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The motion of an ideal incompressible fluid(with unit

density of mass) in a domain D without external force is described

by the following Euler equations
∂tv + (v · ∇)v = −∇P, (x , t) ∈ D × (0,T ),

∇ · v = 0, (x , t) ∈ D × (0,T ),

v · n = 0, ∂D × (0,T ),

(1)

where

v: the velocity, P: the pressure,

n: the outward unit normal to ∂D.
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Defined vorticity vector of v by ~ω = curlv = ∇× v.

Taking the curl in the first equation of (1) we have the

equation for vorticity

∂t~ω + v · ∇~ω = (~ω · ∇)v . (2)

(2) was first studied by Helmholtz in 1858 and thus is called

Helmholtz equation.

H. Helmholtz, On integrals of the hydrodynamics equations

which express vortex motion, J. Reine Angew. Math., 55(1858),

25–55.
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Helmholtz considered the vorticity equations of the flow and

found that the existence of vortex rings, which are toroidal regions

in which the vorticity has small cross-section, translate with a

constant speed alone the axis of symmetry. The translating speed

of vortex rings was then studied by Kelvin and Hick in 1899.
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Define the circulation of a vortex

c =

∮
`

v · tdl =

∫∫
σ

~ω · ndσ, (3)

where ` is any oriented curve with tangent vector field t that

encircles the vorticity region once and σ is any surface with

boundary `.
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Lamb showed that if the vortex ring has radius R, circulation c

and its cross-section a is small, then the vortex ring moves at the

velocity
c

4πR

(
ln

8R

a
− 1

4

)
. (4)
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Then L.S. Da Rios in 1906, in his doctoral thesis, showed that

if one somehow knows that at some time the vorticity concentrates

smoothly and symmetrically in a small tube around a smooth

curve, then one can compute the instantaneous velocity of the

curve to leading order. These computations suggest that the curve

should evolve, after a possible rescaling in time, by an equation,

known by various names, including the binormal curvature flow, the

vortex filament equation, and the local induction approximation.
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For the vortex filament with a small section of radius ε and a

fixed circulation, uniformly distributed around an evolving curve

Γ(t), suppose that Γ(t) is parameterized as γ(s, t), where s is the

parameter of arclength,
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then γ(s, t) asymptotically obeys a law of the form

∂tγ =
c

4π
| ln ε|(∂sγ × ∂ssγ) =

cK̄

4π
| ln ε|bγ(t), (5)

c : the circulation on the boundary of sections to the filament,

bγ(t) : the unit binormal,

K̄ : local curvature.
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If we rescale the time t = | ln ε|−1τ , then

∂τγ =
cK̄

4π
bγ(τ). (6)

Therefore, the vortex filaments move simply in the binormal

direction with speed proportional to the local curvature and the

circulation.

When Γ is a circular filament, the leading term of (4) coincides

with the coefficient of right hand side of (5) since in this case the

local curvature K̄ = 1
r∗ .
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R.L. Jerrard and C. Seis, On the vortex filament conjecture for

Euler flows, Arch. Ration. Mech. Anal., 224(2017), 135–172.

Jerrard and Seis first gave a precise form to da Rios’

computation with much weaker conditions.

Their result shows that under some conditions of a solution ~ωε

of (2), there holds in the sense of distribution,

~ωε(·, | ln ε|−1τ)→ cδγ(τ)tγ(τ), as ε→ 0, (7)

where γ(τ) satisfies (6), tγ(τ) is the tangent unit vector of γ and

δγ(τ) is the uniform Dirac measure on the curve.
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Up to now the existence of a family of solutions to (2)

satisfying (7), where γ(τ) is a given curve evolved by the binormal

flow (6), is still an open problem, called the vortex filament

conjecture except for the several type of curves with special forms:

the straight lines, the traveling circles and the

traveling-rotating helices.

The problem of vortex concentrating near straight lines,

corresponds to the planar Euler equations concentrating near a

collection of given points governed by the 2D point vortex model.
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Two examples of curves of the binormal flow (6):

Example one

γ(s, τ) =
(

r∗ cos
( s

r∗

)
, r∗ sin

( s

r∗

)
,

c

4πr∗
τ
)T

, (8)

where vT denotes the transposition of a vector v.

It is a circle with radius r∗ traveling along the x3 axis with

speed c
4πr∗
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The second one of the binormal flow (6) that does not change

its form in time is the rotating-translating helix, parameterized as

γ(s, τ) =

(
r∗ cos

(
−s − a1τ√

k2 + r 2
∗

)
, r∗ sin

(
−s − a1τ√

k2 + r 2
∗

)
,

ks − b1τ√
k2 + r 2

∗

)T

,

(9)

a1 =
ck

4π(k2 + r 2
∗ )
, b1 =

cr 2
∗

4π(k2 + r 2
∗ )
.

where

r∗ > 0 is the distance between a point in γ(τ) and the x3-axis,

2πk is the pitch of the helix,

local curvature: r∗
k2+r2

∗

local torsion: k
k2+r2

∗
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It should be noted that the curve parameterized by (9) is a

rotating-traveling helix.

This helix degenerates into the traveling circle if k → 0 and to

a straight line when |k| → ∞.

Define for any θ ∈ [0, 2π]

Rθ =

(
cos θ sin θ

− sin θ cos θ

)
, Qθ =

(
Rθ 0

0 1

)
.

Computing directly we can find

γ(s, τ) = Q a1τ√
k2+r2
∗

γ(s, 0) +

(
0, 0,− b1τ√

k2 + r 2
∗

)T

.
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When k > 0, (9) corresponds to the left-handed helix,

and if k < 0 then (9) corresponds to the right-handed helix.

We will consider the case k > 0 only, the case k < 0 can been

dealt with similarly.
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Axi-symmetric Case – The vortex ring

L. E. Fraenkel, On steady vortex rings of small cross-section in

an ideal fluid, Proc. R. Soc. Lond. A., 316(1970), 29–62.

Vortex rings with small cross-section without change of form

concentrating near a traveling circle satisfying (8) in the sense of

(7)
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Elliptic equations for 2D and 3D axi-symmetric flows:

In terms of the Stokes stream function Ψ, the problem can be

reduced to a free boundary problem on the half plane

Π = {(r , z) | r > 0} of the form:

(P)



LΨ = 0 in Π\A,
LΨ = λf (Ψ− q) in A,

Ψ(0, z) = −µ ≤ 0,

Ψ = 0 on ∂A,
1
r
∂Ψ
∂r → −W and 1

r
∂Ψ
∂z → 0 as r 2 + z2 →∞,

where

L := −1

r

∂

∂r

(1

r

∂

∂r

)
− 1

r 2

∂2

∂z2
, 3D with axi-symmetry

L := −∆, in the case of 2D
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After then many articles on desingularization results:

constructing vortex rings

under different conditions, on different kinds of domains,

with different vortex profiles.

J.Norbury, [1972, Proc. Cambridge Philos.Soc.], A steady

vortex ring close to Hill’s spherical vortex .

J.Norbury,[1973,J. Fluid Mech.,], A family of steady vortex

rings.
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L.E. Fraenkel and M.S. Berger, A global theory of steady

vortex rings in an ideal fluid, Acta Math., 132(1974), 13–51.

W-M.Ni [1980, J.Anal.Math.], Using Mountain Pass lemma,

more general f{
−∆u = g(r 2u − 1

2 Wr 2 − k), in R5

u → 0 as |x | → ∞,

where ∆ =
∑5

i=1
∂2

∂2xi
, r =

√
x2

1 + x2
2 + x3

3 + x4
4 , z = x5.
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A.Ambrosetti and Mancini [1981,Nonli.Anal.],

G.R. Burton, Rearrangements of functions, maximization of

convex functionals, and vortex rings, Math. Ann., 276 (2)(1987),

225–253.

M.Struwe [1988, Acta. Math.],

A. Ambrosetti and M.Struwe [1989,ARMA],

A.Ambrosetti and J.Yang [1990, MMMAS]: f super-linear.

J.Yang, Global vortex rings and asymptotic behavior,

Nonlinear Analysis,25(1995),531-546.
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S. de Valeriola and J. Van Schaftingen, Desingularization of

vortex rings and shallow water vortices by semilinear elliptic

problem, Arch. Ration. Mech. Anal., 210(2)(2013), 409–450.

C–, J.Wan and W.Zhan, Desingularization of vortex rings in 3

dimensional Euler flow, JDE, 270(2021), 1258–1297.

C–, J.Wan, G.Wang and W.Zhan, Asymptotic behavior of

global vortex rings, Nonlinearity, 35(2022),368–3705.

C–, G.Qin, W.Zhan and C.Zou, Remarks on orbital stability of

steady vortex rings, Trans. Amer. Math. Soc., 376(2023),

3377–3395.
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D.Chae and O.Imanuvilov, Existence of axisymmetric weak

solutions of the 3D Euler equations, E. JDE,1998,

J.G.Liu and Z.Xin[CPAM(1995)],

Q.S.Jiu and Z.Xin[Acta Math.Sinica(2004);JDE(2006, 2007)],

V.V.Melshko, A.A.Gourjii and T.S.Krasnopolskaya[ Vortex

rings: History and state of the art, J.Math.Sciences, 187 (2012),

772 - 808].
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Global well-posedness of solutions to the vorticity equation (2)

with helical symmetry was studied in several papers.

A. Dutrifoy, Existence globale en temps de solutions

hélicöidales des équations d’Euler, C. R. Acad. Sci. Paris Sér. I

Math., 329(1999), no. 7, 653–656.

B. Ettinger and E.S. Titi, Global existence and uniqueness of

weak solutions of three-dimensional Euler equations with helical

symmetry in the absence of vorticity stretching, SIAM J. Math.

Anal., 41(2009), no. 1, 269–296.

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

Introduction
Axi-symmetric Case

Q. Jiu, J. Li and D. Niu, Global existence of weak solutions to

the three-dimensional Euler equations with helical symmetry, J.

Differential Equations, 262 (2017), no. 10, 5179–5205.

H. Abidi and S. Sakrani, Global well-posedness of helicoidal

Euler equations, J. Funct. Anal., 271 (2016), no. 8, 2177–2214.

A.C. Bronzi, M.C. Lopes Filho and H.J. Nussenzveig Lopes,

Global existence of a weak solution of the incompressible Euler

equations with helical symmetry and Lp vorticity, Indiana Univ.

Math. J., 64(2015), no. 1, 309–341.

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

Helical Symmetry
Reduction to 2D

1 Introduction and Axi-symmetry Case

Introduction

Axi-symmetric Case

2 Helical Symmetry and reduction to 2D

Helical Symmetry

Reduction to 2D

3 Main Results

4 Outline of Proofs for the Main Results

Formula for Green’s function

Proof for Theorem 3.3

Outline of Proof for Theorem 3.4

Proof for Theorem 3.1

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

Helical Symmetry
Reduction to 2D

For a helix γ(τ) satisfying (9), there are a few results of

existence of true solutions of (2) concentrating on this curve in the

sense of (7).

J. Dávila, M. del Pino, M. Musso and J. Wei, Travelling

helices and the vortex filament conjecture in the incompressible

Euler equations, Calc. Var. Partial Differential Equations. 61

(2022), art. 119.

the vorticity maybe not compactly supported.
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Let k > 0. Define a one-parameter group of isometries of R3

Gk = {Hθ | R3 → R3, θ ∈ R},

where the transformation Hθ is defined by

Hθ


x1

x2

x3

 =


x1 cos θ + x2 sin θ

−x1 sin θ + x2 cos θ

x3 + kθ

 . (10)

So Hθ is a superposition of a rotation around the x3 − axis and

a translation along the x3 − axis, that is,

Hθ


x1

x2

x3

 = Qθ


x1

x2

x3

+


0

0

kθ

 .
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Define a vector field

−→
ζ =


x2

−x1

k

 .

Then
−→
ζ is the field of tangents of symmetry lines of Gk .
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Helical function: A scalar function f is called a helical function if

f (Hθx) = f (x) for any θ ∈ R, x ∈ R3.

Namely, f is invariant under the action of Gk .

An equivalent definition:

A scalar function f : R3 → R is a helical function if and only if

f (x ′, x3) = f (Rθx ′, x3 + kθ) for all θ ∈ R, x = (x ′, x3) ∈ R3. (11)
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For a scalar function f satisfying (11),

f (x) = f (R− x3
k

x ′, 0),

that is, f is determined by its values on the horizontal plane

{x = (x ′, x3) | x3 = 0}.

By direct computations it is easy to see that a C 1 function f is

helical if and only if
−→
ζ · ∇f = 0.
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Helical vector field: A vector h = (h1, h2, h3) is called helical if

h(Hθx) = Qθh(x), for any θ ∈ R, x ∈ R3.

Equivalently, h = (h1, h2, h3) is helical if and only if

h(x ′, x3) = Q−θh(Rθx ′, x3 + kθ), for any θ ∈ R, x ∈ R3. (12)

If h satisfies (12), then

h(x) = Q− x3
k

h(R− x3
k

x ′, 0).

Therefore h is determined by the values on the horizontal plane

{x = (x ′, x3) | x3 = 0}.
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Direct computation shows that a C 1 vector field h is helical if

and only if

−→
ζ · ∇h = Rh, where R =


0 1 0

−1 0 0

0 0 0

 .

Equivalently by components it satisfies (12) if and only if

∇h1 ·
−→
ζ = −h2, ∇h2 ·

−→
ζ = h1, ∇h3 ·

−→
ζ = 0.
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Helical solutions: A function pair (v,P) is called a helical

solution of (1) in BR∗(0)× R, if (v,P) satisfies (1) and both vector

field v and scalar function P are helical.

We will always assume that the helical solutions satisfy

Orthogonality condition :

v ·
−→
ζ = 0. (13)

The role of orthogonality condition is similar to the no swirling

condition for 3D axi-symmetric case(It is said that v has vanishing

helical swirl).

Orthogonality + Helicity ⇒ vanishing of vorticity stretching

term
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If v satisfies condition (13), then the corresponding vorticity

field ~ω of v satisfies (see lemma 2.11 in the paper of Ettinger-Titi)

~ω =
ω

k

−→
ζ , (14)

where ω = ω3 = ∂x1 v2 − ∂x2 v1, the third component of vorticity field

~ω, is a helical function.

From (14) we know that ~ω and v are orthogonal.

Moreover, (2) is equivalent to

∂t~ω + (v · ∇)~ω +
1

k
~ωRv = 0.

As a consequence, ω satisfies

∂tω + (v · ∇)ω = 0. (15)
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We will introduce a stream function and reduce the system (2)

to a 2D vorticity-stream equation.

Since v is a helical vector field, we have
−→
ζ · ∇v = Rv, which

implies that

x2∂x1 v3 − x1∂x2 v3 + k∂x3 v3 = 0. (16)

The orthogonal condition shows that

v3 = − 1

k
x2v1 +

1

k
x1v2. (17)

By ∇ · v = 0 and (16),(17) we get

1

k2
∂x1 [(k2 + x2

2 )v1 − x1x2v2] +
1

k2
∂x2 [(k2 + x2

1 )v2 − x1x2v1] = 0,

that is ∇ · v̂ = 0, where

v̂ =
1

k2

(
(k2 + x2

2 )v1 − x1x2v2, (k2 + x2
1 )v2 − x1x2v1

)
.
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Since BR∗(0) is simply-connected, from ∇ · v̂ = 0,

correspondingly, we can find a stream function ϕ : BR∗(0)→ R

∂x2ϕ =
1

k2
[(k2 + x2

2 )v1 − x1x2v2], ∂x1ϕ = − 1

k2
[(k2 + x2

1 )v2 − x1x2v1],

that is, (
∂x1ϕ

∂x2ϕ

)
= − 1

k2

(
−x1x2 k2 + x2

1

−(k2 + x2
2 ) x1x2

)(
v1

v2

)
,

or equivalently,(
v1

v2

)
= − 1

k2 + x2
1 + x2

2

(
x1x2 −k2 − x2

1

k2 + x2
2 −x1x2

)(
∂x1ϕ

∂x2ϕ

)
. (18)
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By the definition of ω and (18), we get

LHϕ = ∂x1 v2 − ∂x2 v1 = ω, (19)

where

LKH
ϕ = −div(KH(x1, x2)∇ϕ)

is a divergence type operator with the coefficient matrix

KH(x1, x2) =
1

k2 + x2
1 + x2

2

(
k2 + x2

2 −x1x2

−x1x2 k2 + x2
1

)
. (20)
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(1). KH is a positive definite matrix and (KH(x))ij ∈ C∞(BR∗(0)) for

i , j = 1, 2.

(2). LKH
is uniformly elliptic, namely, λ1 = 1, λ2 = k2

k2+|x|2 are two

eigenvalues of KH which have positive lower and upper bounds.

By the elliptic regularity theory, for any q ∈ (1,+∞) one can

define a continuous linear operator

GKH
: Lq(BR∗(0))→W 2,q ∩W 1,q

0 (BR∗(0)) such that u = GKH
f satisfies

LKH
u = f .
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To sum up, by the notation introduced before, we need to

solve the following 2D vorticity-stream equations in BR∗(0)× R
∂tω +∇⊥ϕ · ∇ω = 0, in BR∗(0),

LKH
ϕ = ω, in BR∗(0),

ϕ = 0, on ∂BR∗(0),

(21)

where ⊥ is given by (a, b)⊥ = (b,−a).

For a solution pair (ω, ϕ) of (21), one can recover helical

velocity field v. Indeed, we can use (18), (17) to obtain v3 from

v1, v2.

Boundary condition of ϕ: by the result of Ettinger and Titi(SIAM

J.Math.Anal.2009) from v · n = 0 on ∂BR∗(0)× R, ϕ is a constant on

∂BR∗(0). Without loss of generality, we set ϕ|∂BR∗ (0) = 0.
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Using GKH
, the first equation in (21) can be rewritten as the

following vorticity equations

∂tω +∇⊥GKH
ω · ∇ω = 0, in BR∗(0). (22)
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(21) is still too hard to be dealt with!!

Let α be a constant. We look for rotating solutions to (21)

ω(x ′, t) = W (R−α| ln ε|t(x ′)), ϕ(x ′, t) = Φ(R−α| ln ε|t(x ′)), (23)

where x ′ = (x1, x2) ∈ BR∗(0).

To solve (21) we only need to find a pair (W , Φ) satisfying
∇W · ∇⊥

(
Φ− α

2 |x
′|2| ln ε|

)
= 0, in BR∗(0),

LKH
Φ = W , in BR∗(0),

Φ|∂BR∗ (0) = 0.

(24)
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So formally if for some function fε,

W = fε
(
Φ− α

2
|x ′|2| ln ε|

)
in BR∗(0), (25)

then the first equation in (24) automatically holds.

We will consider two different types of fε:

fε(t) =
1

ε2
(t − µε)p+, p > 1,

and

fε(t) =
1

ε2
1{t−µε>0},

for some µε.

Thus we only need to solve the second equation satisfying the

boundary condition (the third equation).
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In the sequel we write x ′ as x = (x1, x2).

The stream function method : To look for solutions

(stream function) Φ of a semilinear elliptic equations−div · (KH(x)∇Φ) = 1
ε2

(
Φ−

(
α
2 |x |

2 + β
)
| ln ε|

)p
+
, x ∈ BR∗(0),

Φ(x) = 0, x ∈ ∂BR∗(0),

(26)

where p > 1, α, β are chosen in the following way

α =
c

4πk
√

k2 + r 2
∗
, β =

α

2
(3r 2
∗ + 4k2).
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The vortex method : To find solution W of∇W · ∇⊥
(
GKH

W − α
2 |x
′|2| ln ε|

)
= 0,

W = fε
(
GKH

W − α
2 |x
′|2| ln ε|

)
,

(27)

where

fε(t) =
1

ε2
1{t−µε>0},

for some µε.

If we obtain a solution W of (27), then letting Φ = GKH
W , we

get a pair (W , Φ) satisfies (24).

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

1 Introduction and Axi-symmetry Case

Introduction

Axi-symmetric Case

2 Helical Symmetry and reduction to 2D

Helical Symmetry

Reduction to 2D

3 Main Results

4 Outline of Proofs for the Main Results

Formula for Green’s function

Proof for Theorem 3.3

Outline of Proof for Theorem 3.4

Proof for Theorem 3.1

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

We will consider the case that D is an infinite pipe in R3

whose section is a disc with radius R∗,

D = BR∗(0)× R = {(x1, x2, x3) | (x2, x2) ∈ BR∗(0), x3 ∈ R}.

For two sets A,B, define dist(A,B) = minx∈A,y∈B |x − y | the

distance between sets A and B and diam(A) the diameter of the

set A.

Our first result is concerned with the desingularization of

traveling-rotating helical vortices in D, whose support set has small

cross-section ε and concentrates near a single left-handed helix (9)

in the sense of (7).

C–,& Jie Wan, Helical vortices with small cross-section for 3D

incompressible Euler equation, J.Funct.Anal., 284(2023) 109836
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Theorem 3.1

Let k > 0, c > 0 and r∗ ∈ (0,R∗) be any given numbers. Let γ(τ) be the

helix parameterized by equation (9). Then for any ε ∈ (0, ε0] for some

ε0 > 0, there exists a classical solution pair (vε,Pε)(x , t) ∈ C 1(D × R+)

of (1) such that the support set of ~ωε is a topological traveling-rotating

helical tube that does not change form and for all τ , in the sense of

distribution

~ωε(·, | ln ε|−1τ)→ cδγ(τ)tγ(τ), as ε→ 0.

Moreover, there are R1,R2 > 0 such that

R1ε ≤ diam(supp(~ωε) ∩ (R2 × {0})) ≤ R2ε.
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We can also construct multiple traveling-rotating helical

vortices in BR∗(0)× R with polygonal symmetry.

Let us consider the curve γ(τ) parameterized by (9). For any

integer m, define for i = 1 · · · ,m the curves γi (τ) parameterized by

γi (s, τ) = Q 2π(i−1)
m

γ(s, τ). (28)

Theorem 3.1 can be generalized to the helical vortices

concentrating near multiple helices with polygonal symmetry.
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Theorem 3.2

Let k > 0, c > 0 and r∗ ∈ (0,R∗) be any given numbers and m ≥ 2 be

an integer. Let γi (τ) be the helix parameterized by (28). Then for any

ε ∈ (0, ε0] for some ε0 > 0, there exists a classical solution pair

(vε,Pε)(x , t) ∈ C 1(D × R+) of (1) such that the support set of ~ωε is a

collection of m topological traveling-rotating helical tubes that does not

change form and for all τ ,

~ωε(·, | ln ε|−1τ)→ c
m∑
i=1

δγi (τ)tγi (τ), as ε→ 0.

Moreover, there are R1,R2 > 0 such that

R1ε ≤ diam
(

supp(~ωε) ∩ Bρ̄
(

Q 2π(i−1)
m

(r∗, 0)
)
× {0}

)
≤ R2ε.
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Our third result is on the vortex patch type solutions. Take

the nonlinearity fε(t) = 1
ε2 1{t−µε>0} for some µε.

C–,& Jie Wan, Structure of Green’s function of elliptic equations

and helical vortex patches for 3D incompressible Euler equation, Math

Ann.,https://doi.org/10.1007/s00208-023-02589-8

Theorem 3.3 (Existence of vortex patch type solutions)

Let k > 0, c > 0 and r∗ ∈ (0,R∗) be three given numbers. Let γ(τ) be

the helix parameterized by equation (28). Then for any

ε ∈ (0,min{1,
√

2πR∗/c}), there exists a solution pair (vε,Pε)(x , t) of

(1) such that the support set of ~ωε is a topological traveling-rotating

helical tube that does not change form and concentrates near γ(τ),
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(Theorem 3.3 Continued)

that is for all τ ,

~ωε(·, | ln ε|−1τ)→ cδγ(τ)tγ(τ), as ε→ 0.

Moreover, the following properties hold:

i). Let ωε(x1, x2, t) be the third component of ~ωε(x1, x2, 0, t). Then

ωε =
1

ε2
1
{GKHωε−

α|x|2
2 ln 1

ε−µε>0}
,

where µε is a Lagrange multiplier.

ii). Define Āε = supp(ωε) the cross-section of ~ωε. Then there are

r1, r2 > 0 such that

r1ε ≤ diam(Āε) ≤ r2ε.
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Before giving the orbital stability, we need to introduce some

notation. Let E(ω) and I(ω) be the kinetic energy and the

moment of inertia defined respectively by

E(ω) =
1

2

∫
BR∗ (0)

ωGKH
ωdx , (29)

I(ω) =
1

2

∫
BR∗ (0)

|x |2ωdx . (30)

Define

Eε(ω) = E(ω)− α ln
1

ε
I(ω) =

1

2

∫
BR∗ (0)

ωGKH
ωdx − α

2
ln

1

ε

∫
BR∗ (0)

|x |2ωdx .

Consider the maximization of Eε(ω) over the constraint set

Mε =

{
ω ∈ L∞(BR∗(0)) |

∫
BR∗ (0)

ωdx = c , and 0 ≤ ω ≤ 1

ε2

}
.
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Let us define the set of maximizers

Sε := {ω ∈Mε | Eε(ω) = sup
Mε

Eε}. (31)

Sε is not empty. Each element in Sε is a rotation-invariant vortex

patch to (22) and leads to a 3D Euler flow with helical symmetry.

Consider the following initial problem∂tω +∇⊥GKH
ω · ∇ω = 0, BR∗(0)× (0,T ),

ω(·, 0) = ω0(·), BR∗(0).
(32)
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Theorem 3.4 (Orbital stability)

Let 2 ≤ q < +∞, ε ∈ (0,min{1,
√
|BR∗(0)|/c}), and Sε be defined by

(31). Then Sε is orbitally stable in Lq norm, or equivalently, for any

ρ > 0, there exists a δ > 0, such that for any ω0 ∈ Lq(BR∗(0)) satisfying

inf
ω∈Sε

‖ω0 − ω‖Lq(BR∗ (0)) < δ,

we have

inf
ω∈Sε

‖ωt − ω‖Lq(BR∗ (0)) < ρ

for all t > 0, where ωt is a weak solution to the vorticity equation (32)

with initial vorticity ω0.
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Remark: M. Benvenutti [ NoDEA(2020)] obtained the

nonlinear stability of smooth steady solutions to vorticity equation

(22) under the assumption that

0 ≤ −∇GKH
ω(x)

∇ω(x)
≤ C , ∀ x ∈ Ω. (33)

However, for many weak solutions to (22) like vortex patches,

(33) does not hold.

In contrast to M. Benvenutti, we use the characterization of

energy maximizers to get the orbital stability of vortex patches

constructed in Theorem 3.3.

Whether these solutions are stability is still unknown.
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J. Dávila, M. del Pino, M. Musso and J. Wei, Travelling

helices and the vortex filament conjecture in the incompressible

Euler equations, Calc. Var. &PDEs.,61(2022).art.119.

Constructed a family of Euler flows with helical symmetry in

the whole R3 by reducing to the problem

−div(KH(x)∇u) = fε
(

u − α

2
| ln ε||x |2

)
in R2,

where fε(t) = ε2et and α is chosen properly.

The vorticity concentrates near a helix and multiple in the

distributional sense.

Note that by the choice of fε, the support set of vorticity

maybe the whole R3, namely the support may not be near the

given curve.
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The main tool in analysis of aymptotic behaviour of

vorticities is the Green’s function.

For general positive definite matrix K = (Ki,j)2×2 and is a

simply-connected bounded domain with smooth boundary U ⊂ R2,

we first study the following Dirichlet problem:LKu := −div(K (x)∇u) = f , x ∈ U,

u = 0, x ∈ ∂U,
(34)

where K = (Ki,j)2×2 satisfies

(C1). Ki,j(x) ∈ C∞(U) for 1 ≤ i , j ≤ 2.

(C2). −div(K (x)∇·) is uniformly elliptic, that is, there exist

Λ1,Λ2 > 0 such that

Λ1|ζ|2 ≤ (K (x)ζ|ζ) ≤ Λ2|ζ|2, ∀ x ∈ U, ζ ∈ R2.
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Since the coefficient matrix K satisfies (C 1)− (C 2), one has

the classical result:

Proposition 4.1

For every q ∈ (1,+∞), there exists a linear continuous operator

GK : Lq(U)→W 2,q(U) such that for every f ∈ Lq(U), the function

u = GK f is a weak solution of the problem (34).

By Cholsky decomposition there is C∞ positive-definite

matrix-valued function Tx determined by K satisfying

T−1
x (T−1

x )t = K (x) ∀ x ∈ U, (35)

and such Tx exists and is unique.
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Let Γ(x) = − 1
2π ln |x | be the fundamental solution of the

Laplacian −∆ in R2.

Proposition 4.2

Let q > 2. There exists a function SK ∈ C 0,γ
loc (U × U) for some γ ∈ (0, 1)

such that for every f ∈ Lq(U) and every x ∈ U,

GK f (x) =

∫
U

[
(
√

det K (x)
−1

+
√

det K (y)
−1

2
Γ

(
Tx + Ty

2
(x − y)

)
+SK (x , y)] f (y)dy .

(36)

Moreover,

SK (x , y) = SK (y , x), SK (x , y) ≤ C , for all x , y ∈ U.
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In particular, Proposition 4.2 implies that the Dirichlet

problem of elliptic equation in divergence form (34) has a Green’s

function GK : U × U → R defined for each x , y ∈ U with x 6= y by

GK (x , y) =

√
det K (x)

−1
+
√

det K (y)
−1

2
Γ

(
Tx + Ty

2
(x − y)

)
+ SK (x , y).

(37)
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Main steps for the proof of Proposition 4.2.

Define

G0(x , y) :=

√
det K (x)

−1
+
√

det K (y)
−1

2
Γ

(
Tx + Ty

2
(x − y)

)
.

Denote Tx =

(
T11(x) T12(x)

T21(x) T22(x)

)
. and z =

Tx+Ty

2 (x − y).

Step 1: We conclude that

−∇x · (K (x)∇xG0(x , y)) =−
√

det K (x)
−1

+
√

det K (y)
−1

2
∆zΓ(z)

+ F (x , y),

(38)

for some F (·, y) ∈ Lq(U)(1 < q < 2).
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Step 2: (38) implies that −∇x · (K (·)∇xG0(·, y)) = F (·, y) in

any subdomain of U \ {y}.
For fixed y ∈ U, let SK (·, y) ∈W 1,2(U) be the unique weak

solution to the following Dirichlet problem −∇x · (K (x)∇xSK (x , y)) = −F (x , y) in U,

SK (x , y) = −G0(x , y) on ∂U.
(39)

Since K is smooth and positive definite, by classical elliptic

regularity estimates, we have SK (·, y) ∈W 2,q(U) for every

1 < q < 2.
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Below we give examples of the matrix K in (34) to explain the

expansion of Green’s function in Proposition 4.2.

Example 1. If K (x) = Id , then (34) is the standard Laplacian

problem, which corresponds to the vorticity-stream formulation to

2D Euler equations. By Proposition 4.2, the Green’s function

becomes

G1(x , y) = Γ(x − y) + S1(x , y), ∀ x , y ∈ U.

So in this case, S1(x , y) = −H(x , y), where H(x , y) is the regular

part of Green’s function of −∆ in U with zero-Dirichlet data.
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Example 2. If K (x) = 1
b(x) Id , where b ∈ C 1(U) and infU b > 0,

then (34) corresponds to vorticity-stream formulation to the 2D

lake equations. It is not hard to get that det K = 1
b2 and T =

√
bId .

From Proposition 4.2, the Green’s function becomes

Gb(x , y) =
b(x) + b(y)

2
Γ

(√
b(x) +

√
b(y)

2
(x − y)

)
+Sb(x , y) ∀ x , y ∈ U,

which coincides with previous results.
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In the sequel we will always take U = BR∗(0),

K = KH and choose α > 0 such that

α =
c

4πk
√

k2 + r 2
∗
. (40)
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To prove Theorem 3.3, we use the vorticity method.

Consider the maximization of functional

Eε(ω) :=
1

2

∫
BR∗ (0)

ωGKH
ωdx − α

2
ln

1

ε

∫
BR∗ (0)

|x |2ωdx . (41)

over Mε defined by

Mε =

{
ω ∈ L∞(BR∗(0)) |

∫
BR∗ (0)

ωdx = c , and 0 ≤ ω ≤ 1

ε2

}
.

Note: For any ω ∈Mε, by the classical elliptic estimate, we have

GKH
ω ∈W 2,q(BR∗(0)) for any 1 < q < +∞. Thus Eε(ω) is a well

defined functional on Mε.
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Lemma 4.3

There exists ω = ωε ∈Mε such that

Eε(ωε) = max
ω̃∈Mε

Eε(ω̃) < +∞.

Moreover,

ωε =
1

ε2
1{ψε>0} a.e. in Ω, (42)

where

ψε = GKH
ωε −

α|x |2

2
ln

1

ε
− µε, (43)

and the Lagrange multiplier µε ≥ −α|R
∗|2

2 ln 1
ε is determined by ωε.

Consequently, ωε is a weak solution to (24) with fε(t) = 1
ε2 1{t>µε}.
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To show Theorem 3.3 we need to obtain

The limiting behavior of ωε as ε tends to 0.

Use C to denote generic positive constants independent of ε.

Define

Y (x) :=
c

2π
√

det KH(x)
− α|x |2 =

c
√

k2 + |x |2
2πk

− α|x |2, (44)

where α is chosen by (40). Clearly, Y is radially symmetric. Then

one computes directly that

Lemma 4.4

Under the choice of α in (40), the maximizers set of Y in BR∗(0) is

{x | |x | = r∗}. That is, Y |∂Br∗ (0) = maxBR∗ (0) Y . Moreover, up to a

rotation the maximizer is unique.
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We will prove that, to maximize the energy Eε, the support set

of ωε must shrink to a single point which is a maximizer of Y in

BR∗(0) as ε tends to 0. Let

P̄ε = inf{|x | | x ∈ supp(ωε)}, and Q̄ε = sup{|x | | x ∈ supp(ωε)}. (45)

P̄ε and Q̄ε describe the lower bound and upper bound of the

distance between the origin and supp(ωε), respectively.

Lemma 4.5

lim
ε→0+

P̄ε = r∗, lim
ε→0+

Q̄ε = r∗.
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We can obtained the asymptotic behavior of ωε as follows.

Proposition 4.6

[Diameter and location of supp(ωε)] For any γ ∈ (0, 1), there holds

diam[supp(ωε)] ≤ 2εγ

provided ε is small enough. Moreover,

lim
ε→0+

dist (supp(ωε), ∂Br∗(0)) = 0,

lim
ε→0+

ln diam
(
supp(ωε)

)
ln ε

= 1.
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We can get the following optimal asymptotic expansions of

the energy Eε(ωε) and Lagrange multiplier µε.

Lemma 4.7

As ε→ 0+, there holds

Eε(ωε) =

(
c2

4π
√

det KH((r∗, 0))
− cαr 2

∗
2

)
ln

1

ε
+ O(1), (46)

µε =

(
c

2π
√

det KH((r∗, 0))
− αr 2

∗
2

)
ln

1

ε
+ O(1). (47)

Using Lemma 4.3–4.7 we can prove Theorem 3.3.
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To prove Theorem 3.4, we need three preliminary

lemmas first.

Using the energy characterization that any element in Sε is a

maximizer of Eε in Mε, we can obtain the following compactness

result.

Lemma 4.8

[Compactness] Let {ωn} be a maximizing sequence for Eε in Mε, then

up to a subsequence there exists ωε ∈ Sε such that as n→ +∞,

ωn → ωε in Lq(Ω) for any q ∈ [1,+∞).
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Following Burton’s idea, one can get the linear transport

theory of 3D Euler flows with helical symmetry as follows.

Lemma 4.9

Let ω(x , t) ∈ L∞loc(R; Lq(Ω)) with 2 ≤ q < +∞. ζ0 ∈ Lq(Ω). Then there

exists a weak solution ζ(x , t) ∈ L∞loc(R; Lq(Ω)) ∩ C (R; Lq(Ω)) to the

following linear transport equation∂tζ +∇⊥GKH
ω·∇ζ = 0, t ∈ R,

ζ(·, 0) = ζ0.

Here by weak solution we mean for all φ ∈ C∞c (D × R),∫
R

∫
D

∂tφ(x , t)ζ(x , t) + ζ(x , t)(∇⊥GKH
ω · ∇φ)(x , t)dxdt = 0.
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(Lemma 4.9 continued)

lim
t→0
‖ζ(·, t)− ζ0‖Lq(D) = 0.

Moreover, we have for any t ∈ R

|{x ∈ D | ζ(x , t) > a}| = |{x ∈ D | ζ0(x) > a}|, ∀ a ∈ R.

As a consequence, we have for any t ∈ R

‖ζ(·, t)‖Lq(D) = ‖ζ0‖Lq(D).
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Using the idea of M. Benvenutti[Nonlinear stability for

stationary helical vortices, NoDEA Nonl. Diff. Equat. Appl., 27

(2020), no. 2, Paper No. 15, 20 pp.], we can get the energy and

angular momentum conservation of solutions ω to the vorticity

equation (21).

Lemma 4.10

Let 2 ≤ q <∞. Let ω(t, x) ∈ L∞(R; Lq(Ω)) be a solution of the

vorticity equation (21). Then the kinetic energy E defined by (29) and

the angular momentum I defined by (30) are conserved along the time.
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Outline for the proof of Theorem 3.1.

We use the so-called stream function method.

To prove Theorem 3.1 by finding solutions of the equation

satisfied by stream function Φ−div · (KH(x)∇Φ) = 1
ε2

(
Φ−

(
α
2 |x |

2 + β
)
| ln ε|

)p
+
, x ∈ BR∗(0),

Φ(x) = 0, x ∈ ∂BR∗(0),

where p > 1, α, β are given by

α =
c

4πk
√

k2 + r 2
∗
, β =

α

2
(3r 2
∗ + 4k2).
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We change the parameter to simplify notation.

Let v = Φ
| ln ε| and δ = ε| ln ε|−

p−1
2 , q(x) = α|x|2

2 + β, then−δ2div(KH(x)∇v) = (v − q)p+ , x ∈ BR∗(0),

v = 0, x ∈ ∂BR∗(0).
(48)

We will choose α, β so that

min
x∈BR∗ (0)

α|x |2

2
+ β > 0.

Let h(r) = h(|x |) = q2
√

det(KH)(x) for any x ∈ BR∗(0). We call

z∗ is a strict local maximum (minimum) point of q2
√

det(KH) up to

ratation in BR∗(0), if |z∗| is a strict local maximum (minimum)

point of h in (0,R∗).
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By choosing α, β properly Theorem 3.1 can be deduced from:

Theorem 4.11

Let α, β be two constants satisfying minx∈BR∗ (0)

(
α|x|2

2 + β
)
> 0 and

z1 ∈ BR∗(0) be a strict local maximum (minimum) point of(
α|x|2

2 + β
)2

· k√
k2+|x|2

up to rotation. Then there exists ε0 > 0, such

that for any ε ∈ (0, ε0], (48) has a solution uε satisfying the following

properties:

1 Define Aε =
{

uε >
(
α|x|2

2 + β
)

ln 1
ε

}
. Then there exist R1,R2 > 0

such that R1ε ≤ diam(Aε) ≤ R2ε, and

lim
ε→0

dist(Aε, z1) = 0.

2 lim
ε→0

1
ε2

∫
Aε

(
uε −

(
α|x|2

2 + β
)

ln 1
ε

)p
+

dx = kπ(α|z1|2+2β)√
k2+|z1|2

.
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To prove Theorem 3.1, we define for every r∗ ∈ (0,R∗), c > 0

and

α =
c

4πk
√

k2 + r 2
∗
, β =

α

2
(3r 2
∗ + 4k2). (49)

One computes directly that (r∗, 0) is a strict minimum point of

q2
√

det(KH)(x) =
(
α|x|2

2 + β
)2

· k√
k2+|x|2

up to rotation and that

2πq
√

det(KH)((r∗, 0)) =
kπ(αr 2

∗ + 2β)√
k2 + r 2

∗
= c .
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Main idea of proof for Theorem 4.11.

Fix R ≥ 3R∗. For any a > 0, consider−δ2∆w = (w − a)p+, in BR(0),

w = 0, on ∂BR(0).
(50)

(50) has a unique C 1 positive solution

Wδ,a(x) =

a + δ
2

p−1 s
− 2

p−1

δ φ
(
|x|
sδ

)
, |x | ≤ sδ,

a ln |x|R / ln sδ
R , sδ ≤ |x | ≤ R,

where φ ∈ H1
0 (B1(0)) satisfies

−∆φ = φp, φ > 0 in B1(0),

if sδ satisfies the relation

δ
2

p−1 s
− 2

p−1

δ φ′(1) = a/ ln
sδ
R
. (51)
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Indeed (51) is uniquely solvable if δ > 0 is sufficiently small.

Furthermore

sδ

δ| ln δ| p−1
2

→
(
|φ′(1)|

a

) p−1
2

as δ → 0.

The Pohozaev identity implies∫
B1(0)

φp+1 =
π(p + 1)

2
|φ′(1)|2,

∫
B1(0)

φp = 2π|φ′(1)|. (52)
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since K is a C∞ positive definite matrix with all eigenvalues

having uniformly positive lower and upper bounds, by the Cholesky

decomposition one can find a matrix-valued function

F ∈ C∞(BR∗(0)) such that for any x ∈ BR∗(0), F (x) is invertible and

(F (x)−1)(F (x)−1)t = K (x). (53)

For simplicity, we denote Fx = F (x). Since R ≥ 3R∗ large enough,

BR∗(0) ⊆ F−1
x (BR(0)) + x for any x ∈ BR∗(0). Clearly by the positive

definiteness of K , such R exists.
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Now for any x̂ ∈ BR∗(0), q̂ > 0, let Vδ,x̂,q̂ be a C 1 positive

solution of the following equations−δ2div(K (x̂)∇v) = (v − q̂)p+, in F−1
x̂ (BR(0)),

v = 0, on ∂F−1
x̂ (BR(0)).

(54)

Thus one has Vδ,x̂,q̂(x) = Wδ,q̂(Fx̂x).

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

Formula for Green’s function
Proof for Theorem 3.3
Proof for Theorem 3.3
Proof for Theorem 3.1

Clearly Vδ,x̂,q̂ has an explicit profile

Vδ,x̂,q̂(x) =

q̂ + δ
2

p−1 s
− 2

p−1

δ φ
(
|Fx̂x|
sδ

)
, |Fx̂x | ≤ sδ,

q̂ ln |Fx̂x|
R / ln sδ

R , sδ ≤ |Fx̂x | ≤ R.

For any z ∈ BR∗(0) define

Vδ,x̂,q̂,z(x) := Vδ,x̂,q̂(x − z), ∀x ∈ BR∗(0).
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Since Vδ,x̂,q̂,z is not 0 on ∂BR∗(0), we need to make a

projection of Vδ,x̂,q̂,z on H1
0 (BR∗(0)). Let PVδ,x̂,q̂,z be a solution of−δ2div(K (x̂)∇v) = (Vδ,x̂,q̂,z − q̂)p+, in BR∗(0),

v = 0, on ∂BR∗(0).
(55)

We claim that for δ sufficiently small,

PVδ,x̂,q̂,z(x) = Vδ,x̂,q̂,z(x)− q̂

ln R
sδ

gx̂(Fx̂x ,Fx̂z), ∀x ∈ BR∗(0), (56)

where gx̂(x , y) = 2πhx̂(x , y) + ln R for any x , y ∈ Fx̂(BR∗(0)), and

hx̂(x , y) is the regular part of Green’s function of −∆ on Fx̂(BR∗(0)),
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In the following, we will construct solutions of the form

PVδ,x̂,q̂,z + rδ,z

where PVδ,x̂,q̂,z is the main part and rδ,z is the small perturbation.

Suppose that z∗ is a strict local maximum (minimum) point of

q2
√

det(KH), we choose z near z∗. We will let x̂ = z and choose

q̂ = q̂z,δ properly (depending on z) such that PVδ,z,q̂z,δ,z is a better

approximation of solution. By such choice, we can find rδ,z such

that PVδ,z,q̂z,δ,z + rδ,z is a solution.
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Note that the associated functional of (48) is

Iδ(u) =
δ2

2

∫
BR∗ (0)

(K (x)∇u|∇u)− 1

p + 1

∫
BR∗ (0)

(u − q)p+1
+ . (57)

Denote

Pδ(Z ) = Iδ(Vδ,Z + ωδ,Z ),

Pδ(Z ) is a C 1 function.

There holds

Iδ(Vδ,Z ) =
m∑
j=1

πδ2

ln R
ε

q2(zj)
√

det(K (zj)) + O

(
δ2 ln | ln ε|
| ln ε|2

)
.
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Equations on general domains

Consider−ε2div(K (x)∇u) = (u − q| ln ε|)p+, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(58)

where Ω ⊂ R2 is a simply-connected bounded domain with smooth

boundary, ε ∈ (0, 1) and p > 1. K = (Ki,j)2×2 is a matrix satisfying

(K1). K = (Ki,j)2×2 is a positive definite and Ki,j(x) ∈ C∞(Ω) for

1 ≤ i , j ≤ 2.

(K2). −div(K (x)∇·) is a uniformly elliptic operator, that is, there

exist Λ1,Λ2 > 0 such that

Λ1|ζ|2 ≤ (K (x)ζ|ζ) ≤ Λ2|ζ|2, ∀ x ∈ Ω, ζ ∈ R2.

q(x) is a function defined in Ω satisfying

(Q1). q(x) ∈ C∞(Ω) and q(x) > 0 for any x ∈ Ω.
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Denote det(K ) the determinant of K .

Theorem 4.12

Let K satisfy (K1)-(K2) and q satisfy (Q1). Then, for any given m

distinct strict local minimum (maximum) points x0,j(j = 1, · · · ,m) of

q2
√

det(K ) in Ω, there exists ε0 > 0, such that for every ε ∈ (0, ε0], (58)

has a solution uε. Moreover, the following properties hold

(i) Let Āε,i =
{

uε > q ln 1
ε

}
∩ Bρ̄(x0,i ), where ρ̄ is small. Then there

exist (z1,ε, · · · , zm,ε) and R1,R2 > 0 independent of ε satisfying

lim
ε→0

(z1,ε, · · · , zm,ε) = (x0,1, · · · , x0,m), BR1ε(zi,ε) ⊆ Āε,i ⊆ BR2ε(zi,ε).

(ii) Denote κi (uε) = 1
ε2

∫
Bρ̄(x0,i )

(
uε − q ln 1

ε

)p
+

dx . Then

lim
ε→0

κi (uε) = 2πq
√

det(K )(x0,i ).

Daomin Cao Helical solutions for Euler equations



Introduction and Axi-symmetry Case
Helical Symmetry and reduction to 2D

Main Results
Outline of Proofs for the Main Results

Formula for Green’s function
Proof for Theorem 3.3
Proof for Theorem 3.3
Proof for Theorem 3.1

Many Thanks
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