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Causation leads to actionable insights!
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Canonical Approach in Statistics

Regression Modeling

Y =080+ B1A+ B X + ey
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Canonical Approach in Statistics

Regression Modeling
Y:,Bo+,31A+,32X+6y

@ When can we interpret the coefficient 51 as causal?

o What do we mean by a causal effect?

e What are the conditions for the two quantities to equal?

@ What can we do otherwise?
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Mechanistic versus agnostic approach to causal inference
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Framework 1: Structural Equation Models

Non-Parametric  Structural Equation
air pollutiontemperature Models  with  Independent  Errors

@_,@ (NPSEM-IE)

I X =e¢ex
A=1a(X,en)

@ Y = fy(A X, ey)

weather conditions where ex L ea L ey
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Framework 1: Structural Equation Models

air pollution temperature Example: Linear Structural Equation

Models with Independent Errors
®—0O
X =¢x
T/ A=ap+a1X +ea
@ Y = B0+ B1A+ B2 X + ey

weather conditions

where ex 1l ep 1L ey
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Framework 1: Structural Equation Models

SEMs specify what happens in an

observational world.
air pollution temperature

@ @ Coincides with parametric regres-
sion models:
I / X =ex
@ A=ag+ a1 X + ey
Y =80+ B1A+ B2 X + ey

weather conditions
where ex 1l ea 1l ey
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Framework 1: Structural Equation Models

SEMs also specify what would hap-
air pollution temperature pen in an experimental world!

@ ’ @ Example: fixing Ato 0

T X =ex
A=0
@ Y = Bo + B1x0 + BoX + ey

weather conditions where ex 1L €4 1l ey
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Analogy: Physics Law

force mass

\ / acceleration

F = ma

force acceleration
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Framework 1: Structural Equation Models

SEMs also specify what would hap-
air pollution temperature pen in an experimental world!

@—’® Example: fixing A to 0
T X =ex
/ A=0
) Y = o+ B <0+ X + ey

weather conditions where ex 1L €4 1l ey

Causal effect = 4
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Framework 1: Structural Equation Models

air pollution temperature __
Stability: The parameters of SEMs
@—’® remain the same across different

I worlds
Regression coefficient = Causal ef-

@ fect!

weather conditions
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Summary of Parametric SEMs
A mechanistic approach to causal inference

@ Permits inferences with real-world interpretations and
detailed predictions
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Summary of Parametric SEMs

A mechanistic approach to causal inference

@ Permits inferences with real-world interpretations and
detailed predictions

@ Rely on strong assumptions:

e SEM: Assumes knowledge on the relationships among all
the variables in the system

@ Linear SEM: Also makes parametric assumptions
e Stability assumption: The coefficients remain constant
across observational/experimental worlds

@ If these assumptions fail: how to even define the causal
effects?
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Framework 2: Potential Outcome (Agnostic Approach)

Y(a) = “the outcome Y that would have been observed if a
subject had received treatment a”
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Framework 2: Potential Outcome (Agnostic Approach)

Y(a) = “the outcome Y that would have been observed if a
subject had received treatment a”

@ Requires pre-specified treatment and outcome

@ Does not require knowledge of the causal system: only A
and Y but not X
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Framework 2: Potential Outcome (Agnostic Approach)

air pollution temperature Y(1) = what the temperature in a loca-

tlon Would be if there were air pollution
@—>® in this location
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NPSEM = Potential Outcomes

Y(1) = what the temperature in a loca-
air pollution temperature tion would be if there were air pollution

in this location
@ @ @ Under a NPSEM
T / O
A=1a(X,ea)

@ Y = fy(A X, ey)

weather conditions We have Y(1) = fy(1, X, ey)
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Y(0) = what the temperature in a loca-
air pollution temperature tion would be if there were no air pollu-

tion in this location
@ @ @ Under a NPSEM

T X =ex
A= fa(X,€a)
@ Y =fy(A X, ey)
weather conditions We have Y(0) = fy(0, X, ey)
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Potential Outcome: Causal Contrast

CE = Y(1) — Y(0)
=fy(1,X,ey) — fy(0, X, ey) under the NPSEM
= B¢ under the linear SEM

@ Does not depends on any parametric assumption

@ Does not require knowledge of the full causal system
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Relating Potential Outcomes to Observed Outcomes

The consistency assumption: Y = AY(1)+(1-A)Y(0) = Y(A)
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Potential Outcomes (Oracle’s Table)

For every row, only see one outcome Y !

Yi(1) | Yi(0) | Yi(1) - Y;(0)

1.1
1.8
2.0
0.1

2.3
0.3
2.1
1.3

-1.2
1.5
-0.1
-1.2

A
1
0
0
1
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Observed Outcomes (via Consistency)

For every row, only see one outcome Y !

Yi(1) | Yi(0) | Yi(1) - Yi(0) A
11 | 2 1.2 1
18 | 0.3 1.5 0
20 | 2.1 0.1 0
01 | 1.3 1.2 1
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Observed Outcomes (via Consistency)

For every row, only see one outcome Y !

Yi(1) | Yi(0) | Yi(1) - Yi(0) A
11 | 2 ? 1
? | 03 ? 0
? | 21 ? 0
01 | 2 ? 1
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The Fundamental Problem of Causal Inference

For every row, only see one outcome Y !

Yi(1) | Yi(0) | Yi(1) - Yi(0) A
11 | 2 ? 1
? | 03 ? 0
? | 21 ? 0
01 | 2 ? 1

Fundamentally the potential outcome framework reduces
causal inference to a missing data problem

@ Ais the missing data indicator
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Individual vs Population Causal Effects

@ Individual causal effects Y;(1) — Y;(0) not identifiable
@ Aim for Average Causal Effect (ACE) instead:

E[Y(1) - Y(0)]

e Under our NPSEMSs, this is E[fy(1, X,ey) — fy(0, X, ey)]
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SEMs vs Potential Outcomes
Parametric Structural Equation Models

@ © Permits detailed predictions on what would be observed in an
experimental setting

Potential Outcomes

@ O Often used for studying the effect of a particular cause on a
particular outcome
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SEMs vs Potential Outcomes
Parametric Structural Equation Models

@ © Permits detailed predictions on what would be observed in an
experimental setting

@ © Definition of causal effects relies on correct specification of
the Parametric SEMs (parametric assumption + knowledge of
the whole system)

@ Relate the observational world to the (hypothetical) experimental
world via the stability assumption

Potential Outcomes

@ O Often used for studying the effect of a particular cause on a
particular outcome

@ © Causal effects defined non-parametrically

@ Relate the observational world to the (hypothetical) experimental
world via the consistency assumption
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Identification and estimation of causal effects
Causal Estimation Under No Unmeasured Confounding
Instrumental Variables
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Problem Description

Assume no unmeasured confounding

air pollution temperature @ SEM: no unmeasured variables
@ @ in the system
e
@ Potential outcome:

T/ AL Y(1), Y(0)| X

@ Interested in estimating

weather conditions ETY(1) — Y(0)],

where E[Y(a)] = ExE[Y | A= a, X]
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Problem Description

Assume no unmeasured confounding

air pollution temperature @ SEM: no unmeasured variables
@ @ in the system
_—
@ Potential outcome:

T/ AL Y(1), Y(0)| X

@ Interested in estimating

weather conditions ETY(1) — Y(0)],

where E[Y(a)] = ExE[Y | A= a, X]

A Statistical Problem!
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Approach 1: Regression Adjustment

E[Y(1)] = ExE[Y |A=1,X]

Specify a regression model for E[Y | A= 1, X]
@ Linear regression

E[Y [A=1,X]= 5+ B2X

@ Non-parametric regression: spline, basis expansion, etc.

@ Machine learning: random forest, neural networks, etc.
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Approach 2: Inverse Probability Weighting (IPW)

Causal estimation is also a missing data problem

X Y1) ‘ Y (0) ‘ Y(1)-Y(0) A

1 11| 2 ? 1
1 72 | 03 ? 0
0o ? | 21 ? 0
0 01 | ? ? 1
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Approach 2: Inverse Probability Weighting (IPW)

Causal estimation is also a missing data problem

X Y(1) \ \ A
1 1.1 1
1 ? 0
0 ? 0
0 0.1 1
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Approach 2: Inverse Probability Weighting (IPW)

Causal estimation is also a missing data problem

X Y(1) \ \ A
1 1.1 1
1 ? 0
0 ? 0
0 0.1 1

No unmeasured confounding = Missing at random

= Can use inverse probability weighting

YO0 = Epa )

@ P(A=1] X) is known as the propensity score
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Regression vs Inverse probability weighting

(YA X) = (Y | A X)f(A| X)F(X)
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Regression vs Inverse probability weighting

(Y, A X) = (Y | A X)f(A| X)F(X)

@ Regression adjustment: model E[Y | A= a, X]

18/24



Regression vs Inverse probability weighting

(YA X) = (Y | A X)(A]| X)F(X)

@ Regression adjustment: model E[Y | A= a, X]

@ Propensity score: model P(A = a | X)
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Approach 3: Doubly Robust (DR) Approach

(YA X) = (Y | A X)(A]| X)F(X)

@ Regression adjustment: model E[Y | A= a, X]

@ Propensity score: model P(A = a | X)

Doubly robust approach: model both E[Y | A= a, X] and
P(A=a| X)
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Approach 3: Doubly Robust (DR) Approach

One canonical doubly robust estimator is
N | N
E[Y(1)] =P, {B+ ﬁ(Y - B)}

where P, = empirical mean, B= E[Y |A=1,X],
N=PA=1]|X)

@ Double robustness:

Bias(DR) ~ Bias(Regression) x Bias(Prop. Score)
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Estimators for Average Causal Effect

Regression
Propensity score subclassification

Doubly robust

°
°
@ Propensity score weighting
°
@ Many more...

All assuming no unmeasured confounding...
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Identification and estimation of causal effects

Instrumental Variables
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Unmeasured Confounding

industrialization

v

unmeasured
ing!
air pgllution tsqperature confounding!

@—O

L

weather conditions
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Randomized Experiment

industrialization
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Randomized Experiment

industrialization

v

air polltmqperature

@ @ May not be feasible...

/

©

weather conditions
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Instrumental Variable

industrialization

®
I

weather conditions

policy  air pllllmperature
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Instrumental Variable

industrialization

u Z=A: randomized trial

policy  air poIIutioxsqperature
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Instrumental Variable

industrialization

u Z=A: randomized trial

policy  air plllutioxsqperature
Z 1 A:

® O—0

L

weather conditions

observational study
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Instrumental Variable

industrialization

Z = A: randomized trial

Reality: quasi-experiment
policy a|rp llution tsgperature
Z 1 A: i

@ observational study

weather conditions
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Identification of Causal Effects

Policy Pollution Temperature
O—©O—0

v

v

Industrialization
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Identification of Causal Effects

Policy Pollution Temperature
O—©O—0

v

v

Industrialization

ACE(Z —»Y) ACE(Z— A)
T T

Observation: identifiable identifiable
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Identification of Causal Effects

Policy Pollution Temperature
O—©O—0

v

v

Industrialization

Key Result: Under additional assumptions,

ACE(Z — Y)=ACE(Z — A) x ACE(A— Y).
T T

identifiable identifiable
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Instrumental Variable Model

Key Formula: ACE(Z — Y) = ACE(Z — A) x ACE(A - Y)

policy pollution temperature
@O—®—O

U

industrialization
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Instrumental Variable Model

Key Formula: ACE(Z — Y) = ACE(Z — A) x ACE(A - Y)

/”’—-X-~\\\
@_,@_,@ @ No direct effect on Y

U

industrialization
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Instrumental Variable Model

Key Formula: ACE(Z — Y) = ACE(Z — A) x ACE(A - Y)

policy pollution temperature

@_,@_,@ @ No direct effect on Y
eZ I U
'y

U

industrialization
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Instrumental Variable Model

Key Formula: ACE(Z — Y) = ACE(Z — A) x ACE(A - Y)

policy pollution temperature

@_,@_,@ @ No direct effect on Y
T / e Z U U
o ACE(Z — A) 40

U

industrialization
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Summary

@ Mechanistic (Parametric SEM) vs Agnostic (Potential
outcome) approaches
e Parametric SEM: More intuitive, permits detailed prediction
e Potential outcome: Fewer assumptions, more robust to
model misspecification

@ Causal effect estimation

(Randomized experiment)

Assume no unmeasured confounding
Instrumental variable methods

Many more...
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Thank you!

Contact: Linbo Wang (University of Toronto), linbo.wang@utoronto.ca
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