working group 1: calculus is here to stay !!! (too bad :-P)

, steve, kerri, sean, edward, nicola, shambhavi, andie

birs ubco: august 2022

working group 1: calculus is here to stay !!! (too bad :-P)

<u>dream team:</u> chris, steve, kerri, sean, edward, nicola, shambhavi, andie

birs ubco: august 2022

Nightmare Course

Dream Course

Hopeful Realism

nightmare calculus course . . .

nightmare calculus course . . . 😱

- only privileged students have access to calculus
- 500+ students in the lecture and no tutorial/lab sections
- classrooms with limited technology, no TAs, multiple-choice exams

- course coordinator is a "Dear Leader"
- uncooperative & unprofessional colleagues

• the status quo remains

nightmare calculus course . . . 😱

- more content, less time
- assessment values *calculating* more than *understanding concepts*
- level of prior knowledge required for student success is disconnected from reality with no opportunity to learn missing skills
- textbooks:
 - \$500 NFT textbook with \$50+ weekly access fee for questions/answers
 - publishers get a cut whenever a student resells their used book
- majority of course focuses on different integration techniques (all of which *can* be done by technology but none of which *are* done by technology)
- ridiculously long algorithmic and computational problems done with <u>no</u> technology (looking at you, partial fraction decomposition)
- all problems done <u>entirely</u> by technology

dream calculus course . . . 😂

dream calculus course . . . 😂

- students investigate and practice
 - authentic applications Ο
 - problem-solving and mathematical thinking 0
 - computational thinking with technology (e.g., Python for Newton's and Euler's 0 method)
 - (mathematical) written and oral communication and ethical thinking 0
- instructors
 - interpret students ideas and perspectives
 - attend to issues of equity and inclusion in their teaching practice Ο
- teaching happens at the speed of learning
- course coordination focuses on developing a *community of practice* (over curriculum and managing the teaching team/students/course dissemination)
- not a gatekeeping course scaffolding and support for all students to succeed i.e., more supplemental instruction, co-course (same content, more time)

dream calculus course . . .

who?

- faculty:
 - want and are excited to teach *<u>CALCULUS</u>* (especially BIRS participants here <a>©))
 - pedagogical autonomy
- students:
 - engaged, motivated, feel comfortable and welcome to participate
 - diverse backgrounds and diverse goals
 - help change/shape the course
- administrators:
 - support innovation and seek faculty advice/opinions
- mutual trust:
 - between instructors
 - between students
 - between instructors and students and administrators
- robust professional development for instructors and TAs

dream calculus course . . .

- open source, free, well-written textbooks (i.e., Apex, Active Calculus)
- resources to implement practices supported by (accessible) education research
- recognize and appreciate the existence of technology (use it but not blindly!!!)
- small class sizes
- inclusive learning spaces that support student participation (where the technology actually works ;;)
- technology to create online/virtual experiences as good as in-person
- HAVE ACTUAL GOVERNMENT FUNDS FOR STEM EDUCATION
- reliable data to assess teaching and learning innovations

worst nightmare . . .

No math course required for students in the **S** and **T** of STEM.

- OR -

Each non-math discipline teaches their own version of a math course.

Mathematicians lose the privilege of teaching non-mathematicians.

changes we can make by 2030 . . . 😌

changes we can make by 2030 . . . 😌

- shift from *publisher textbooks* to *open & free textbooks* (e.g., Apex, Active Calculus)
- improve use of technology both when teaching and when learning

- include more active learning, authentic applications, problem solving
- streamline content (cannot reach *lean & lively* without removing something)

• employ principled negotiation in discussions with administrators

changes we can make by 2030 . . . 😌

- follow UBC's model:
 - large lecture systems (taught by rock stars)
 - small tutorials, split by discipline, focus on authentic problems
 - this model may appeal to administrators (🛟 💰 💸)
- facilitate communities of practice
 - spread the word to the teaching team (instructors and TAs) to participate in *<u>FYMSiC</u>* (hello! :), CMS, CMESG, professional development conferences/workshops
 - create local teaching and learning workshops
 - connect with high school teachers and faculty in other disciplines
 - connect with your Teaching and Learning centre

let's keep the conversation flowing . . .