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Background: Recreational fisheries surveys

� (National Academies Press,

2006)

� Coordinated by NOAA’s

National Marine Fisheries

Service

� Typically, catch estimate is

(̂effort)
̂(catch

effort

)

from (off-site survey)

(on-site survey)
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This talk: motivated by Large Pelagics Intercept Survey

� Interested in fishing trips that target pelagic species (tuna,

sharks, billfish, etc.)

� How many Wahoo were caught by recreational anglers along

the US Atlantic coast in 2021?
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Survey statistics: sampling from a finite population

� Make inference about a numerical characteristic of a real and

well-defined finite population

Utrips = {1, 2, . . . ,Ntrips}
= {all Atlantic large pelagics trips in 2021}

� yk = number of Wahoo caught on kth trip

� unknown real numbers, not random variables

� Total Wahoo caught = Ty =
∑

k∈U yk

� Infeasible to obtain data on all N large pelagics trips: instead,

use a probability sample s ⊂ U

4/41



Sampling the large pelagics fishery

� No frame Utrips of all large

pelagics boat-trips

� Instead, sample from frame

of site-days: s ⊂ U

= {access sites} ×
{days in season}

� Count the number of

pelagics trips, {zk}k∈s

� Collect catch by species for

pelagics trips, generically

denoted {yk}k∈s
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Probability sampling: design-based inference

� Universe of elements U = {1, 2, . . . ,N}
� Variables of interest: yk , zk (unknown real numbers)

� Population parameters: Ty =
∑

k∈U yk ; Tz =
∑

k∈U zk ;

Ty/Tz =
∑

k∈U yk/
∑

k∈U zk

� Draw probability sample s ⊂ U via design with known,

positive inclusion probabilities πk = Pr [k ∈ s] > 0

� Sample membership indicators Ik = 1 if k ∈ s, Ik = 0

otherwise

E [Ik ] = πk
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Probability sampling: estimation for the population

� Under repeated sampling, the Horvitz-Thompson (1952)

estimator

T̂y =
∑
k∈U

yk
Ik
πk

=
∑
k∈s

yk
πk

is unbiased for Ty ;

T̂z =
∑
k∈U

zk
Ik
πk

=
∑
k∈s

zk
πk

is unbiased for Tz

� T̂y/T̂z is asymptotically unbiased for Ty/Tz
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Motivation for nonprobability sampling: LPIS

� Large Pelagics Intercept Survey (LPIS) data are used to

estimate catch rate: average recreational catch per large

pelagic trip, by species: Ty/Tz

� Problem: Many site-days have no pelagics trips: zk = 0

� Field crews want to choose their own site-days!

� Designed compromise: select an initial probability sample of
site-days so ⊂ U and randomly divide it into sA and sB

� sA is maintained as a strict probability sample, with known

inclusion probabilities πA
k > 0

� field crew can leave sB as-is or move anywhere in U \ sA
� sB has unknown inclusion probabilities πB

k
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Other applications?

� Many surveys involve screening for domain of interest

� U = households, zk = age-eligible children, yk = immunization

status

� U = hospitals, zk = radiation oncologists, yk = number of

cancer patients

� U = land segments, zk = farms served by well water, yk =

pesticide contamination

� Nonprobability sampling methods might be used to build out

the initial probability sample
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Expert judgment probabilities

� Expert judgment “selection mechanism” is unknown; sB is no

longer a probability sample

� Field crew choose sB after seeing sA, so sA ∩ sB = ∅

πBk = Pr [k ∈ sB | k ∈ sA] Pr [k ∈ sA]

+Pr [k ∈ sB | k /∈ sA] Pr [k /∈ sA]

= 0 + ρk(1− πAk )

� Need to estimate ρk , which may depend on site-day

characteristics xk , including trips zk or catch yk

� Specify a parametric model for ρk and fit using sA, sB
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Logistic regression model for selection

� Judgment model is Poisson sampling: IBk independent

Bernoulli(ρk) for k /∈ sA, with

logit(ρk) = linear function of covariates

� Feasible pseudo-log-likelihood is unbiased for log-likelihood:∑
k∈U\sA

IBk ln

(
ρk

1− ρk

)
+
∑
k∈U

ln(1− ρk)(1− πAk )
IAk
πAk

� Similar approach if we replace Poisson by with-replacement

� Maximize with respect to parameters in ρk and obtain ρ̃k
� Obtain ρ̂k , normalized version of ρ̃k , to match expected

sample size nB

� Estimated inclusion probabilities for sB are then

π̂Bk = ρ̂k

(
1− πAk

)
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Dual-frame judgment sample 1: separate estimator

� Similar to probability sampling from two frames: multiple

valid estimators

� Compute HT estimator from sample sA:

T̂A =
∑
k∈sA

yk
πAk

� Compute approximate HT estimator from sample sB :

T̂B =
∑
k∈sB

yk(
1− πAk

)
ρ̂k

� Convex combination, with ψ ∈ (0, 1):

T̂sep = ψT̂A + (1− ψ)T̂B
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Dual-frame judgment sample 2: combined estimator

� Combine the sample as s = sA ∪ sB

� Compute a combined inclusion probability,

Pr [k ∈ s] = Pr [k ∈ sA] + Pr [k ∈ sB ]− Pr [k ∈ sA ∩ sB ]

= πAk +
(

1− πAk
)
ρk − 0

� Plugging in ρ̂k , the resulting HT-like estimator is

T̂com =
∑

k∈sA∪sB

yk
πAk +

(
1− πAk

)
ρ̂k

� Ensures some weight stability because denominator ≥ πAk
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Asymptotic properties: combined estimator

� Under some mild assumptions, the combined estimator is

design mean square consistent

� V̂
[
N−1T̂y ,com

]
is design consistent for Var

(
N−1T̂y ,com

)
� The combined estimator is asymptotically normal almost

surely (a.s.)

T̂y ,com − Ty ,N√
VA + VB

∣∣∣∣∣FN L→ N(0, 1) a.s.

� Theoretical support relies on an assumed but possibly wrong

model

� Robustness?
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Dual-frame doubly-robust estimation

� Possible misspecification of ρk

� Consider constructing doubly-robust catch estimator by
specifying two models:

� model for the selection probability ρk
� model for the outcome Eξ [yk | xk ] = m(xk)

� Requires auxiliary variable available at population level

T̂DR =
∑

k∈sA∪sB

yk − m̂(xk)

πAk +
(
1− πAk

)
ρ̂k

+
∑
k∈U

m̂(xk)

� Consistent (and approximately unbiased) if at least one of the

two models is correctly specified
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Estimation of catch rate

� But (1) we do not have great covariates available for the

whole frame and (2) we are interested in catch rate, not

catch

� For either separate or combined, estimated catch rate is

R̂ =
T̂y

T̂z

=

∑
k∈s wksyk∑
k∈s wkszk

,

where the weights wks do not depend on yk (but may depend

on zk)
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Doubly-robust property for rate

� Rate is doubly-robust by construction under a plausible

outcome model:

Eξ[yk | zk ] = φzk

� If weights depend on zk but not yk and the outcome model is

correct, then

Eξ

[
T̂y

T̂z

− Ty

Tz

]
=
φT̂z

T̂z

− φTz

Tz
= 0,

whatever the quality of the probability model

� If the probability model is correct, then

Ep

[
T̂y

T̂z

− Ty

Tz

]
' Ty

Tz
− Ty

Tz
= 0,

whatever the quality of the outcome model
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Simulation experiments

� Use historical LPIS data to create population with 30 strata

and 57,388 site-days, each with known pressure

� Simulate trips for each site-day using zero-inflated Poisson

(matching trip features from LPIS data)

� Given trips, simulate catch for 11 different species with

(possibly truncated)(possibly zero-inflated) Poisson with

various relationships with trips:

E[catch | trips] ∝ (trips)p, p ∈ {0.5, 1, 2}
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Simulation experiments, continued

� Use traditional LPIS sampling design to select original

stratified unequal-probability sample, so = ∪Hh=1soh, of size

865 site-days

� Within each stratum h, divide soh at random:

� 75% strict probability sample sAh
� 25% movable sample sBh (can use judgment or leave as-is)

� Two methods = sets of constraints on movement of sBh

� stratum method: moves remain strictly within stratum

� bucket method: moves maintain the same allocation by state,

month, and kind-of-day (weekday or weekend), but modes can

change
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Simulated judgment behaviors of field staff

� No Move (with judgment): choose to keep sample as

originally selected

� Unskilled: random moves (simple random sampling)

� Change distribution of zeros only

� Expert Jump: successfully avoids all zero-trip site-days

� Skilled Jump: reduces number of zero-trip site-days

� Change distribution of non-zeros only

� Pure Tilt: increase probability of more trips when there are

non-zero trips

� Change distribution of both zeros and non-zeros

� Jump and Tilt: shift the entire distribution toward fewer

zeros and higher-value non-zeros

� Skilled Shift: leave half unmoved and move the other half to

highest-trip site-days
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Nine simulated judgment behaviors, continued

� Generate logistic inclusion probabilities as function of trips

logit(ρk) = β0 + β11(zk = 0) + β2zk1(zk > 0),

and then

� Logistic: . . . draw without-replacement sample using

(approximately) these unequal probabilities

� With replacement: . . . draw with-replacement sample using

(exactly) these unequal probabilities

� No Move (without judgment) yields the original probability

sample with original (known) weights

� can we beat this classic design/estimator strategy?

� For all nine judgment behaviors, estimate the unknown

conditional inclusion probabilities, ρk = Pr [k ∈ sB | k /∈ sA]
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Estimation for each judgment behavior

� For each of 1000 replicated original samples so , generate all

nine judgment samples under two movement methods

� Model ρk as function of trips, zk :

logit(ρk) = β0 + β11(zk = 0) + β2zk1(zk > 0)

� For all (9 judgment) × (2 movement method) samples,

estimate catch rates for 11 species, using four estimators:

� Combined-Po: Poisson estimates of ρk
� Combined-WR: with-replacement estimates of ρk
� Separate-Po: Poisson estimates of ρk
� Separate-WR: with-replacement estimates of ρk

� For No Move (without judgment), compute the weighted

estimator using the original design weights
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RMSE ratios: less than one favors expert judgment
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Variance estimation for the combined estimator

� V̂1: treat final (combined) weights as if they are traditional

survey weights and use Taylor linearization in standard

software (easy!)

� V̂2, V̂3, V̂4: derived using Poisson sampling and with

replacement sampling approximation

� Replication methods: considered jackknife and grouped

balanced repeated replication (BRR)

� Among these variance estimators, V̂1 has best mean square

error property and best confidence interval coverage
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Summary for expert judgment sampling

� Estimator using simple (and wrong) model for judgment

probabilities works in almost all cases, fixing most of the bias

due to judgment sampling

� Combined estimator beats classic strategy (probability

sample/weighted estimator) in almost all cases

� across range of catch characteristics (11 different types)

� across range of judgment behaviors (9 different types)

� across two different sets of movement constraints

� for both Poisson and with-replacement likelihoods

� Combined beats separate estimator in almost all cases

� Simple variance estimator gives good confidence interval

coverage
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Application in other nonprobability sampling contexts?

� Dual-frame estimation approach works well in our specific

context of expert judgment sampling

� Try out this system on two other problems:

� Respondent-driven sampling with initial probability sample of

“seeds” and nonprobability sample of “sprouts”

� Probability sample with supplemental convenience sample
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Dual-frame for respondent-driven samples

� Link-tracing design in research of hidden populations

� Start with a set of initial respondent “seeds” (probability

sample), who recruit their peers (nonprobability sample), these

in return refer their peers (nonprobability sample), and so on

� Need to estimate the unknown probability of the recruitment
process

� Existing methods make strong modeling assumptions on how

recruitment works

� We propose to apply the dual-frame estimator directly to RDS

� Assess robustness to misspecified recruitment model via

simulation
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Simulation experiment of RDS

� Artificial population: Use Project 90 network sample data,
from a study of heterosexuals’ transmission of HIV

� 4430 individuals and 18407 edges

� 13 binary attributes (including retired, female, pimp, · · · )
� Simulated respondent-driven sampling design: mimics a real

LGBT study in Michaels et al. (2019, J. Official Stat)

� Start with 100 random seeds, seeds selected randomly or

proportional to degree

� Target sample size is 130 or 150

� Each respondent recruits up to 3 peers
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Estimators for comparison

� SH (Salganik and Heckathorn 2004) estimator: restricted to

categorical outcomes

µ̂SHA =
d̂B ĈBA

d̂AĈAB + d̂B ĈBA

� VH (Volz and Heckathorn 2008) estimator:

µ̂VH
y =

∑
k∈s d

−1
k yk∑

k∈s d
−1
k

� SS (Gile 2011) estimator:

µ̂SSy =

∑
k∈s π̂

−1(dk)yk∑
k∈s π̂

−1(dk)
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Estimators for comparison, continued

� Combined estimator: dual-frame approach

µ̂comy =

∑
k∈s

yk
πA
k +(1−πA

k )ρ̂k∑
k∈s

1
πA
k +(1−πA

k )ρ̂k

� Convex estimator: convex combination of VH and combined

estimator

µ̂cnvxy =

∑
k∈s

[
nA

nA+nB
1

πA
k +(1−πA

k )ρk
+ nB

nA+nB

Nd−1
k∑

k∈s d
−1
k

]
yk∑

k∈s

[
nA

nA+nB
1

πA
k +(1−πA

k )ρk
+ nB

nA+nB

Nd−1
k∑

k∈s d
−1
k

]
1
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Simulated recruitment behavior of respondent

� Random: acquaintances are recruited at random (standard

assumption)

� Recruit fraction: 0, 1, 2, or 3 acquaintances are recruited at

random, with probabilities (1/6, 1/6, 1/6, 1/2)

� Degree: recruitment probabilities are proportional to the

degrees of acquaintances

� Inverse degree: recruitment probabilities are proportional to

the inverse degrees of acquaintances

� Prefer female: females must recruit female, males recruit

males

� Prefer pimp: pimps must recruit pimp, non-pimps recruit

non-pimps

� Expert female: everyone must recruit female

� Expert pimp: everyone must recruit pimp
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Estimation of recruitment behavior

� Requires a model of recruitment behavior for the combined

estimator, simple model of degree:

logit(ρk) = β0 + β1degree,

fitted by maximizing pseudo-log-likelihood

� For each of 1000 replicated probability samples,

� generate all eight versions of the recruited sample

� estimate rates and variances for 13 attributes using SH, VH, SS

� estimate ρk and rates for 13 attributes using Combined and

Convex, with variances computed by treating final combined

weights as if they are traditional survey weights
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RMSE ratios: less than one favors combined estimator
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95% confidence interval coverage across all attributes
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Summary for respondent-driven samples

� In our limited simulation setting, the combined estimator
dominates the existing estimators

� robust across a range of attributes and across a range of

recruitment behaviors

� no strong assumptions required

� simple variance estimator of the combined estimator gives

good confidence interval coverage

� In other settings, like fewer random seeds or longer waves of

recruitment, the existing estimators are more competitive
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Dual-frame for convenience samples

� Increasingly common as response to surveys decreases, the
cost of obtaining probability sample is high

� Small, representative probability sample drawn from the whole

population U; large, biased convenience sample drawn from

the sub-population UB

� Example: Culture and Community in a Time of Crisis
(CCTC)

� probability sample sA from U.S. general population, with

known inclusion probabilities πA
k > 0

� nonprobability sample sB from art organization mailing list,

with unknown inclusion probabilities πB
k = (1− πA

k )ρk

� Goal: Combine these two resources using dual-frame method

� Challenge: For k ∈ UB , πAk and ρk are unknown
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Modifications to dual-frame methodology

� Since πAk is unknown for k ∈ sB , use covariates available in

both samples to find a matching record ` ∈ sA and assign its

inclusion probability

� UB is a strict subset of U, hence part of sA will not match sB

� Use the matched part of sA plus sB in dual-frame estimation
for the matched part of the frame, UB

� includes likelihood-based estimation of ρk , k ∈ sB

� Use the unmatched part of sA in single-frame estimation for

the unmatched part of the frame, U \ UB
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Simulation experiment from CCTC

� For a JSM 2021 competition, NORC used CCTC to create a
simulation platform to study prob/nonprob combination

� population U consists of 113,459 records

� subpopulation UB consists of 74,202 records

� 22 binary variables of interest: see a play, celebrate heritage,

take art class, . . .

� 1000 simulated probability samples sA of size nA = 1000

� 1000 simulated nonprobability samples sB of size nB = 4000

� Known inclusion probabilities for sA

� Unknown inclusion probabilities for sB

� Many possible covariates for matching and propensity

estimation
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Estimation summary across all variables
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� Best five and worst five

responses (among 22)

� Combined has lower MSE

than separate in most cases

� Using nonprobability data

dominates probability only

� Simple variance estimator

yields confidence intervals

with coverage close to

nominal
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Effective sample size ratios across all variables
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� Ratio of MSE for combined

sample to MSE of

probability sample only

� Ratio ' 5 if nonprobability

contains as much

information as probability

and we are fully efficient in

extracting the information

� Combined mostly

dominates separate

� Either dominates

probability only
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Conclusions and thanks

� Dual-frame is simple and effective method for combining
probability and nonprobability samples

� single set of weights with some weight stability by construction

� some double robustness if estimating rates

� simple variance estimation and confidence intervals

� Considerable robustness across a range of situations

� nonprobability types include expert judgment,

respondent-driven samples, or convenience samples

� wide variety of simulated settings within nonprobability samples

� Ongoing work: further development of matching and

estimation methods for convenience samples

� Thank you!
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