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Context

Complex phenotypes
Interaction of genetic variants
and environmental factors

Large number of genetic variants,
each making only a small
contribution to the final
phenotype

Ex: Height, cardiovascular
diseases, type Il diabetes, ...

& Genetic variants @ Age

@ Genetic variants associated O Environment, Lifestyle, Diseases

with a complex disease
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Context

Complex phenotypes
Interaction of genetic variants
and environmental factors

Large number of genetic variants,
each making only a small
contribution to the final
phenotype

Ex: Height, cardiovascular
diseases, type Il diabetes, ...

Genetic susceptibility
Depending on their genetic
variants, some people are more
or less at risk to develop a given
complex disease

& Genetic variants @ Age

@ Genetic variants associated O Environment, Lifestyle, Diseases
with a complex disease
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Context

How can we identify people at risk of developing a given complex disease

Genome Wide Association Studies (GWAS)

Statistical test of association between genetic
variants (SNPs) and a complex phenotype

cases

Variant Frequency
Cases - 58.3%

¢ Controls - 16.7%
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Context

GWAS and Genetic risk scores limitations

Genetic risk scores are not generalizable

GWAS test for genetic effects but are

across populations

confounded by

Prediction accuracy relative to European-ancestry individuals across

- Stratification (Population structure)
- Assortative mating 1.00
- Dynastic (indirect) parental genetic effects

—> SAD effects

GWAS cannot detect the interaction between
genetic variants
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Dynastic effects

direct genetic effects

polygenic score

Arbel Harpak, Biology
W @arbelharpak = (&) of Genomes 2022

17 quantitative traits and 5 continental populations in the UKBB
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Method

Deep learning using genotype data

Fat data : number of features (SNPs) is
order of magnitude higher than the number
of samples (individuals) = Overfitting

o Complex
w disease risk
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Method

Deep learning using genotype data

Fat data : number of features (SNPs) is
order of magnitude higher than the number
of samples (individuals) = Overfitting

Diet Network
Romeo et al. ICLR 2017
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Method Diet Networks
Romeo et al. ICLR 2017

Deep learning using genotype data

Fat data : number of features (SNPs) is
order of magnitude higher than the number
of samples (individuals) = Overfitting

M@ Genetic

ancestry

Yoshua Bengio

Diet Networks
Developed and tested on a genetic ancestry

_— ch'LLLarg
network
Norw . s oo
aaaaaa r;c‘“km Poland
"e Kazskhotan 7S -
O ' . rrrrr g v .Snunn ‘
o | 1 [ P )
Saudi Ar ndis .
0 o, o .. ot
G . Eviopi (@)
@ 0@ s ® ‘ ' ‘
oy e M 000 -0
n OO0 .O — Representation (given or
2 :o| o learned) of every input features
Up _Q O Q QT Variant’s genotype frequencies
Y .
Populations: O - African; @ - American; @ - East Asian; @ - European; @ - South Asian; SNPs per pOpU|CI1‘I0n

3450 individuals, ~300K SNPs, 26 populations embedoling ’



Result | : Generalization capability

Can the Diet Network generalize its predictions in independent datasets
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Populations: O - African; @ - American; @ - East Asian; @ - European; @ - South Asian;

~300K SNPs
3450 individuals
26 populations

Test #1

Human Genome Diversity Project (HGDP)

Middle East

1234

Test #2

CARTaGENE (CAG)

* East Asia

Oceania

1234

~173K /300K SNPs

Quebec biobank with
self-reported ethnicity

~250K /300K SNPs

Population dataset



Result | : Generalization capability in HGDP
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Result | : Generalization capability in HGDP
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Diet Network gives high scores to genetically similar populations
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Dim2

Result | : Generalization capability in CARTaGENE

‘ In CARTaGENE, most individuals are French

Quebee Reference Panel (4) . .
Canadians (founder population from Europe)
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Dim2

Result | : Generalization capability in CARTaGENE

Quebee Reference Panel (4)
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Result | : Generalization capability in CARTaGENE

o

In CARTaGENE, most individuals are French
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Result Il : Interpretability

Which SNPs are important in the Diet Network predictions
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Attribution scores computed with

Integrated Gradients (Sundararajan et al. 2017)
[« indicates how useful a feature is
* each sample may have different scores




Result Il : Interpretability
Which SNPs are important in the Diet Network predictions
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DXOW®® - @ | Integrated Gradients (Sundararajan et al. 2017)
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Integrated Gradients show that low frequency SNPs are important in Diet Network’s predictions

This is opposite to genetic population methods that use common SNPs to compare populations



Result Il : Interpretability
Which SNPs are important in the Diet Network predictions
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This is opposite to genetic population methods that use common SNPs to compare populations



Result lll : Complex phenotype prediction

What about real complex phenotypes
Obesity prediction in the UK biobank
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Result lll : Complex phenotype prediction

What about real complex phenotypes Comparison with a Genetic Risk Score
Obesity prediction in the UK biobank Khera et al. Cell. 2019
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Obesity prediction with Diet Networks in the UK biobank yields similar results to a Genetic Risk Score




Result IV : Environmental factors

How to take into account environmental factors

* Clinical and lifestyle variables available in biobanks

* Information from the built environment

Use of Deep Learning to Examine the Association of the Built
Environment With Prevalence of Neighborhood Adult Obesity

Maharana et al. 2018
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Result IV : Environmental factors

How to take into account environmental factors

o"e® Canadian health cohort
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* Body mass index of participants
* Forward Sortation Area (FAS) :
3 first digits of postal codes

* Clinical and lifestyle variables available in biobanks

* Information from the built environment

Use of Deep Learning to Examine the Association of the Built
Environment With Prevalence of Neighborhood Adult Obesity

Maharana et al. 2018
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Future directions for the Diet Network

Prediction of complex phenotypes

" Regression Task Al [Task B [Task (] Task-

specific

" Height (higher heritability) | [T | tayers

Multi tasks learning of several complex phenotypes

Information given in SNPs embedding (Auxiliary network input) : ayers

Image : Ruder, S. (2017)

Taking into account genetic ancestry diversity
Domain-adversarial neural network to
Penalize the use of SNPs that have a
large difference in alleles frequencies
between population
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