Dual-frame estimation approaches for combining probability and nonprobability

samples

BIRS Workshop: Kelowna, BC

$$
\text { May 24, } 2022
$$

Joint work with Chien-Min Huang, Colorado State

Background: Recreational fisheries surveys

- (National Academies Press, 2006)
- Coordinated by NOAA's

National Marine Fisheries Service

- Typically, catch estimate is

$$
\widehat{(\text { effort })}\left(\widehat{\frac{\text { catch }}{\text { effort }}}\right)
$$

from (off-site survey) (on-site survey)

This talk: motivated by Large Pelagics Intercept Survey

- Interested in fishing trips that target pelagic species (tuna, sharks, billfish, etc.)
- How many Wahoo were caught by recreational anglers along the US Atlantic coast in 2021?

Survey statistics: sampling from a finite population

- Make inference about a numerical characteristic of a real and well-defined finite population

$$
\begin{aligned}
U_{\text {trips }} & =\left\{1,2, \ldots, N_{\text {trips }}\right\} \\
& =\{\text { all Atlantic large pelagics trips in } 2021\}
\end{aligned}
$$

- $y_{k}=$ number of Wahoo caught on k th trip
- unknown real numbers, not random variables
- Total Wahoo caught $=T_{y}=\sum_{k \in U} y_{k}$
- Infeasible to obtain data on all N large pelagics trips: instead, use a probability sample $s \subset U$

Sampling the large pelagics fishery

- No frame $U_{\text {trips }}$ of all large pelagics boat-trips
- Instead, sample from frame of site-days: $s \subset U$
$=\{$ access sites $\} \times$ \{days in season \}
- Count the number of pelagics trips, $\left\{z_{k}\right\}_{k \in s}$
- Collect catch by species for pelagics trips, generically denoted $\left\{y_{k}\right\}_{k \in s}$

Probability sampling: design-based inference

- Universe of elements $U=\{1,2, \ldots, N\}$
- Variables of interest: y_{k}, z_{k} (unknown real numbers)
- Population parameters: $T_{y}=\sum_{k \in U} y_{k} ; T_{z}=\sum_{k \in U} z_{k}$; $T_{y} / T_{z}=\sum_{k \in U} y_{k} / \sum_{k \in U} z_{k}$
- Draw probability sample $s \subset U$ via design with known, positive inclusion probabilities $\pi_{k}=\operatorname{Pr}[k \in s]>0$
- Sample membership indicators $I_{k}=1$ if $k \in s, I_{k}=0$ otherwise

$$
\mathrm{E}\left[I_{k}\right]=\pi_{k}
$$

Probability sampling: estimation for the population

- Under repeated sampling, the Horvitz-Thompson (1952) estimator

$$
\widehat{T}_{y}=\sum_{k \in U} y_{k} \frac{I_{k}}{\pi_{k}}=\sum_{k \in s} \frac{y_{k}}{\pi_{k}}
$$

is unbiased for T_{y};

$$
\widehat{T}_{z}=\sum_{k \in U} z_{k} \frac{I_{k}}{\pi_{k}}=\sum_{k \in s} \frac{z_{k}}{\pi_{k}}
$$

is unbiased for T_{z}

- $\widehat{T}_{y} / \widehat{T}_{z}$ is asymptotically unbiased for T_{y} / T_{z}

Motivation for nonprobability sampling: LPIS

- Large Pelagics Intercept Survey (LPIS) data are used to estimate catch rate: average recreational catch per large pelagic trip, by species: T_{y} / T_{z}
- Problem: Many site-days have no pelagics trips: $z_{k}=0$
- Field crews want to choose their own site-days!
- Designed compromise: select an initial probability sample of site-days $s_{o} \subset U$ and randomly divide it into s_{A} and s_{B}
- s_{A} is maintained as a strict probability sample, with known inclusion probabilities $\pi_{k}^{A}>0$
- field crew can leave s_{B} as-is or move anywhere in $U \backslash s_{A}$
- s_{B} has unknown inclusion probabilities π_{k}^{B}

Other applications?

- Many surveys involve screening for domain of interest
- $U=$ households, $z_{k}=$ age-eligible children, $y_{k}=$ immunization status
- $U=$ hospitals, $z_{k}=$ radiation oncologists, $y_{k}=$ number of cancer patients
- $U=$ land segments, $z_{k}=$ farms served by well water, $y_{k}=$ pesticide contamination
- Nonprobability sampling methods might be used to build out the initial probability sample

Expert judgment probabilities

- Expert judgment "selection mechanism" is unknown; s_{B} is no longer a probability sample
- Field crew choose s_{B} after seeing s_{A}, so $s_{A} \cap s_{B}=\emptyset$

$$
\begin{aligned}
\pi_{k}^{B}= & \operatorname{Pr}\left[k \in s_{B} \mid k \in s_{A}\right] \operatorname{Pr}\left[k \in s_{A}\right] \\
& +\operatorname{Pr}\left[k \in s_{B} \mid k \notin s_{A}\right] \operatorname{Pr}\left[k \notin s_{A}\right] \\
= & 0+\rho_{k}\left(1-\pi_{k}^{A}\right)
\end{aligned}
$$

- Need to estimate ρ_{k}, which may depend on site-day characteristics \boldsymbol{x}_{k}, including trips z_{k} or catch y_{k}
- Specify a parametric model for ρ_{k} and fit using s_{A}, s_{B}

Logistic regression model for selection

- Judgment model is Poisson sampling: l_{k}^{B} independent $\operatorname{Bernoulli}\left(\rho_{k}\right)$ for $k \notin s_{A}$, with

$$
\operatorname{logit}\left(\rho_{k}\right)=\text { linear function of covariates }
$$

- Feasible pseudo-log-likelihood is unbiased for log-likelihood:

$$
\sum_{k \in U \backslash s_{A}} I_{k}^{B} \ln \left(\frac{\rho_{k}}{1-\rho_{k}}\right)+\sum_{k \in U} \ln \left(1-\rho_{k}\right)\left(1-\pi_{k}^{A}\right) \frac{I_{k}^{A}}{\pi_{k}^{A}}
$$

- Similar approach if we replace Poisson by with-replacement
- Maximize with respect to parameters in ρ_{k} and obtain $\widetilde{\rho}_{k}$
- Obtain $\widehat{\rho}_{k}$, normalized version of $\widetilde{\rho}_{k}$, to match expected sample size n_{B}
- Estimated inclusion probabilities for s_{B} are then

$$
\widehat{\pi}_{k}^{B}=\widehat{\rho}_{k}\left(1-\pi_{k}^{A}\right)
$$

Dual-frame judgment sample 1: separate estimator

- Similar to probability sampling from two frames: multiple valid estimators
- Compute HT estimator from sample s_{A} :

$$
\widehat{T}_{A}=\sum_{k \in s_{A}} \frac{y_{k}}{\pi_{k}^{A}}
$$

- Compute approximate HT estimator from sample s_{B} :

$$
\widehat{T}_{B}=\sum_{k \in s_{B}} \frac{y_{k}}{\left(1-\pi_{k}^{A}\right) \hat{\rho}_{k}}
$$

- Convex combination, with $\psi \in(0,1)$:

$$
\widehat{T}_{\text {sep }}=\psi \widehat{T}_{A}+(1-\psi) \widehat{T}_{B}
$$

Dual-frame judgment sample 2: combined estimator

- Combine the sample as $s=s_{A} \cup s_{B}$
- Compute a combined inclusion probability,

$$
\begin{aligned}
\operatorname{Pr}[k \in s] & =\operatorname{Pr}\left[k \in s_{A}\right]+\operatorname{Pr}\left[k \in s_{B}\right]-\operatorname{Pr}\left[k \in s_{A} \cap s_{B}\right] \\
& =\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \rho_{k}-0
\end{aligned}
$$

- Plugging in $\widehat{\rho}_{k}$, the resulting HT-like estimator is

$$
\widehat{T}_{\mathrm{com}}=\sum_{k \in s_{A} \cup s_{B}} \frac{y_{k}}{\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \widehat{\rho}_{k}}
$$

- Ensures some weight stability because denominator $\geq \pi_{k}^{A}$

Asymptotic properties: combined estimator

- Under some mild assumptions, the combined estimator is design mean square consistent
- $\widehat{V}\left[N^{-1} \widehat{T}_{y, \text { com }}\right]$ is design consistent for $\operatorname{Var}\left(N^{-1} \widehat{T}_{y, \text { com }}\right)$
- The combined estimator is asymptotically normal almost surely (a.s.)

$$
\left.\frac{\widehat{T}_{y, \text { com }}-T_{y, N}}{\sqrt{V_{A}+V_{B}}} \right\rvert\, F_{N} \xrightarrow{\mathcal{L}} N(0,1) \text { a.s. }
$$

- Theoretical support relies on an assumed but possibly wrong model
- Robustness?

Dual-frame doubly-robust estimation

- Possible misspecification of ρ_{k}
- Consider constructing doubly-robust catch estimator by specifying two models:
- model for the selection probability ρ_{k}
- model for the outcome $\mathrm{E}_{\xi}\left[y_{k} \mid \boldsymbol{x}_{k}\right]=m\left(\boldsymbol{x}_{k}\right)$
- Requires auxiliary variable available at population level

$$
\widehat{T}_{\mathrm{DR}}=\sum_{k \in s_{A} \cup s_{B}} \frac{y_{k}-\widehat{m}\left(\boldsymbol{x}_{k}\right)}{\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \widehat{\rho}_{k}}+\sum_{k \in U} \widehat{m}\left(\boldsymbol{x}_{k}\right)
$$

- Consistent (and approximately unbiased) if at least one of the two models is correctly specified

Estimation of catch rate

- But (1) we do not have great covariates available for the whole frame and (2) we are interested in catch rate, not catch
- For either separate or combined, estimated catch rate is

$$
\widehat{R}=\frac{\widehat{T}_{y}}{\widehat{T}_{z}}=\frac{\sum_{k \in s} w_{k s} y_{k}}{\sum_{k \in s} w_{k s} z_{k}},
$$

where the weights $w_{k s}$ do not depend on y_{k} (but may depend on z_{k})

Doubly-robust property for rate

- Rate is doubly-robust by construction under a plausible outcome model:

$$
\mathrm{E}_{\xi}\left[y_{k} \mid z_{k}\right]=\phi z_{k}
$$

- If weights depend on z_{k} but not y_{k} and the outcome model is correct, then

$$
\mathrm{E}_{\xi}\left[\frac{\hat{T}_{y}}{\hat{T}_{z}}-\frac{T_{y}}{T_{z}}\right]=\frac{\phi \hat{T}_{z}}{\widehat{T}_{z}}-\frac{\phi T_{z}}{T_{z}}=0
$$

whatever the quality of the probability model

- If the probability model is correct, then

$$
\mathrm{E}_{p}\left[\frac{\hat{T}_{y}}{\hat{T}_{z}}-\frac{T_{y}}{T_{z}}\right] \simeq \frac{T_{y}}{T_{z}}-\frac{T_{y}}{T_{z}}=0
$$

whatever the quality of the outcome model

Simulation experiments

- Use historical LPIS data to create population with 30 strata and 57,388 site-days, each with known pressure
- Simulate trips for each site-day using zero-inflated Poisson (matching trip features from LPIS data)
- Given trips, simulate catch for 11 different species with (possibly truncated)(possibly zero-inflated) Poisson with various relationships with trips:

$$
\mathrm{E}[\text { catch } \mid \text { trips }] \propto(\text { trips })^{p}, \quad p \in\{0.5,1,2\}
$$

Simulation experiments, continued

- Use traditional LPIS sampling design to select original stratified unequal-probability sample, $s_{o}=\cup_{h=1}^{H} s_{o h}$, of size 865 site-days
- Within each stratum h, divide $s_{o h}$ at random:
- 75% strict probability sample $s_{A h}$
- 25% movable sample $s_{B h}$ (can use judgment or leave as-is)
- Two methods $=$ sets of constraints on movement of $s_{B h}$
- stratum method: moves remain strictly within stratum
- bucket method: moves maintain the same allocation by state, month, and kind-of-day (weekday or weekend), but modes can change

Simulated judgment behaviors of field staff

- No Move (with judgment): choose to keep sample as originally selected
- Unskilled: random moves (simple random sampling)
- Change distribution of zeros only
- Expert Jump: successfully avoids all zero-trip site-days
- Skilled Jump: reduces number of zero-trip site-days
- Change distribution of non-zeros only
- Pure Tilt: increase probability of more trips when there are non-zero trips
- Change distribution of both zeros and non-zeros
- Jump and Tilt: shift the entire distribution toward fewer zeros and higher-value non-zeros
- Skilled Shift: leave half unmoved and move the other half to highest-trip site-days

Nine simulated judgment behaviors, continued

- Generate logistic inclusion probabilities as function of trips

$$
\operatorname{logit}\left(\rho_{k}\right)=\beta_{0}+\beta_{1} \mathbf{1}\left(z_{k}=0\right)+\beta_{2} z_{k} \mathbf{1}\left(z_{k}>0\right)
$$

and then

- Logistic: ...draw without-replacement sample using (approximately) these unequal probabilities
- With replacement: ... draw with-replacement sample using (exactly) these unequal probabilities
- No Move (without judgment) yields the original probability sample with original (known) weights
- can we beat this classic design/estimator strategy?
- For all nine judgment behaviors, estimate the unknown conditional inclusion probabilities, $\rho_{k}=\operatorname{Pr}\left[k \in s_{B} \mid k \notin s_{A}\right]$

Estimation for each judgment behavior

- For each of 1000 replicated original samples s_{0}, generate all nine judgment samples under two movement methods
- Model ρ_{k} as function of trips, z_{k} :

$$
\operatorname{logit}\left(\rho_{k}\right)=\beta_{0}+\beta_{1} \mathbf{1}\left(z_{k}=0\right)+\beta_{2} z_{k} \mathbf{1}\left(z_{k}>0\right)
$$

- For all (9 judgment) \times (2 movement method) samples, estimate catch rates for 11 species, using four estimators:
- Combined-Po: Poisson estimates of ρ_{k}
- Combined-WR: with-replacement estimates of ρ_{k}
- Separate-Po: Poisson estimates of ρ_{k}
- Separate-WR: with-replacement estimates of ρ_{k}
- For No Move (without judgment), compute the weighted estimator using the original design weights

RMSE ratios: less than one favors expert judgment

Variance estimation for the combined estimator

- \widehat{V}_{1} : treat final (combined) weights as if they are traditional survey weights and use Taylor linearization in standard software (easy!)
- $\widehat{V}_{2}, \widehat{V}_{3}, \widehat{V}_{4}$: derived using Poisson sampling and with replacement sampling approximation
- Replication methods: considered jackknife and grouped balanced repeated replication (BRR)
- Among these variance estimators, \widehat{V}_{1} has best mean square error property and best confidence interval coverage

Summary for expert judgment sampling

- Estimator using simple (and wrong) model for judgment probabilities works in almost all cases, fixing most of the bias due to judgment sampling
- Combined estimator beats classic strategy (probability sample/weighted estimator) in almost all cases
- across range of catch characteristics (11 different types)
- across range of judgment behaviors (9 different types)
- across two different sets of movement constraints
- for both Poisson and with-replacement likelihoods
- Combined beats separate estimator in almost all cases
- Simple variance estimator gives good confidence interval coverage

Application in other nonprobability sampling contexts?

- Dual-frame estimation approach works well in our specific context of expert judgment sampling
- Try out this system on two other problems:
- Respondent-driven sampling with initial probability sample of "seeds" and nonprobability sample of "sprouts"
- Probability sample with supplemental convenience sample

Dual-frame for respondent-driven samples

- Link-tracing design in research of hidden populations
- Start with a set of initial respondent "seeds" (probability sample), who recruit their peers (nonprobability sample), these in return refer their peers (nonprobability sample), and so on
- Need to estimate the unknown probability of the recruitment process
- Existing methods make strong modeling assumptions on how recruitment works
- We propose to apply the dual-frame estimator directly to RDS
- Assess robustness to misspecified recruitment model via simulation

Simulation experiment of RDS

- Artificial population: Use Project 90 network sample data, from a study of heterosexuals' transmission of HIV
- 4430 individuals and 18407 edges
- 13 binary attributes (including retired, female, pimp, ...)
- Simulated respondent-driven sampling design: mimics a real LGBT study in Michaels et al. (2019, J. Official Stat)
- Start with 100 random seeds, seeds selected randomly or proportional to degree
- Target sample size is 130 or 150
- Each respondent recruits up to 3 peers

Estimators for comparison

- SH (Salganik and Heckathorn 2004) estimator: restricted to categorical outcomes

$$
\widehat{\mu}_{A}^{\mathrm{SH}}=\frac{\widehat{d}_{B} \widehat{C}_{B A}}{\hat{d}_{A} \widehat{C}_{A B}+\widehat{d}_{B} \widehat{C}_{B A}}
$$

- VH (Volz and Heckathorn 2008) estimator:

$$
\widehat{\mu}_{y}^{\mathrm{VH}}=\frac{\sum_{k \in s} d_{k}^{-1} y_{k}}{\sum_{k \in s} d_{k}^{-1}}
$$

- SS (Gile 2011) estimator:

$$
\widehat{\mu}_{y}^{\mathrm{SS}}=\frac{\sum_{k \in s} \hat{\pi}^{-1}\left(d_{k}\right) y_{k}}{\sum_{k \in s} \widehat{\pi}^{-1}\left(d_{k}\right)}
$$

Estimators for comparison, continued

- Combined estimator: dual-frame approach

$$
\widehat{\mu}_{y}^{\mathrm{com}}=\frac{\sum_{k \in s} \frac{y_{k}}{\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \widehat{\rho}_{k}}}{\sum_{k \in s} \frac{1}{\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \widehat{\rho}_{k}}}
$$

- Convex estimator: convex combination of VH and combined estimator

$$
\widehat{\mu}_{y}^{\mathrm{cnvx}}=\frac{\sum_{k \in s}\left[\frac{n_{A}}{n_{A}+n_{B}} \frac{1}{\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \rho_{k}}+\frac{n_{B}}{n_{A}+n_{B}} \frac{N d_{k}^{-1}}{\sum_{k \in s} d_{k}^{-1}}\right] y_{k}}{\sum_{k \in s}\left[\frac{n_{A}}{n_{A}+n_{B}} \frac{1}{\pi_{k}^{A}+\left(1-\pi_{k}^{A}\right) \rho_{k}}+\frac{n_{B}}{n_{A}+n_{B}} \frac{N d_{k}^{-1}}{\sum_{k \in s} d_{k}^{-1}}\right] 1}
$$

Simulated recruitment behavior of respondent

- Random: acquaintances are recruited at random (standard assumption)
- Recruit fraction: $0,1,2$, or 3 acquaintances are recruited at random, with probabilities $(1 / 6,1 / 6,1 / 6,1 / 2)$
- Degree: recruitment probabilities are proportional to the degrees of acquaintances
- Inverse degree: recruitment probabilities are proportional to the inverse degrees of acquaintances
- Prefer female: females must recruit female, males recruit males
- Prefer pimp: pimps must recruit pimp, non-pimps recruit non-pimps
- Expert female: everyone must recruit female
- Expert pimp: everyone must recruit pimp

Estimation of recruitment behavior

- Requires a model of recruitment behavior for the combined estimator, simple model of degree:

$$
\operatorname{logit}\left(\rho_{k}\right)=\beta_{0}+\beta_{1} \text { degree }
$$

fitted by maximizing pseudo-log-likelihood

- For each of 1000 replicated probability samples,
- generate all eight versions of the recruited sample
- estimate rates and variances for 13 attributes using SH, VH, SS
- estimate ρ_{k} and rates for 13 attributes using Combined and Convex, with variances computed by treating final combined weights as if they are traditional survey weights

RMSE ratios: less than one favors combined estimator

95\% confidence interval coverage across all attributes

Summary for respondent-driven samples

- In our limited simulation setting, the combined estimator dominates the existing estimators
- robust across a range of attributes and across a range of recruitment behaviors
- no strong assumptions required
- simple variance estimator of the combined estimator gives good confidence interval coverage
- In other settings, like fewer random seeds or longer waves of recruitment, the existing estimators are more competitive

Dual-frame for convenience samples

- Increasingly common as response to surveys decreases, the cost of obtaining probability sample is high
- Small, representative probability sample drawn from the whole population U; large, biased convenience sample drawn from the sub-population U_{B}
- Example: Culture and Community in a Time of Crisis (CCTC)
- probability sample s_{A} from U.S. general population, with known inclusion probabilities $\pi_{k}^{A}>0$
- nonprobability sample s_{B} from art organization mailing list, with unknown inclusion probabilities $\pi_{k}^{B}=\left(1-\pi_{k}^{A}\right) \rho_{k}$
- Goal: Combine these two resources using dual-frame method
- Challenge: For $k \in U_{B}, \pi_{k}^{A}$ and ρ_{k} are unknown

Modifications to dual-frame methodology

- Since π_{k}^{A} is unknown for $k \in s_{B}$, use covariates available in both samples to find a matching record $\ell \in s_{A}$ and assign its inclusion probability
- U_{B} is a strict subset of U, hence part of s_{A} will not match s_{B}
- Use the matched part of s_{A} plus s_{B} in dual-frame estimation for the matched part of the frame, U_{B}
- includes likelihood-based estimation of $\rho_{k}, k \in s_{B}$
- Use the unmatched part of s_{A} in single-frame estimation for the unmatched part of the frame, $U \backslash U_{B}$

Simulation experiment from CCTC

- For a JSM 2021 competition, NORC used CCTC to create a simulation platform to study prob/nonprob combination
- population U consists of 113,459 records
- subpopulation U_{B} consists of 74,202 records
- 22 binary variables of interest: see a play, celebrate heritage, take art class, ...
- 1000 simulated probability samples s_{A} of size $n_{A}=1000$
- 1000 simulated nonprobability samples s_{B} of size $n_{B}=4000$
- Known inclusion probabilities for s_{A}
- Unknown inclusion probabilities for s_{B}
- Many possible covariates for matching and propensity estimation

Estimation summary across all variables

- Best five and worst five responses (among 22)
- Combined has lower MSE than separate in most cases
- Using nonprobability data dominates probability only
- Simple variance estimator yields confidence intervals with coverage close to nominal

Effective sample size ratios across all variables

Effective Sample Size Ratio

- Ratio of MSE for combined sample to MSE of probability sample only
- Ratio $\simeq 5$ if nonprobability contains as much information as probability and we are fully efficient in extracting the information
- Combined mostly dominates separate
- Either dominates probability only

Conclusions and thanks

- Dual-frame is simple and effective method for combining probability and nonprobability samples
- single set of weights with some weight stability by construction
- some double robustness if estimating rates
- simple variance estimation and confidence intervals
- Considerable robustness across a range of situations
- nonprobability types include expert judgment, respondent-driven samples, or convenience samples
- wide variety of simulated settings within nonprobability samples
- Ongoing work: further development of matching and estimation methods for convenience samples
- Thank you!

