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The Free Boundary Problem of Euler-Poisson in 3D



Dtρ + ρdivv = 0, in D ,

ρDtv + ∂P(ρ,s) = ρ∂φ , in D ,

Dts = 0, in D ,

∆φ + e−φ = ρ, in D ,

(1.1)

where Dt = ∂t + vk ∂k = ∂t + ∂v ( we use the Einstein summation
convention thoughout this paper, e.g. vk ∂k = ∑

3
k=1 vk ∂k .)

Assumption on the pressure

P(ρ,s) ∈ C6(R+×R),Pρ (ρ,s) > 0, for ρ > 0,s ∈ R. (1.2)



Given a simply connected bounded domain D0 ⊂ R3, and initial
data (ρ0,v0,s0) on D0, we want to find a set D ⊂ [0,T ]×R3, a
vector field v and scalar functions ρ, s and φ solving (1.1) and
satisfy the initial conditions:

D0 = {x : (0,x) ∈D} and (ρ,v ,s) = (ρ0,v0,s0) on {0}×D0.

(1.3)

Let Dt = {x ∈ R3 : (t ,x) ∈D}. We require the boundary
conditions on the free surface ∂Dt ,

P = P̄, φ = 0, and vN = V (∂Dt ) on ∂Dt (1.4)

for each t , where P̄ is a positive constant, N is the exterior unit
normal to ∂Dt , vN = N ivi , and V (∂Dt ) is the normal velocity of
∂Dt .



Physical Backgroud

System of PDEs in (1.1) can be used to model the motion of a
plasma consisting of cold ions and hot electrons. In this
context, ρ denotes the density of ions, and e−φ the density of
electrons ( the electrons follow the classical Maxwell-Boltzmann
relation), φ is the electric potential field, v is the velocity of the
ions, P(ρ,s) is the pressure and s is the entropy.



Goal

1) Identify suitable stability condition motivated by the Taylor
sign condition for the problem of Euler equations,
2) Obtain a priori estimates on the Sobolev norms of the fluid
variables and bounds for some geometric quantities of the free
surface, such as the second fundamental form and the
injectivity radius of the normal exponential map.



Related Results on Fluids Free Boundary Problems

Incompressible Euler Equations
Local Well-posedness in Sobolev Spaces:
1. First by S. Wu for irrotational flow with gravity (water wave
problem), 2d (Invent. Math. ,1997), 3d (J. Amer. Soc ,1999).
2. Several extensions to non-irrotational flows have been
obtained by different methods: Christodoulou-Lindblad (Comm.
Pure Appl. Math. 2000), Lindblad (Annals of Math. 2005),
Lannes (J. Amer. Math. Soc. 2005), Coutand- Shkoller (J.
Amer. Math. Soc. 2007), Shatah-Zeng (Comm. Pure Appl.
Math. 2008) , P. Zhang-Z. Zhang (Comm. Pure Appl. Math.
2008).... .– M. Ming-C. Wang (Water waves problem with
surface tension in a corner domain, SIAM 2020, CPAM 2021 )



Global or almost global solutions for irrotational
incompressible Euler equations with gravity

irrotational, incompressible with gravity, no surface-tension,
(infinite depth):
– Wu (2d: Invent. Math. 2009; 3d, Invent. Math. 2011);
– Germain, Masmoudi and Shatah (3d: Annal. Math.2012);
– Ionescu and Pusateri (2d: Invent. Math.2014);
.....



Very active recently on the global solution (irrotational) : with
surface tension, finite depth.....:
Alazard-Delort (Ann. Sci. EC. Norm. Super(2015)),
Alvarez-Samaniego- D. Lannes( Invent. Math.), Y. Deng, A.D.
Ionescu, B. Pausader, F. Pusateri, (Acta Math. (2017)), P.
Germain, N. Masmoudi, J. Shatah (CPAM 2015), A. Ionescu, F.
Pusateri (CPAM 2016), A. Ionescu, F. Pusateri (Mem. Amer.
Math. Soc, 2018), X. C Wang ( Anal. PDE 10 (4) (2017), CPAM
2018, Adv. in Math. 2019).
Long-time solution for incompressible Euler-Poisson
Bieri, Lydia; Miao, Shuang; Shahshahani, Sohrab; Wu, Sijue,
Comm. Math. Phys. 355 (2017).



The Free Boundary Problem for Compressible Euler
and Related Equations



∂tρ + div(ρv) = 0 in Dt ,

∂t (ρv) + div(ρv ⊗v) + ∇xp(ρ,s) = 0 in Dt ,

∂ts + v ·∂s = 0, in Dt ,

p(ρ,s) = p̄ on Γ(t) := ∂Dt ,

V (Γ(t)) = v ·n,

(ρ,v ,s) = (ρ0,v0,s0) on D0.

(1.5)

(x, t) ∈ Rn× [0,∞) (n = 1,2,3): the space and time variable,
ρ: density, v : velocity, s: entropy, p: pressure.
Dt ⊂ Rn: the changing volume occupied by the gas at time t .



V (Γ(t)): normal velocity of Γ(t),
n : exterior unit normal vector to Γ(t).

p̄ > 0 : constant. (1.6)



The case of non-vacuum boundary ( on
∂Dt , p = p̄ > 0.)

The full compressible Euler equations with the free
boundary being a graph
Trakhinin (CPAM 2009) (local well-posedness): for the case
when the free boundary is a graph and the gravity effect is
taken into consideration based on the approach of
symmetrization of hyperbolic systems. The assumption that the
free boundary is a graph in is crucially used to flatten the
boundary in Trakhinin (CPAM 2009).



Loss of derivatives in Trakhinin’s solution

Local-in-time well-posedness via Nash-Moser iteration. It
should be noted that these well-posedness results do not
contain full a priori estimates since the iteration schemes based
on the linearization lose the regularity on the moving boundary,
the linearized problems do not preserve the full estimates of the
nonlinear problems of which the full symmetry of the problems
provided by the physical laws (e.g. conservation laws) is used.
In fact, it is proved in Trakhinin (CPAM 2009) that when the
initial data of the fluid variables (ρ0,v0,s0) ∈ Hm+7 and
∂D0 ∈ Hm+7 for m ≥ 6, there is a local-in-time solution with
(ρ,v ,s)(·, t) ∈ Hm and ∂Dt ∈ Hm for t ∈ (0,T ] for some T > 0.
The solution loses 7-derivatives.



Isentropic Euler equations in general bounded
domains

1. H. Lindblad (CMP 2005)
Local-in-time well-posedness via Nash-Moser iteration.
2. H. Lindblad- C. Luo (CPAM 2018): The higher order energy
estimates .



Comparison of isentropic and non-isentropic cases

Isentropic case ( s is constant): the pressure P is a sole
strictly increasing function of density ρ , the enthalpy
(h(ρ) =

∫ ρ

1 P ′(λ )λ−1dλ ), pressure and density are equivalent.
One may take either one of them as an independent thermal
dynamical variable. This is an advantage taken in the estimates
in Lindblad-Luo (CPAM 2018). Indeed, the enthalpy h is used in
in Lindblad-Luo as an independent thermal dynamical variable
which satisfies a nice wave equation.
However, this does not hold anymore for a variable entropy s for
P = P(ρ,s) for a non-isentropic flow.



Stability Condition

The Taylor sign condition of the pressure, ∂NP < 0 on ∂Dt ,
plays an important role to the stability in the study of the free
boundary problems of inviscid fluids, excluding the
Rayleigh-Taylor type instability, without which problems may
become ill-posed (see Ebin for the problem of incompressible
Euler equations and Hao-Luo (CMP2020) for ideal
incompressible MHD).
For the problem of compressible Euler equations coupled with a
nonlinear Poisson equation considered in this paper, we find
that only the Taylor sign condition for the pressure may not be
adequate.



Stability Condition

From the momentum equation:

Dtv ·N =−∂NP
ρ

+ ∂Nφ , on ∂Dt . (1.7)

The acceleration of the free surface ∂Dt is due to two parts,
− ∂NP

ρ
and ∂Nφ . Therefore, besides the Taylor sign condition

∂NP < 0 on ∂Dt for pressure P, we also propose another
stability condition ∂Nφ > 0 on ∂Dt so that

Dtv ·N > 0, on ∂Dt .



Stability Condition in isentropic case

s = constant , P = P(ρ,s) =: P(ρ), let h(ρ) =
∫ ρ

1 P ′(λ )λ−1dλ be
the enthalpy,

Dtv + ∂ (h(ρ)−φ) = 0.

In this case, the following generalized Taylor sign condition

∂N(h(ρ)−φ) < 0, on ∂Dt (1.8)

can be used to replace the conditions −∂NP > 0 and ∂Nφ > 0
on ∂Dt proposed in this paper for the general variable entropy

case.



Stability Condition: non-isentropic vs isentropic

Isentropic: h(ρ)−φ = const on ∂Dt so that
∇(h(ρ)−φ) = N∂N(h(ρ)−φ) on ∂Dt , where N is the unit outer
normal on ∂Dt , and thus

ηDt∂
rP−∂

r vmNm = η∂
r DtP + ηRr , on ∂Dt , (1.9)

where P = h(ρ)−φ , η =− 1
∂NP , ∂mP = ∂NPNm and

Rr = [Dt ,∂
r ]P + ∂ r vm∂mP.

Non-isentropic case: it is impossible to write ∂P(p,s)
ρ
−∂φ as a

gradient of a scalar function. This is a big difference between
the isentropic and non-isentropic flow.



One may attempt to try the following stability condition for the
non-isentropic flow,

∂NP(ρ,s)

ρ
−∂Nφ < 0, on ∂Dt , (1.10)

motivated by (1.7). However this does not work since one
cannot write ∂NP(ρ,s)

ρ
−∂Nφ as ∂NP for some scaler function P

as in the isentropic case.



Geometric Quantities on the Free Surface

Orthogonal projection Π to the tangent space of the boundary:
For a (0, r) tensor α(t ,x),

(Πα)i1···ir = Πj1
i1
· · ·Πjr

ir αj1···jr , where Πj
i = δ

j
i −NiN

j . (2.11)

The tangential derivative of the boundary:

∂̄i = Πj
i∂j ,

The second fundamental form of the boundary:

θij = ∂̄iNj .



Injectivity radius
The injectivity radius of the normal exponential map of the
boundary ∂Dt , ι0, is the largest number such that the map

∂Dt × (−ι0, ι0) → {x ∈ Rn : dist(x ,∂Dt ) < ι0} :

(x̄ , ι) 7→ x = x̄ + ιN (x̄)

is an injection.



Another Geometric quantity

Def: Let 0 < ε1 ≤ 1/2 be a fixed number, and let ι1 = ι1(ε1) be
the largest number such that

|N (x̄1)−N (x̄2)| ≤ ε1 whenever |x̄1− x̄2| ≤ ι1 x̄1, x̄2 ∈ ∂Dt .

It is easier to control the time evolution of ι1 than ι0.
Lemma (CL00) Suppose that |θ | ≤K . Then

ι0 ≥min{ι1/2, 1/K } and ι1 ≥min{2ι0, ε1/K }. (2.12)



Quadratic form Q

Q is a positive definite quadratic form, such that for (0, r)

tensors α and β

1) Q(α,β ) =< Πα,Πβ >, is the inner product of the tangential
components when it is restricted on the boundary,
2) in the interior Q(α,α) increases to the norm |α|2 in the
interior.
Here Π is the orthogonal projection to the tangent space of the
boundary.
For a (0, r) tensor α(t ,x),

(Πα)i1···ir = Πj1
i1
· · ·Πjr

ir αj1···jr , where Πj
i = δ

j
i −NiN

j . (2.13)

The construction is from Chistodoulou and Lindblad’s work on
the problem for incompressible Euler equations.



Construction of Quadratic Form Q

Q(α,β ) =: χ
i1j1 · · ·χ ir jr αi1···ir βi1···ir ,

χ
ij(t ,x) = δ

ij −η(d(t ,x))2N i(t ,x)N j(t ,x) in Dt ,

N j(t ,x) = δ
ijNi(t ,x), Ni(t ,x) = ∂id(t ,x) d(t ,x) = dist(x ,∂Dt ),

η(s) =

 1, 0≤ s ≤ ι0/4,

0, ι0/2≤ s ≤ ι0,

0≤ η(s)≤ 1 and |η ′(s)| ≤ 8 for s ∈ [0, ι0].

ι0 is the injectivity radius of the normal exponential map of the
boundary ∂Dt .



Hodge-type inequality

For a vector field v ,

|∂ r v |2 ≤ C(δ
mnQ(∂

r vm,∂
r vn) + |∂ r−1divv |2 + |∂ r−1curlv |2).

(2.14)



Higher order energy functional

Let
i(ρ,s) = ρ

∫
ρ

1

P(η ,s)

η2 dη , ρ > 0, (2.15)

and
j(ρ,s) = i(ρ,s)− iρ (1,s)(ρ−1), ρ > 0. (2.16)

Define
E0(t) =

∫
Dt

(
1
2

ρ|v |2 + j(ρ,s) + P̄
)

dx . (2.17)



Set

Er (t) =
∫

Dt

(δ
mn

ρQ(∂
r vm,∂

r vn) + F (P,s)Q(∂
r P,∂ r P))dx

+
∫

Dt

ρ(|∂ r−1curlv |2 + |∂ r−1divv |2 + |∂ r s|2)dx

+
∫

∂Dt

|(Π∂
r P|2ν + |Π∂

r
φ |2µ)dσ , 1≤ r ≤ 4, (2.18)

where ν =−(∂NP)−1, µ = (∂Nφ)−1, F (P,s) = ρP(P,s)
ρ(P,s)) > 0,

Pr (t) =
∫

Dt

(|Dr+1
t P|2 + Pρ |∂Dr

t P|2)dx , 0≤ r ≤ 4, (2.19)

Let

Er (t) = Er (t) + Pr (t) +
∫

Dt

|∂ r P|2dx +
∫

Dt

|∂ r
φ |2dx , 0≤ r ≤ 4.

(2.20)

Finally, we set

E (t) =
4

∑
r=0

Er (t). (2.21)



Main Theorem
Theorem (L. -Trivisa-Zeng) Suppose that the initial data satisfy
that

c1 ≤ ρ0(x)≤ c2, x ∈D0, (2.22)

−∂NP(x ,0)≥ ε0,∂Nφ(x ,0)≥ ε1, x ∈ ∂D0, (2.23)

K (0) =: max
∂D0

(|θ |+ | 1
ι0
|) < ∞, (2.24)

for some positive constants c1, c2, ε0,ε1,, and the pressure
P(ρ,s) satisfies (1.2). Then there exists a continuous function

T
(

K (0),E (0),ε−1
0 ,ε−1

1 c1,c2,volD0

)
> 0

such that if

T ≤T
(

K (0),E (0),ε−1
0 ,ε−1

1 c1,c2,volD0

)
, (2.25)



then any smooth solution of the free boundary problem
(1.1)-(1.4) for 0≤ t ≤ T satisfies

0≤ t ≤T
(

K (0),E (0),ε−1
0 ,ε−1

1 ,c1,c2,volD0

)
the following statements hold,

E (t)≤ 2E (0), 0≤ t ≤ T , (2.26)

2
3

min
x∈D0

ρ0(x)≤ ρ(x , t)≤ 3
2

max
x∈D0

ρ(x), (2.27)

W (t)≤ 2W (0), U (t)≤ 2U (0), (2.28)

K (t) =: max
∂Dt

(|θ |+ | 1
ι0
|)≤ C(ι1(0))W (0)

√
E (0) + 1, (2.29)

where

W (t) = ‖− 1
∂NP
‖L∞(∂Dt ), U (t) = ‖ 1

∂Nφ
‖L∞(∂Dt ).



Isentropic case
s = constant , P = P(ρ,s) =: P(ρ), let h(ρ) =

∫ ρ

1 P ′(λ )λ−1dλ be
the enthalpy. Under the following generalized Taylor sign
condition

∂N(h(ρ)−φ) <−ε0 < 0, on ∂D0, (2.30)

one may still obtain the related a priori estimates. However,
since one does not have the estimates of

∫
∂Dt
|Π∂ r φ |2 and one

does not have the lower positive bound for ∂Nφ on ∂Dt in this
case , one cannot use the projection formula Π∂ 2φ = θ∂Nφ on
∂Dt to obtain the L∞(∂Dt ) bound for the second fundamental
form θ . One may attempt to use the projection formula
Π∂ 2(h(ρ)−φ) = θ∂N(h(ρ)−φ) on ∂Dt . However, the estimate
on ∂ 2(h(ρ)−φ) involves the bound for θ , so it does not work.
Instead, we use the evolution equation for θ to obtain the bound
for θ , which requires one more derivative.



Stability condition for Isentropic case

Condition (2.30)

∂N(h(ρ)−φ) <−ε0 < 0, on ∂Dt , (2.31)

means that, with the electric filed, the pressure does not have
to satisfy the following Taylor sign condition

∂NP(ρ) < 0, on ∂D0. (2.32)



Remark

It should be noted that the a priori estimates involving
H5-norms for (ρ,u,s) still hold true for the full compressible
Euler equations of gas dynamics without coupling with the
electric filed. In this case, we only need the stability condition

−∂NP(x ,0)≥ ε0 > 0, x ∈ ∂D0. (2.33)



Comparison with the solution obtained in Trakhinin
(CPAM 2009)

For the free boundary being a graph, it is proved in Trakhinin
(CPAM 2009) that when the initial data of the fluid variables
(ρ0,v0,s0) ∈ Hm+7 and ∂D0 ∈ Hm+7 for m ≥ 6, there is a
local-in-time solution with (ρ,v ,s)(·, t) ∈ Hm and ∂Dt ∈ Hm for
t ∈ (0,T ] for some T > 0. The solution loses 7-derivatives.
In our a priori estimates, we only require (ρ0,v0,s0) ∈ H5 and
∂D0 ∈ H5 for the full compressible Euler equations satisfying
the Taylor sign condition ∂NP(ρ,s) < 0 on ∂D0, and this
regularity propagates for some time without losing derivatives.



Ideas in the proof of the main theorem

The key idea of the proof of the theorem is to prove

d
dt

E (t)

≤ C(ε
−1,K ,K1,K2,M,M̄,L, L̄)

· (1 +‖µ‖L∞(∂Dt ) +‖Dt µ‖L∞(∂Dt ))P(E (t)), (2.34)

for some polynomial P, where

µ =
1

∂Nφ
, on ∂Dt ,



under the following a priori assumptions: For 0 < t ≤ T ,

In Dt

|∂v |+ |∂P|+ |∂φ | ≤M, (2.35)

|Dtφ |+ |∂ 2
φ |+ |∂Dtφ |+ |Dt∂φ | ≤ M̄, (2.36)

and on ∂Dt ,

−∂N P ≥ ε > 0, (2.37)

∂N φ ≥ ε̄ > 0, (2.38)

|θ |+ 1
ι0
≤ K ,

1
ι1
≤ K1, (2.39)

|∂NDtP|+ |∂ 2P| ≤ L, |∂NDtφ | ≤ L̄, (2.40)

‖∂̄ θ‖L2(∂Dt
)≤ K2. (2.41)



Then we justify the above a priori assumptions by
1) the Sobolev inequalities in which the Sobolev constants
depend on K1 (the boundary geometry),
2) the projection formula for θ by using the fact that the free
surface is a level surface for P and φ ,
3) maximal principle for φ ,
4) the evolution equation for ι1 and etc.
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