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Complex phenotypes
Interaction of genetic variants 
and environmental factors

Large number of genetic variants, 
each making only a small 
contribution to the final 
phenotype

Ex: Height, cardiovascular 
diseases, type II diabetes, ...

Genetic susceptibility
Depending on their genetic 
variants, some people are more 
or less at risk to develop a given 
complex disease
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Genome Wide Association Studies (GWAS)
Statistical test of association between genetic 

variants (SNPs) and a complex phenotype
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individual

Phenotype

associated SNPs

(GWAS)
SNPs effect (GWAS)

Individual’s

gonotype

{0,1,2}

Genetic risk score
Computes the risk of developing a complex 

disease for an individual

GWAS Catalog EMBL-EBI 2017

SNPs

▪ P-value of 

association

▪ Estimated effect

Context

How can we identify people at risk of developing a given complex disease
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GWAS and Genetic risk scores limitations

GWAS test for genetic effects but are 
confounded by

- Stratification (Population structure)

- Assortative mating

- Dynastic (indirect) parental genetic effects

→ SAD effects

GWAS cannot detect the interaction between 
genetic variants

Prediction accuracy relative to European-ancestry individuals across 

17 quantitative traits and 5 continental populations in the UKBB

Martin al. Nature Genetics 2019

Genetic risk scores are not generalizable 

across populations

Arbel Harpak, Biology 

of Genomes 2022

Context
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SNPs

Deep learning using genotype data
Complex 

disease risk
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Diet Network
Romeo et al. ICLR 2017

Representation (given or 

learned) of every input features
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SNPs 
embedding

Deep learning using genotype data
Fat data : number of features (SNPs) is 
order of magnitude higher than the number 
of samples (individuals) → Overfitting

Diet Networks
Developed and tested on a genetic ancestry
classification task in 1000G

Diet Networks
Romeo et al. ICLR 2017

Genetic

ancestry

Representation (given or 

learned) of every input features

Variant’s genotype frequencies 

per population

Yoshua Bengio

3450 individuals, ~300K SNPs, 26 populations
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Result I : Generalization capability

Test #1
Human Genome Diversity Project (HGDP)

~300K SNPs

3450 individuals 

26 populations

Test #2
CARTaGENE (CAG)

Can the Diet Network generalize its predictions in independent datasets

1000G ~250K/300K SNPs

Population dataset

Train

~173K/300K SNPs

Quebec biobank with 
self-reported ethnicity
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Result I : Generalization capability in HGDP
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Result I : Generalization capability in HGDP

Softmax output averaged by HGDP population

[0.01, 0.92, 0.003,… , 0.008]

[0.91, 0.002, 0.05,… , 0.001]

FST: Computed per1000G-HGDP population pair

Diet Network scores
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Diet Network gives high scores to genetically similar populations



Result I : Generalization capability in CARTaGENE
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In CARTaGENE, most individuals are French 

Canadians (founder population from Europe)

Quebec Reference 
Panel : French 
Canadians

CARTaGENE

Quebec Reference Panel (▴) 
+ 1000 Genomes (●) 

Jean-Christophe 

Grenier
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In CARTaGENE, most individuals are French 

Canadians (founder population from Europe)

Diet Network

Train in 1000G : 300K SNPs

Test in CARTaGENE : 173K SNPs

French Canadians classification :

Quebec Reference 
Panel : French 
Canadians

CARTaGENE

Quebec Reference Panel (▴) 
+ 1000 Genomes (●) 

Jean-Christophe 

Grenier

...
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......

Input

dropout

African European South Asian East Asian American

Diet Network predictions are generalizable to a new population never seen in training

With input dropout:



Result II : Interpretability
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Which SNPs are important in the Diet Network predictions

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 ... 𝑣𝑛

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 ... 𝑣𝑛

..
.

Attribution scores computed with 

Integrated Gradients (Sundararajan et al. 2017)

• indicates how useful a feature is

• each sample may have different scores
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Integrated Gradients 

with binary 

classification (European 

and African)

Integrated Gradients show that low frequency SNPs are important in Diet Network’s predictions

This is opposite to genetic population methods that use common SNPs to compare populations

Attribution scores computed with 

Integrated Gradients (Sundararajan et al. 2017)

• indicates how useful a feature is

• each sample may have different scores

Léo

Choinière
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Integrated Gradients show that low frequency SNPs are important in Diet Network’s predictions

This is opposite to genetic population methods that use common SNPs to compare populations

Attribution scores computed with 

Integrated Gradients (Sundararajan et al. 2017)

• indicates how useful a feature is

• each sample may have different scores

Léo

Choinière Proportion of SNPs removed (test set)
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Test set accuracy

(40K individuals) = 61.42%
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Obesity prediction with Diet Networks in the UK biobank yields similar results to a Genetic Risk Score

Test set accuracy

(40K individuals) = 61.42%
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False positive rate

Binary classification task

~197K White British and ~408K SNPs

Obesity prediction in the UK biobank

Body Mass 

Index (BMI)Under

weight
Normal

weight

Over

weight
Obese

Comparison with a Genetic Risk Score

Khera et al. Cell. 2019 

SNPs effects obtained from a previous GWAS 

(Locke et al. Nature 2015)

GRS created using ~120K UK biobank White British 

participants (which ones?) and 2.1M SNPs

What about real complex phenotypes



Result IV : Environmental factors
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How to take into account environmental factors

• Clinical and lifestyle variables available in biobanks

• Information from the built environment 

Built Environment 

Representation

+ regression 

model

Actual obesity 

prevalence

Estimated obesity 

prevalence

Seattle, Washington

Use of  Deep Learning to Examine the Association of  the Built 

Environment With Prevalence of  Neighborhood Adult Obesity
Maharana et al. 2018
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How to take into account environmental factors

• Clinical and lifestyle variables available in biobanks

• Information from the built environment 

Built Environment 

Representation

+ regression 

model

Actual obesity 

prevalence

Estimated obesity 

prevalence

Seattle, Washington

Use of  Deep Learning to Examine the Association of  the Built 

Environment With Prevalence of  Neighborhood Adult Obesity
Maharana et al. 2018

Marie-Julie 

Favé

Canadian health cohort

• Body mass index of participants

• Forward Sortation Area (FAS) : 

3 first digits of postal codes 

OHS (participants in 

Ontario) :

~30% of obesity 

variation prevalence 

predicted by 

regression
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Future directions for the Diet Network

Image : Ruder, S. (2017)

Complex 

phenotype

Ethnicity

Ganin et al. (2016)

Prediction of complex phenotypes

 Regression

Height (higher heritability)

Multi tasks learning of several complex phenotypes

Information given in SNPs embedding (Auxiliary network input)

Taking into account genetic ancestry diversity
Domain-adversarial neural network to 
Penalize the use of SNPs that have a
large difference in alleles frequencies
between population

Model portability across populations
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