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The incompressible Euler equation and its vorticity
formulation

The 3D incompressible Euler equation:{
∂tv + (v · ∇)v = −∇P, x ∈ R3, t > 0,

∇ · v = 0.
(1)

By introducing the vorticity function:

ωωω = ∇× v = (∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1),

and taking curl operator ∇× at both side of (1), we can obtain

∂tωωω = ∇× (v ×ωωω) or ∂tωωω + (v · ∇)ωωω = (ωωω · ∇)v, (2)

which is known as the vorticity formulation of (1) or Helmholtz equation.
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The Biot-Savart law

In (2), the velocity v be recovered by ωωω using Biot–Savart law:

v(x) = ∇× (−∆)−1ωωω

=
1

4π

∫
R3

x − y
|x − y |3

×ωωω(y)dy .
(3)

Then by (1) we can obtain the pressure scalar P.

Note that in Helmholtz equation (2), ωωω will not only be influenced by
(v · ∇)ωωω, but also stretchs or twists due to the nonlinear term(ωωω · ∇)v,
which leads to possible finite time blow up of L∞ norm.
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The case for axi-symmetric flow

Let {er , eθ, ez} be the standard 3D Cylindrical coordinate. Then velocity
v can be written as:

v = v r (r , z , t)er + vθ(r , z , t)eθ + v z(r , z , t)ez .

Since the flow is axi-symmetric, the velocity v is independent on θ. We
further asuume vθ ≡ 0. Helmholtz equation (2) is then transformed to

∂t

(
ωθ

r

)
+ (v · ∇)

(
ωθ

r

)
= 0, (4)

which is a transform equation on ωθ/r .
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Vortex rings in reality
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Vortex rings

Vortex rings can be characterized as an axi-symmetric flow with a ‘thin’
or ‘fat’ toroidal vortex tube. By letting ζ := ωθ/r be , ζ satisfies the
transport equation

∂tζ + v · ∇ζ = 0, (5)

Especially, a steady vortex ring ζ has following form:

ζ(x , t) = ζ(x + tv∞),

where v∞ = −Wez is a constant translational speed. Combining this
with (5), we have a steady equation

(v∞ + v) · ∇ζ = 0, v = ∇× (−∆)−1 (rζeθ) .
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2 kinds of vortex rings in axi-symmetric flows
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The history for investigation of existence

1858: Helmholtz detected that vortex rings travel with a large constant
velocity along the axis of the ring.

1860s: Lord Kelvin (Thomson) and Hicks obtained the well-known
Kelvin–Hicks formula.

1894: Hill discovered the Hill’s spherical vortex.

1972: Fraenkel constructed a series of vortex rings of small cross-section.

1972: Norbury constructed a class of vortex rings near Hill’s spherical
vortex.

1974: Fraenkel and Berger gave a general theory for construction of
steady vortex rings.

1980–: Fredman et al., Ambrosetti et al., de Valeriola et al., Cao et al.
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Notations for vortex rings

A scalar function ϑ : R3 → R is axi-symmetric if ϑ(x) = ϑ(r , z), and a
subset Ω ⊂ R3 is axi-symmetric if 1Ω is axi-symmetric. The cross-section
parameter σ of an axi-symmetric set Ω ⊂ R3 can be defined as

σ(Ω) :=
1

2
· sup {δz(x , y) | x , y ∈ Ω}

with the axi-symmetric distance

δz(x , y) := inf {|x − Q(y)| | Q is a rotation around ez} .

Let Cr = {x ∈ R3 |x21 + x22 = r2, x3 = 0} be a circle of radius r on the
plane perpendicular to ez . For an axi-symmetric set Ω ⊂ R3, we define
the axi-symmetric distance between Ω and Cr as

distCr (Ω) = sup
x∈Ω

inf
x′∈Cr

|x − x ′|.
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The Kelvin–Hicks formula

The circulation of a steady vortex ring ζ is given by

1

2π

∫
R3

ζ(x)dx .

A steady vortex ring ζ is said to be centralized if ζ is symmetric
non-increasing in z , namely,

ζ(r , z) = ζ(r ,−z), and

ζ(r , z) is a non-increasing function of z for z > 0, for each fixed r > 0.

Kelvin–Hicks formula: a vortex ring with uniform density throughout
the core would approximately move at the velocity

κ

4πr∗

(
ln

8r∗

σ
− 1

4

)
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Our existence result

Let κ and W be two positive numbers. Then there exists a small number
ε0 > 0 such that, for every ε ∈ (0, ε0] there is a centralized steady vortex
ring ζε with fixed circulation κ and translational velocity W ln ε ez .
Moreover,

(i) ζε = ε−21Ωε
for some axi-symmetric topological torus Ωε ⊂ R3.

(ii) It holds C1ε ≤ σ (Ωε) < C2ε for some constants 0 < C1 < C2.

(iii) As ε→ 0, distCr∗ (Ωε) → 0, where r∗ = κ/4πW .
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A related semi-linear elliptic equation
Using ∇ · v = 0, the velocity field can be written as

v =
1

r

(
−∂ψ
∂z

er +
∂ψ

∂r
ez

)
wth ψ the Stokes stream function. Then (5) is transformed to an
equation on the meridional half plane Π = {(r , z) | r > 0}

Lψε =
1
ε2 1Aε , in Π,

ψε(0, z) = 0,

ψε, |∇ψε|/r → 0 as r2 + z2 → ∞,

(6)

with

L := −1

r

∂

∂r

(1
r

∂

∂r

)
− 1

r2
∂2

∂z2

an elliptic operator, and

Aε :=

{
x = (r , z) ∈ Π

∣∣ ψε −
W

2
| ln ε|r2 − µε > 0

}
the cross-section of vortex ring.
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The Green’s function and its asymptotic property

The Green’s function G∗(x , x ′) for operator L (with boundary condition
in (6)) has following asymptotic behavior:

G∗(x , x ′) =
r1/2r ′3/2

4π

(
ln

(
1

ρ

)
+ 2 ln 8− 4 + O

(
ρ ln

1

ρ

))
, as ρ→ 0,

with

ρ =
(r − r ′)2 + (z − z ′)2

rr ′
.

Thus we can split G∗ as

G∗(x , x ′) = q21G (x , x ′) + H(x , x ′),

where

G (x , x ′) =
1

4π
ln

(r + r ′)2 + (z − z ′)2

(r − r ′)2 + (z − z ′)2
.

is the Green’s function for −∆ on the meridional half plane Π.
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Approximate solutions

By introducing the scaled stream function of Rankine vortex:

Vq,ε(x) =

{
a
2π ln 1

ε +
z21
4ε2 (s

2 − |x − q|2), |x − q| ≤ s,
a
2π ln 1

ε · ln |x−q|
ln s , |x − q| ≥ s,

(7)

and regular part Hq,ε(x), we can write the Stokes stream function ψε for
vortex ring of small cross-section as

ψε(x) = Vq,ε(x)− Vq̄,ε(x) +Hq,ε(x) + ϕε(x),

where ϕε is the error term, and the barycenter q = (q1, 0) of Vq,ε(x)
determined later.
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The equation for error term

By chosing the parameter a in (7) appropriately, equation (6) is then
transformed to an semilinear elliptic equation on ϕε:

Lεϕε = Rε(ϕε), (8)

where

Lεϕε = −rLϕε −
2

sq1
ϕε(s, θ)δ|x−q|=s .

is the linear operator,

Rε(ϕε) =
1

ε2

(
r1Aε − r1{Vq,ε>

a
2π ln 1

ε}
− 2

sq1
ϕε(s, θ)δ|x−q|=s

)
is the nonlinear term.
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Lyapunov-Schmidt reduction
Notice that Lε is not invertible, and is approximated by linear operator

L∗
ε = − 1

q1
∆ϕε −

2

sq1
ϕε(s, θ)δ|x−q|=s ,

whose kernel is asymptotically spanned by Zq,ε = χε · ∂Vq,ε
∂x1

.
(χε is a smooth truncation to make Zq,ε satisfy the boundary condition).
We can first consider the projective problem

Lεϕ = h(x)− ΛrLZq,ε, in Π,∫
Π

∇ϕ
r · ∇Zq,εdx = 0,

ϕ(x) = 0, on r = 0,

ϕ, |∇ϕ|/r → 0, as |x | → ∞,

(9)

Letting h(x) = Rε(ϕε), (8) is then transformed to a fixed point problem

ϕε = TεRε(ϕε).
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The finite dimensional problem

The last step of proving existence is to fined q such that the coefficient Λ
in (9) equals 0, namely,

ε2
∫
Π

1

r
∇ψε · ∇Zq,εdx −

∫
Aε

r · Zq,εdx = 0,

By further analysis, the above reduction condition is

q1 −
κ

4πW
= O

(
1

| ln ε|

)
.

Hence we find the desired q, and prove the existence for a series of
vortex rings of small cross-section ζε.
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The history for investigation of uniqueness

Compared with existence result, there are fewer works on uniqueness.

Amick, Fraenkel (Arch. Ration. Mech. Anal: 92(2) 91–119,1986)
obtained the uniqueness of Hill’s spherical vortex by the method of
moving plane.

Amick, Fraenkel (Arch. Ration. Mech. Anal: 100(3) 207–241,1988)
obtained the the local uniqueness of Norbury’s vortex rings by asymptotic
estimates.

The limitations: their techniques depend strongly on specific distribution
of vorticity in cross-section.
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Our uniqueness result

Let κ and W be two positive numbers. Let {ζ(1)ε }ε>0 and {ζ(2)ε }ε>0 be
two families of centralized steady vortex rings with the same circulation κ
and translational velocity W ln ε ez . If, in addition,

(i) ζ
(1)
ε = ε−21

Ω
(1)
ε

and ζ
(2)
ε = ε−21

Ω
(2)
ε

for certain axi-symmetric

topological tori Ω
(1)
ε , Ω

(2)
ε ⊂ R3.

(ii) As ε→ 0, σ
(
Ω

(1)
ε

)
+ σ

(
Ω

(2)
ε

)
→ 0.

(iii) There exists a δ0 > 0 such that

Ω
(1)
ε ∪ Ω

(2)
ε ⊂

{
x ∈ R3 |

√
x21 + x22 ≥ δ0

}
for all ε > 0.

Then there exists a small ε0 > 0 such that ζ
(1)
ε ≡ ζ

(2)
ε for all ε ∈ (0, ε0].
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Two facts leading to uniqueness

a. The non-degeneracy of Hessian for regular part in stream
function at vortex location qε:
Let ψ̄ε(r , z) = −Vq̄,ε +Hq,ε − W

2 | ln ε|r2, then it holds ∂2r ψ̄ε(r , 0) ̸= 0.

(Fot the planer k-point vortex case, the regular part in stream function is
the Kirchhoff-Routh function

Kk(x1, x2, .., xk) :=
1

2

k∑
i ̸=j

κiκjG (x i , x j) +
1

2

k∑
i=1

κ2i h(x i , x i )

and in particular, (x1, x2, .., xk) must be a critical point of Kk when the
system constitutes an equilibrium. If it holds the non-degeneracy
condition det∇2

x i
Kk(x1, x2, .., xk) ̸= 0, then a uniqueness property can

be showed for corresponding regularization series.
For example: Cao et al.: JMPA 2019 for localized vortex patches, JFA
2022 for localized smooth vortices)
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Two facts leading to uniqueness

b. The non-degeneracy of limiting linear problem:
Let

w(y) :=
{ 1

4 (1− |y |2), if |y | ≤ 1,
1
2 | ln

1
|y | , if |y | > 1.

Suppose that v ∈ L∞(R2) ∩ C (R2) solves

−∇v − 2v(1, θ)δ|y |=1 = 0

in R2. Then

v ∈ span

{
∂w

∂y1
,
∂w

∂y2

}
.

(Cao et al. adv. Math. 2015: Planar vortex patch problem in
incompressible steady flow)
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The proof of uniqueness

We first derive a precise estimate for vortex ring parameters. Then we
use the Pohozaev identity to derive a contradiction for multi-solution
situation.

For detail proof, see
Cao et al. (ArXiv: 2201.08232): Existence, uniqueness and stability of
steady vortex rings of small cross-section

Cao et al. (preprint ): Uniqueness and stability of traveling vortex
patch-pairs for the incompressible Euler equation
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The kinetic energy and impulse

We denote BC ([0,∞);X ) as the space of all bounded continuous
functions from [0,∞) into a Banach space X , and define the weighted
space L1w(R3) by L1w(R3) = {ϑ : R3 → R measurable | r2ϑ ∈ L1(R3)}.
We also introduce the kinetic energy

E [ζ] :=
1

2

∫
R3

|v(x)|2dx , v = ∇× (−∆)−1 (rζ) ,

and its impulse

P[ζ] =
1

2

∫
R3

r2ζ(x)dx = π

∫
Π

r3ζdrdz .
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Well-posedness for the Cauchy problem

For any non-negative axi-symmetric function ζ0 ∈ L1 ∩ L∞ ∩ L1w(R3)
satisfying rζ0 ∈ L∞(R3), there exists a unique weak solution
ζ ∈ BC ([0,∞); L1 ∩ L∞ ∩ L1w(R3)) of (5) for the initial data ζ0 such that
ζ(·, t) ≥ 0 and is axi-symmetric,

∥ζ(·, t)∥Lp(R3) = ∥ζ0∥Lp(R3), 1 ≤ p ≤ ∞,
P[ζ(·, t)] = P[ζ0], E [ζ(·, t)] = E [ζ0], for all t > 0,

and, for any 0 < υ1 < υ2 <∞ and for all t > 0,∫
{x∈R3 | υ1<ζ(x,t)<υ2}

ζ(x , t)dx =

∫
{x∈R3 | υ1<ζ0(x)<υ2}

ζ0(x)dx .
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The variational description for vortex rings

By introducing the admissible class

Aε :=
{
ζ ∈ L∞(R3) | ζ : axi-symmetric, 0 ≤ ζ ≤ 1/ε2, ∥ζ∥L1(R3) ≤ 2πκ

}
,

we consider the maximization problem:

Eε = sup
ζ∈Aε

(
E [ζ]−W ln

1

ε
P[ζ]

)
.

Using the L∞ restriction, maximizer ζ̂ε is attainable. For arbitrary
ζ ∈ Aε, we let

ζτ = ζ̂ε + τ(ζ − ζ̂ε), τ ∈ [0, 1].

Since ζ̂ε is the maximizer, it must hold

d

dτ

(
E [ζτ ]−W ln

1

ε
P[ζτ ]

) ∣∣∣∣
τ=0+

≤ 0,
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The variational description for vortex rings

which is equivalent to∫
Π

ζ̂ε

(
ψ̂ε −

W

2
r2 ln

1

ε

)
rdrdz ≥

∫
Π

ζ

(
ψ̂ε −

W

2
r2 ln

1

ε

)
rdrdz .

Here ψ̂εis the Stokes stream function corresponding to ζ̂ε. According to
bathtub lemma, it holds

ψ̂ε − W
2 r2 ln 1

ε > µε, if ζ̂ε = 1/ε2,

ψ̂ε − W
2 r2 ln 1

ε = µε, if 0 < ζ̂ε < 1/ε2,

ψ̂ε − W
2 r2 ln 1

ε < µε, if ζ̂ε = 0.

By Steiner symmetrization, the middile part does not exist. Thus ζ̂ε gives
a vortex ring. (The limiting behavior for ζ̂ε as ε→ 0+ can be derived by
Riesz rearrangement inequality).
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Our nonlinear stability result

The steady vortex ring of small cross-section ζε is stable up to
translations in the following sense:
For any η > 0, there exists δ1 > 0 such that for any non-negative
axi-symmetric function ζ0 satisfying ζ0, rζ0 ∈ L∞(R3) and

∥ζ0 − ζε∥L1∩L2(R3) + ∥r2(ζ0 − ζε)∥L1(R3) ≤ δ1,

the corresponding solution ζ(x , t) of (5) for the initial data ζ0 satisfies

inf
τ∈R

{
∥ζ(· − τez , t)− ζε∥L1∩L2(R3) + ∥r2(ζ(· − τez , t)− ζε∥L1(R3)

}
≤ η,

for all t > 0. Here, ∥ · ∥L1∩L2(R3) means ∥ · ∥L1(R3) + ∥ · ∥L2(R3).
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The proof for the nonlinear stability

Before our work, the only rigorous stability result for vortex rings is the
orbital stability for Hill’s vortex by Choi (CPAM 2022).

In view of the uniqueness result, we know ζ̂ε is unique under a translation
in z direction. Using the conservation law and compactness of
maximization sequences (modified version of Concentrate compactness
theorem by Choi), we can show that ζ̂ε is nonlinear stable in
L1 ∩ L∞ ∩ L1w norm.

For the general idea, see also:
G.R. Burton (J. Differential Equations: 270 547–572,2021):
Compactness and stability for planar vortex-pairs with prescribed impulse

G. Wang (Mathematische Annalen 2023): Stability of two-dimensional
steady Euler flows with concentrated vorticity.
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Thank you for your attention!

Zou Changjun On steady vortex rings of small cross-section


	Background of the problem
	The existence
	The uniqueness
	The nonlinear stability

