

Estimating human brain organization by fusion across functional imaging datasets

Jörn Diedrichsen

Brain and Mind Institute Department of Statistics & Actuarial Sciences Department of Computer Science University of Western Ontario

Functional brain organization

Functional Magnetic Resonance Imaging (fMRI)

Anatomical Image (5min) Functional Image (1s) Highly multivariate data (~200,000 brain locations across time)

Aims of fMRI research

General models of brain function

- Which brain region does what?
- How do brain regions communicate with each other?

Identifying individual brain organization

- What aspects of brain organization predict good function or dysfunction?
- Identifying functional brain regions for further study (functional localizer)
- Surgical planning

Brain models: Parcellation into brain regions

Glasser et al. (2016). Nature.

Different brain parcellations

Yeo17 (2011)

Yeo7 (2011)

Power (2011)

Baldassano (2015)

Arslan (2015)

Fan (2016)

Shen (2013)

Glasser (2016)

Yeo (2015)

Schaefer (2018)

Gordon (2016)

Zhi et al. (2022). Human Brain Mapping.

Wide and deep data sets

Fusion of information into single model?

Individual functional variability

Group probability map

Subject 01

Subject 02

Subject 03

King et al. (2019). Nature Neuroscience.

Probabilistic model of brain organization

 $p(brain | \boldsymbol{\theta}_{population})$

Requires a lot of data

Barriers:

- Techniques
- Models
- Algorithms

Fusion of information into single model?

Technical problem 1: Anatomical variability

Volume-based registration (cerebellum)

Diedrichsen (2006). Neuroimage.

Volume-based registration (cerebellum)

Volume-based registration (cerebellum)

Surface-based registration (Cortex)

Surface-based registration (Cortex)

Technical problem 2: Data management

Brain Imaging Data Structure (BIDS)

OpenNeuro.org

The model: Overall framework

Independent arrangement

Unnormalized log likelihood:

$$\log \tilde{p}(\mathbf{U}^{s} | \boldsymbol{\theta}_{A}) = \sum_{p} \log \tilde{p}(\mathbf{u}_{p}^{s}) = \sum_{p} \boldsymbol{\eta}_{p}^{T} \mathbf{u}_{p}^{s}$$

Expectation:

$$\langle \mathbf{u}_i^s \rangle_q = \operatorname{softmax}(\log(p(\mathbf{y}_i^s | \mathbf{u}_i^s; \boldsymbol{\theta}_E) + \boldsymbol{\eta}_i)$$

Emission model

K-Mixture of von Mises Fisher distributions

$$\langle \log p(\mathbf{y}_i^s | \mathbf{u}_i^s; \theta_E) \rangle_q = \log C_N(\kappa) + \sum_k \langle u_i^s(k) \rangle_q \kappa \mathbf{v}_k^T \mathbf{y}_i^s$$

Fusion of different data sets

Missing data within subject

Not covered in acquisition

Dealing with missing data

1%

10%

20%

Zhi et al. (2022) Submitted to NIPS.

Markov Random Field

Approximate by node-wise Gibbs sampling :

deep Markov Random Field

Unnormalized log likelihood:

$$\log \tilde{p}(\mathbf{U}^{s} | \boldsymbol{\theta}_{A}) = \sum_{i} \boldsymbol{\eta}_{i}^{s} \mathbf{u}_{i} + \sum_{i,j,k} w_{i,j} \mathbf{u}_{i}^{s}(k) \mathbf{h}_{j}^{s}(k)$$

Training:

Mean-field approximation (expectation given data) Layer-wise Gibbs sampling (expectation given model) Variational stochastic maximum likelihood

Salakuthdinov et al. (2012). Neural Computation.

Zhi et al. (2022) Submitted to NIPS.

Deep MRF models

Zhi et al. (2022) Submitted to NIPS.

Multi-domain task battery dataset

24 subjects

King et al. (2019). Nature Neuroscience.

Improvements on real data

Zhi et al. (2022) Submitted to NIPS.

Computational Neuroscience lab

Da Zhi

Western: Da Zhi Caro Nettekoven Ana Luisa Pinho Ladan Shahahani Mahidyar Shabazi Linglin Lin Jingyu Cui Grace Yi UC Berkeley: **Richard Ivry** Maedbh King McGill / Mila: Danilo Bzdok Dalhousie: **Carlos Hernadez Castillo** Harvard: **Randy Buckner**

Grant support

James S. McDonnell Foundation

Canadian Institutes of Health Research Instituts de recherche en santé du Canada

Functional variability

Independent arrangement

