhang Peking university Linear inviscid damping and enhanced dissipation



Orr-Sommerfeld equation

The key ingredient of the proof is to solve the Orr-Sommerfeld(OS)
equation:

− ν(∂2
y − α

2)w + iα
(
(u(y) − λ)w − u′′ψ

)
= F ,

w = (∂2
y − α

2)ψ,

ψ|y=0,1 = ∂yψ|y=0,1 = 0.

Here λ = λr + iλi ∈ C.
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Resolvent estimates

If αλi ≥ −ϵ0(να2)
1
3 , then we have

∥(∂yψ, αψ)∥L2 ≤ Cν−
1
2 |α|−1

∥F∥H̃−1 ,

∥(∂yψ, αψ)∥L2 ≤ Cν−
1
6 |α|−

4
3 ∥F∥L2 ,

∥(∂yψ, αψ)∥L2 ≤ C |α|−2
∥(∂yF , αF)∥L2 .

In particular, when F = 0, the OS equation has only trivial solu-
tion, which implies the linear stability and

me(ν) ≥ cν
1
3 .
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Resolvent estimates

In our work(Chen-Li-Wei-Zhang, ARMA 2020), a key idea is that we first
solve the OS equation with Navier-slip boundary condition: − ν(∂2

y − α
2)w + iα

(
(u − λ)w − u′′ψ

)
= F ,

(∂2
y − α

2)ψ = w, w |y=0,1 = ψ|y=0,1 = 0,

and then match the boundary condition via constructing the bound-
ary correctors.

Main advantages:
Energy method due to favorable boundary conditions, es-
pecially in the case when nonlocal term u′′ψ = 0.
Boundary correctors via solving the Airy equation, which
has the explicit solution.
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Resolvent estimates

Resolvent estimates with Navier-slip BC:

F ∈ H−1:

ν
1
6 |α|

4
3 ∥(ψ′, αψ)∥L2 + (να2)

1
3 ∥w∥L2 ≤ Cν−

1
3 |α|

1
3 ∥F∥H−1 .

F ∈ L2:

ν
1
6 |α|

4
3 ∥(ψ′, αψ)∥L2 + (να2)

1
3 ∥w∥L2 ≤ C∥F∥L2 .

F ∈ H1:

ν
1
6 |α|

4
3 ∥(ψ′, αψ)∥L2 + (να2)

1
3 ∥w∥L2 ≤ Cν

1
6 |α|−

2
3 ∥(F ′, αF)∥L2 .
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Resolvent estimates

Formal prediction via scaling analysis:

Consider the OS equation in a boundary layer of order δ. In this
inner layer, we have

ν∂2
yw ∼ νδ−2w, α(u − λ)w ∼ αδw if λ ∼ δ.

These two terms should have the same scale, which gives δ =
(ν/α)1/3. Thus, in the inner layer, the solution w behaves as
follows

αδw = α(ν/α)1/3w = (να2)1/3w ∼ F .

This shows that

(να2)
1
3 ∥w∥L2 ≤ C∥F∥L2 .
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Compactness method

The proof of the following cases are relatively easy:

να2
≥ 1: viscous term is dominant;

α≫ 1: nonlocal term could be viewed as a perturbation;
λr is far away from the range of u.

The most difficult case is that

α ≤ M, 0 ≤ αλi ≤ ε, λr ∈ [u(0) − 2M2,u(1) + 2M2],

where M2 = ∥u∥H3 + ∥u′′∥L∞ . Our goal is to show that

∥ψ∥H1 ≤ C∥F∥H1 .
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Compactness method

If the conclusion is not true, then for any εn → 0, there exists
ψn ∈ H3(0,1) ∩ H1

0(0,1), wn ∈ H1
0(0,1), and 0 < νn, αnλi,n ≤ εn,

λr ,n ∈ [u(0) − 2M2,u(1) + 2M2], αn ∈ [1,M] such that

− νn(∂
2
y − α

2
n)wn + iαn

(
(u − λn)wn − u′′ψn

)
= Fn,

(∂2
y − α

2
n)ψn = wn, λn = λr ,n + iλi,n

with

∥ψn∥H1 = 1, ∥Fn∥H1 ≤ 1/n.
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Compactness method

We may take a subsequence(still denote by {νn, αn, λn, ψn,wn}),
such that νn, λi,n → 0 with λi,n ≥ 0, and λr ,n → λ, αn → α, and
∥Fn∥H1 → 0, and ψn ⇀ ψ weakly in H1(0,1).
Let un = u − λr ,n, ςn = λi,n. Then we have

− νn(∂
2
y − α

2
n)wn + iαn

(
(un − iςn)wn − u′′nψn

)
= Fn,

ψ′′n − α
2
nψn = wn, Im un = 0

with

ψn ⇀ ψ, Fn → 0 in H1(0,1).

un → u − λ in H3(0,1), ςn ≥ 0, ςn → 0.
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Compactness method

To conclude a contradiction, we need to prove that

ψn → ψ in H1(0,1): similar to the proof of limiting absorption
principle in [Wei-Zhang-Zhao, Ann PDE 2019].
λ is an embedding eigenvalue of Rα: for any φ ∈ H1

0(0,1),

α

∫ 1

0
(ψ′φ′ + α2ψφ)dy + p.v .

∫ 1

0

αu′′ψφ
u − λ

dy

+
∑

{yλ:u(yλ)=λ}

iπ
(αu′′ψφ)(yλ)

u′(yλ)
= 0.
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Compactness method

We rewrite the equation of wn as follows

−νn∂
2
ywn + iαn(un − iςn)wn = Fn + iαnu′′nψn − νnα

2
nwn

= gn − νnα
2
nwn.

A natural idea is to test the function φ/(un − iςn) to the above
equation. However, the integration by parts will lead to many
singular terms near the point where u = λ.
Our key idea is to consider∫ 1

0

(
− νn∂

2
ywn + iαn(un − iςn)wn

)
(Unφ)dy

where (
− νn∂

2
y + iαn(un − iςn)

)
Un = αn + o(1).
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Compactness method

Let Jn solve −ν∂2
yJn + iαnyJn = αn, where

Jn(y) =
∫
∞

0
e−ity−νnt3/(3αn)dt .

Construct a function Vn so that

(V ′n)
2Vn = un − iςn, |V ′n | ≥ c̃0.

Then Hn(y) = Jn(Vn) solve

−νn∂
2
yHn + iαn(un − iςn)Hn + νn∂yHnV ′′n /V

′

n = (V ′n)
2αn.

So, Un = Hn/(V ′n)
2.
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Compactness method
Then we have∫ 1

0

(
− νn∂

2
ywn + iαn(un − iςn)wn

) Hnφ

(V ′n)2 dy

=

∫ 1

0
wn

(
− νn∂2

yHn + iαn(un − iςn)Hn + νn∂yHnV ′′n /V
′
n

)
φ

(V ′n)2 dy

−

∫ 1

0
νnwn

∂yHn

V ′n

(
φ

V ′n

)′
dy +

∫ 1

0
νn∂ywnHn

(
φ

(V ′n)2

)′
dy .

It is easy to show that

lim
n→+∞

∫ 1

0

(
− νn∂

2
ywn + iαn(un − iςn)wn

) Hnφ

(V ′n)2 dy

= −α

∫ 1

0
(ψ′φ′ + α2ψφ)dy .
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Compactness method

Let Gn(y) =
(gn − νnα2

nwn)φ

(V ′n)2 . The Fubini theorem gives

∫ 1

0
(gn − νnα

2
nwn)

Hnφ

(V ′n)2 dy =

∫ 1

0
Gn(y)Hn(y)dy

=

∫ +∞

0

(∫ 1

0
Gn(y)e−itVn(y)dy

)
e−νnt3/(3αn)dt .

It holds that

lim
n→+∞

∫ +∞

0

(∫ 1

0
Gn(y)e−itVn(y)dy

)
e−νnt3/(3αn)dt

=
∑

{y0:u(y0)−λ=0}

π
g0(y0)φ(y0)

u′(y0)
− p.v .

∫ 1

0

ig0(y)φ(y)
u(y) − λ

dy .
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Boundary layer corrector
To match the boundary conditions, we construct the boundary
layer corrector by solving the homogeneous OS equation
− ν(∂2

y − α
2)wi + iα

(
(u − λ)wi − u′′ψi

)
= 0, i ∈ {1,2},

(∂2
y − α

2)ψi = wi , ψi |y=0,1 = 0, i ∈ {1,2},

∂yψ1|y=0 = 1, ∂yψ1|y=1 = 0, ∂yψ2|y=0 = 0, ∂yψ2|y=1 = 1.

Then we can decompose w as

w(y) = wNa(y) + c1w1(y) + c2w2(y),

where c1 and c2 are determined by

c1 =

∫ 1

0
wNa

sinh(α(1 − y))
sinh(α)

dy ,

c2 = −

∫ 1

0
wNa

sinh(αy)
sinh(α)

dy .
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Boundary layer corrector

The key ingredient is to find two linearly independent solutions
of the homogeneous OS equation:

− ν(∂2
y − α

2)Wj + iα
(
(u − λ)Wj − u′′Ψj

)
= 0.

To this end, we first find two approximate solutions

Wa,1(y) = Ai(ei π6 L0(y + d0)), Wa,2(y) = Ai(ei 5π
6 L1(y + d1)),

where

L0 = |αu′(0)/ν|
1
3 , d0 = (u(0) − λ − iνα)/(u′(0)),

L1 = |αu′(1)/ν|
1
3 , d1 = (u(1) − u′(1) − λ − iνα)/(u′(1)).
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Boundary layer corrector

We introduce the decomposition:

W1 = Wa,1 + We,1, W2 = Wa,2 + We,2,

where the error (We,1,We,2) solves

− ν(∂2
y − α

2)We,1 + iα
(
(u − λ)We,1 − u′′Ψe,1

)
= −iα

(
(u − u(0) − u′(0)y)Wa,1 − u′′Ψa,1

)
,

− ν(∂2
y − α

2)We,2 + iα
(
(u − λ)We,2 − u′′Ψe,2

)
= −iα

(
(u − u(1) − u′(1)(y − 1))Wa,2 − u′′Ψa,2

)
,

(∂2
y − α

2)Ψe,1 = We,1, (∂2
y − α

2)Ψe,2 = We,2,

We,1|y=0,1 = Ψe,1|y=0,1 = 0, We,2|y=0,1 = Ψe,2|y=0,1 = 0.
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Thanks a lot for your attention!
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