
AGCCAAGCAGCAAAGTTTTGCTGCTGTTTATTTTTGTAGCTCTTACTATATTCTACTTTTACCA
TTGAAAATATTGAGGAAGTTATTTATATTTCTATTTTTTATATATTATATATTTTATGTATTTTAAT
ATTACTATTACACATAATTATTTTTTATATATATGAAGTACCAATGACTTCCTTTTCCAGAGCAA
TAATGAAATTTCACAGTATGAAAATGGAAGAAATCAATAAAATTATACGTGACCTGTGGCGA
AGTACCTATCGTGGACAAGGTGAGTACCATGGTGTATCACAAATGCTCTTTCCAAAGCCCTC
TCCGCAGCTCTTCCCCTTATGACCTCTCATCATGCCAGCATTACCTCCCTGGACCCCTTTCTAA
GCATGTCTTTGAGATTTTCTAAGAATTCTTATCTTGGCAACATCTTGTAGCAAGAAAATGTAA
AGTTTTCTGTTCCAGAGCCTAACAGGACTTACATATTTGACTGCAGTAGGCATTATATTTAGC
TGATGACATAATAGGTTCTGTCATAGTGTAGATAGGGATAAGCCAAAATGCAATAAGAAAAA
CCATCCAGAGGAAACTCTTTTTTTTTTCTTTTTCTTTTTTTTTTTTCCAGATGGAGTCTCGCA
CTTCTCTGTCACCCGGGCTGGAGCGCAGTGGTGCAATCTTGGCTCACTGCAACCTCCACCT
CCTGGGTTCAGGTGATTCTCCCACCTCAGCCTCCCGAGTAGTAGCTGGAATTACAGGTGCG
CGCTCCCACACCTGGCTAATTTTTTGTATTCTTAGTAGAGATGGGGTTTCACCATGTTGGCCA
GGCTGGTCTCAAACTCCTGCCCTCAGGTGATCTGCCCACCTTGGCCTCCCAGTGTTGGGTTT
ACAGGCGTGAGCCACCGCGCCTGGCCTGGAGGAAACTCTTAACAGGGAAACTAAGAAAG
AGTTGAGGCTGAGGAACTGGGGCATCTGGGTTGCTTCTGGCCAGACCACCAGGCTCTTGA
ATCCTCCCAGCCAGAGAAAGAGTTTCCACACCAGCCATTGTTTTCCTCTGGTAATGTCAGCC
TCATCTGTTGTTCCTAGGCTTACTTGATATGTTTGTAAATGACAAAAGGCTACAGAGCATAGA

Deep learning oracles for 
genomic discovery

Kundaje lab
Genetics, Computer Science

Stanford University

http://anshul.kundaje.net

http://anshul.kundaje.net/


Deciphering functional DNA words and their syntax in regulatory DNA

Protein-DNA binding 
maps
(ChIP-seq, ChIP-exo)

Adapted from Thurman et al 2012

? ?

Syntax: Rules of arrangement, preferred spacing, 
orientation, interactions between works

chromatin accessibility 
(ATAC-seq / DNase-seq)



…GACAGATAATGCATTGA……GACTTGAAACGGCATTG…

Inactive (0) (0.3) Active (+1) (20.2)

Predictive model of regulatory DNA

Genome-wide protein-DNA binding map



…GACAGATAATGCATTGA……GACTTGAAACGGCATTG…

Inactive (0) (0.3) Active (+1) (20.2)

DNA sequences (𝑆𝑖)

Classification 

or Regression 

model

𝐹(𝑆𝑖)

Class = +1 (20.2) 

Class = +1 (10.6)

Class = +1 (15.8)

Class = 0 (0.3)

Class = 0 (1.2)

Class = 0 (3.5)

Measured

Labels (𝑌𝑖)

Bound

Unbound

…GACAGATAATGCATTGA…

…ACTGTCATGGATATTCT…

…GACTTGAAACGGCATTG…

…CAGTATGCATACGTGAA…

…CAACCTTGAACGGCATTG…

…GATATTCTACTGTAAG…

Predictive model of regulatory DNA

Arvey et al. 2012

Ghandi et al. 2014

Setty et al. 2015

Alipanahi et al. 2015

Zhou et al. 2015

Kelly et al. 2016, 2018

Avsec et al. 2021

Genome-wide protein-DNA binding map



High-resolution ‘shapes’ and ‘spans‘ of TF and chromatin profiles capture 
exquisite information about protein-DNA contacts

https://doi.org/10.3109/10409238.2015.1051505

Protein-DNA binding expt.

DNA accessibility experiments



High-resolution ‘shapes’ and ‘spans‘ of TF and chromatin profiles capture 
exquisite information about protein-DNA contacts

https://doi.org/10.3109/10409238.2015.1051505

Protein-DNA binding expt.

DNA accessibility experiments

DNase-seq
ATAC-seq

H3K27ac
ChIP-seq

H3K4me1
ChIP-seq

H3K4me3
ChIP-seq



BPNet : Sequence to base-res. TF binding profiles

Ziga Avsec

C G A T A A C C G A T A T

Total reads + base-resolution probability profile (1 kb)

Sequence windows (2 kb) Avsec et al. 2021 Nature Genetics



BPNet : Sequence to base-res. TF binding profiles

Ziga Avsec

C G A T A A C C G A T A T

Total reads + base-resolution probability profile (1 kb)

Sequence windows (2 kb)

Assay bias/control track

Avsec et al. 2021 Nature Genetics



BPNet predicts base resolution protein-DNA binding profiles with unprecedented 
accuracy (on par with replicate concordance)

+ strand (dark color)
- strand (light color)

Oct4, Sox2, Nanog and Klf4 in mESCs

Julia Zeitlinger lab
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DeepLIFT: Inferring predictive nucleotides in any sequence

Shrikumar et al. 2017 ICML
Shrikumar et al. 2019 ISMB
Tseng et al. 2020 NeurIPS
Greenside et al. 2018, ECCB

Avanti Shrikumar

Alex Tseng
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DeepLIFT: Inferring predictive nucleotides in any sequence

Shrikumar et al. 2017 ICML
Shrikumar et al. 2019 ISMB
Tseng et al. 2020 NeurIPS
Greenside et al. 2018, ECCB

Avanti Shrikumar

Alex Tseng



mESCs



mESCs



Deciphering syntax dependent TF cooperativity with synthetic designed sequences
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Deciphering syntax dependent TF cooperativity with in-silico genome editing
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Deciphering syntax dependent TF cooperativity with in-silico genome editing
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Deciphering syntax dependent TF cooperativity with in-silico genome editing

Footprint 
strength of 
target TF

10 50 100 150
Distance between motifs (bp)
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Distance (bp)

Distance (bp)

Distance (bp)

Distance (bp)

Nucleosome range 
interactions

Direct interaction 
between proteins

Validated with CRISPR/Cas9 syntax editing experiments

Distance dependent motif syntax rules of asymmetric directional cooperativity



Julia Zeitlinger, Sabrina Krueger, Melanie Weilert

CRISPR mutations validate motif syntax Nanog <> Sox2
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CRISPR mutations validate motif syntax Nanog <> Sox2

Julia Zeitlinger, Sabrina Krueger, Melanie Weilert



Binding syntax is predictive of differential accessibility 
after TF depletion & reporter expression

(Independent previously published data 
from Friman et al. 2019)



Binding syntax is predictive of differential accessibility 
after TF depletion & reporter expression

(Independent previously published data 
from Friman et al. 2019) (Independent published MPRA data from 

King, Maricque, Cohen 2018)



Modeling ATAC-seq / DNase-seq profiles 
(enzyme bias affects footprints)



How to estimate Tn5 / DNase bias?

Anusri Pampari

Anna Shcherbina
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How to estimate Tn5 / DNase bias?

Read distribution in background regions is a function of enzyme bias

Anusri Pampari

Anna Shcherbina



ChromBPNet: Sequence to base-res chromatin accessibility profiles 

C G A T A A C C G A T A T
2 Kb sequence Based on Avsec et al. Nature Genetics 2021

NN enzyme bias 
predictor

total Tn5/DNase insertions (1 kb)
base-resolution probability profile (1 kb)



ChromBPNet: Sequence to base-res chromatin accessibility profiles 

C G A T A A C C G A T A T
2 Kb sequence Based on Avsec et al. Nature Genetics 2021

NN enzyme bias 
predictor

total Tn5/DNase insertions (1 kb)
base-resolution probability profile (1 kb)



Prediction performance (held-out chromosomes)
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Spearman correlation = 0.7
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Log(observed counts)

Spearman correlation = 0.7
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Total counts prediction performance

Jensen-Shannon Distance

Worst limit

Best limit

Observed vs. predicted profile

Profile prediction performance 



Denoised base-resolution bias-corrected chromatin accessibility footprints & de-
biased sequence features
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Observed track



Denoised base-resolution bias-corrected chromatin accessibility footprints & de-
biased sequence features

Observed track

ChromBPNet
without 

Bias correction

CTCF

Tn5



Denoised base-resolution bias-corrected chromatin accessibility footprints & de-
biased sequence features

Observed track

ChromBPNet
without 

Bias correction

ChromBPNet
bias model

CTCF

Tn5
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Denoised base-resolution bias-corrected chromatin accessibility footprints & de-
biased sequence features

Tn5
denoising!

Observed track

ChromBPNet
without 

Bias correction

ChromBPNet
bias model

ChromBPNet
with

bias correction

CTCF

Tn5

CTCF Footprint



Denoised base-resolution bias-corrected chromatin accessibility footprints & de-
biased sequence features

Tn5
denoising!

Using existing work (HINT-ATAC and TOBIAS)

Observed track

ChromBPNet
without 

Bias correction

ChromBPNet
bias model

ChromBPNet
with

HINT-ATAC correction

ChromBPNet
With

TOBIAS correction

ChromBPNet
with

bias correction

CTCF

Tn5

CTCF Footprint



NfkB GATA HNF4A

ChromBPNet can predict marginal footprints of cell-type specific TFs

SP1

Uncorrected
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200bp surrounding the motif insertion site in 10K random non-peak seqeunces

GM12878
ATAC-seq

K562
ATAC-seq

HEPG2
ATAC-seq

Corrected



Similar sequence syntax derived from DNase-seq and ATAC-seq data

ATAC pvalue track

ATAC observed track

ATAC uncorrected predictions

ATAC corrected predictions

ATAC profile contribution

ATAC count contribution

ATAC overlap peak set

DNASE pvalue track

DNASE observed track

DNASE uncorrected predictions

DNASE corrected predictions

DNASE profile contribution

DNASE count contribution

DNASE overlap peak set



High fidelity denoising, imputation and interpretations at different read 
coverages

Beta-globin locus in K562



High fidelity denoising, imputation and interpretations at different read 
coverages

Bias corrected track

Observed track

Contribution scores

500M

Beta-globin locus in K562
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High fidelity denoising, imputation and interpretations at different read 
coverages

Bias corrected track

Observed track

Contribution scores

500M

Bias corrected track

Observed track

Contribution scores

100M

Bias corrected track

Observed track

Contribution scores

50M

Bias corrected track

Observed track

Contribution scores

25M

Bias corrected track

Observed track

Contribution scores

5M

Beta-globin locus in K562



ChromBPNet predicted tracks are substantially similar compared to 
observed tracks at different read depths

Using 500M as ground truth we compare degradation in signal quality at different read depths

ChromBPNet predicts substantially similar profiles compared to the observed tracks 



High fidelity marginal footprinting in K562 at different read depths



CTCF

SPI1

GABPA

NFYB

500M

High fidelity marginal footprinting in K562 at different read depths
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P
ro

fi
le

 p
ro

b
ab

ili
ty

 p
re

d
ic

ti
o

n



CTCF

SPI1
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500M 100M

High fidelity marginal footprinting in K562 at different read depths
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SPI1

GABPA

NFYB

500M 100M 50M

High fidelity marginal footprinting in K562 at different read depths
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CTCF

SPI1

GABPA

NFYB

500M 100M 50M 25M

High fidelity marginal footprinting in K562 at different read depths

200bp surrounding the motif insertion site 
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CTCF

SPI1

GABPA

NFYB

500M 100M 50M 25M 5M

High fidelity marginal footprinting in K562 at different read depths

200bp surrounding the motif insertion site 
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Model driven prioritization and 
interpretation of non-coding genetic 

variation

Anna Shcherbina Anusri Pampari
Soumya Kundu Laksshman

Sundaram



Benign

…….ACTGATCGCAATCG…….

…….ACTGATCGGAATCG…….

Risk

Large proportion of disease-associated genetic loci are non-coding



Gene 
(Coding variant)

Control elements
(Non-coding variants)

Benign

…….ACTGATCGCAATCG…….

…….ACTGATCGGAATCG…….

Risk

Large proportion of disease-associated genetic loci are non-coding

Coding Non-coding



BPNet/ChromBPNet can predict variants influencing regulatory activity
Predicted SPI1 protein-DNA binding

1 Kb

ref=C
alt=G

ref=C

alt=G

ref=C
alt=G

Predicted chromatin accessibility Predicted histone mark (H3K27ac)

6 Kb1 Kb



BPNet/ChromBPNet can predict variants influencing regulatory activity
Predicted SPI1 TF ChIP-seq

1 Kb

Predicted DNase-seq Predicted H3K27ac ChIP-seq

6 Kb1 Kb
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BPNet/ChromBPNet can interpret variants influencing regulatory activity
Predicted SPI1 TF ChIP-seq

ref=C ref=C ref=C

alt=G alt=G alt=G

200 bp 200 bp200 bp

1 Kb

Predicted DNase-seq Predicted H3K27ac ChIP-seq

6 Kb1 Kb

ref=C
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Model interpretation predicts sequence drivers



BPNet/ChromBPNet can interpret variants influencing regulatory activity
Predicted SPI1 TF ChIP-seq

ref=C ref=C ref=C

alt=G alt=G alt=G

200 bp 200 bp200 bp

1 Kb

Predicted DNase-seq Predicted H3K27ac ChIP-seq

6 Kb1 Kb

SPI1 motifs

ref=C
alt=G

ref=C

alt=G

ref=C
alt=G

Model interpretation predicts sequence drivers



Variant Effect Scoring with ChromBPNet

• ChromBPNet has two heads counts and profiles

• Variant effect scoring with counts head

log(countsalt)  - log(countsref)

• Variant effect scoring with profile head

JensenShanon(Profilealt, Profileref) * Sign(log(countsalt)  - log(countsref))



Dnase-seq ChromBPNet outperforms deltaSVM for predicting dsQTLs in LCLs

GM12878 DNASE-seq model GM12878 ATAC-seq model

85M read depth 175M read depth

dsQTLs: Degner et al 2012



Single cell chromatin dynamics during human cardiogenesis

Sundaram*, Ameen*, et al. In review
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Prioritizing de-novo mutations in congenital heart disease with cell-type 
resolved regulatory map of fetal heart

~54k Congenital heart disorder mutations

(PCGC)

~110k 

Healthy control mutations

(Simon Simplex)

scATAC Fetal Heart

~215k regulatory elements



Prioritizing de-novo mutations in congenital heart disease with cell-type 
resolved regulatory map of fetal heart

~54k Congenital heart disorder mutations

(PCGC)

~110k 

Healthy control mutations

(Simon Simplex)

scATAC Fetal Heart

~215k regulatory elements

No enrichment of CHD mutations in all/cell type resolved scATAC-seq peaks!
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Prioritizing mutations with cell-type resolved ChromBPNet models

De novo non-coding 
mutations
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Prioritizing mutations with cell-type resolved ChromBPNet models

De novo non-coding 
mutations



Eg: CHD case mutation affecting accessibility of enhancer in Art/Cap 
endothelial cells

Mutation disrupts an ETS/ELK/ETV family motif



Cell states enriched for prioritized de novo non-coding mutations in 
CHD 

Arterial & Capillary endothelial cells are most significantly 
enriched for CHD mutations (structural defects)



Cell states enriched for prioritized de novo non-coding mutations in 
CHD 

Arterial & Capillary endothelial cells are most significantly 
enriched for CHD mutations (structural defects)



CRISPR experiments confirm downstream gene targets of enhancers 
containing prioritized CHD mutations



Summary

• Base-resolution neural networks can learn very accurate models of 
regulatory DNA sequence from bulk and single cell regulatory 
profiling experiments

• Can be queried to decipher novel subtle sequence syntax properties

• Can be used to decipher regulatory genetic variation

• Can be used to prioritize likely causal variants in GWAS loci and de-
novo non-coding mutations

• Can be used to design precise genome editing experiments

• Foundation of in-silico platforms for biological discovery, hypothesis 
generation & model-driven iterative expt. design



Kundaje lab

Jin Wook Lee 
(Software engineer)
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