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What is survival analysis?

* Any dataset concerning time to an event.
* Time to death.
* Time to graduation.
* Time to getting a disease.

e Dataset consists of individuals who were followed over time.
e Study may have a fixed duration or be open ended.
* The event is not necessarily experienced until the study is over (“Censored”).
 Participants may drop out early for any unrelated reason (“Censored”).



Survival time till assignment completion
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Censored: Individual may experience the event of interest after follow-up has ended.



Hazard function:

Instantaneous potential of experiencing an event
at time t, given you survived up to time t.

Hazard ratio:

Cox regression: Assumes proportional hazards...
Effect of covariates do not vary with time.

h(X,t) = ho(t)e’™*

(X, t)  ho(t)eP X 5X

h0,t)  ho(t)eY

* h(X;t) : hazard function.
* hy(t) : baseline hazard.

e BX:linearpredictor



Participants

3-week risk?
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Case-base sampling
with logistic regression



Participants

Case-base sampling
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Participants

Case-base sampling
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Participants

Case-base sampling
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Case series: all the person-
moments where an event
occurred.

Base series: sample of the base.



Case-base sampling and logistic regression
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Case-base sampling and logistic regression
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To have a flexible baseline hazard:

. . R A N b
mmmxn=@¢+m#+@f+ﬂx+M(§)

11



Case-base sampling and logistic regression

Time (weeks)
0 1 2 3 4 5

N

o
(e ] —
T = Case-base + logistic regression
— Cox
- o |
B t=2 S g ®
i -
4] =
E é 8 = _‘-/
© t=3 ——
- - L - =
2 C Se0oooo oo o® = Q- >
02 (W]
v 8
E € g -
a p t>4, Censored f)
P00 000000 00 © OO
o -

{=5 0 1 2 3 4 5
ooooooooooooooooof

Follow-up time




Case-base sampling
permits flexible baseline hazard.

(X, t) = ho()ePX

* h(Xt) : hazard function.
*  hy(t) : baseline hazard.

*  BX:linear predictor
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hX,t) =

Case-base sampling
permits flexible baseline hazard.

.

What about flexibility in
covariates?

ho(t)

€

BX

=

* h(Xt) : hazard function.
*  hy(t) : baseline hazard.

* BX:linear predictor
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Exhaustive search with regression is hard

]ﬁllcl-_'ll

Many covariates. N
I ;_l'.fll ’_f_'fl-.‘\. ) jl
* How many contribute? O TN ou

* Interactions? _\.\H
* Non-linearity? fﬁ;‘ \/f‘
e Genotypes, CT scans, etc. ”//
Ideally, the model learns from the data. =T

* Neural networks can be used.

e Case-base + NN = CBNN
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State of neural network survival analysis

DeepSurv — Cox neural networks.

* Cox regression extended using neural networks.

* Only uses proportional hazards (PH).

DeepHit — First Hitting Time neural networks.

* Inverse Gaussian distribution used as baseline hazard.

* Does not let model determine baseline hazard.

DeepSurvivalMachines (DSM) — Mixture model used for baseline hazard.
* User specifies a set of distributions to be used as the baseline hazard.

* Does not permit time-varying interactions.

Need a parametric method that permits non-PH and flexible baseline hazard.
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Proposal

Case-Base Neural Networks (CBNN)

* Provides a flexible baseline hazard.

* Permits time-varying interactions among covariates.



CBNN steps
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1. Case-base sampling.

2. Neural network model.
3. Set offset to O when predicting on new data.
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CBNN to hazard



Sigmoid to hazard
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Sigmoid to hazard
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Sigmoid to hazard
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Sigmoid to hazard
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Metrics and hyperparameters



Right-censored Brier score
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* S.<- Survival time of i-th individual.

* t<- Survival time of interest.

« CI(X,t) <- Cumulative incidence.

. C?(m)<- Inverse probability censoring weighting (IPCW) at time m.
* §;<-Indicator: 1 =event, 0 = censored.

Graf, E., Schmoor, C., Sauerbrei, W., & Schumacher, M. (1999). Assessmentand comparison of
prognosticclassification schemes for survival data. Statistics in medicine, 18(17-18), 2529-2545.



Index of Prediction Accuracy

BSmodel(t)

IPA(f) = 1
BS,,(?)

* IPA > 0: model performs better than null.
* IPA < 0: model performs worse than null.

Kattan, M. W., & Gerds, T. A. (2018). The index of prediction accuracy: an intuitive measure
useful for evaluating risk prediction models. Diagnostic and prognostic research, 2(1), 1-7.
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Hyperparameters

* Epochs = 2000

* Batch size =512

* Learning rate = 10e-3
* Decay = 10e-7

* Hidden layers = {50,50,25,25}
* 50% dropout after each hidden layer.

* 60/20/20% train/validation/test.
e Stopping condition: minimum change in loss = 10e-7.



Simulation studies



Simulated covariates

z, ~ Bernoulli(0.5)

] N(0,0.5)
: N(10,0.5)

N(8.0.5)
7o~
3 N(=3,0.5)

if z, = 0
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Simple simulation

h(t ‘ Xl) — A . eﬁ121+ﬂ222+ﬂ3z3

- f1=62=3=0.1
e1=1.0



Simple simulation result
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Complex simulation

5
h(t | X;)= ) (y;-basis) + By -z, + By - 2o+ fy - 23 4

i=1

pl=p2=p3=1
71 =10,12=2,7t3=2
y1=3.9,y2=3,y3=-0.43,y4=1.33,y5=-0.86

» Breast cancer dataset from the Flexsurv package.

« 686 patients with primary node positive breast cancer.
* 43%die over 7.28 years.

» Breast cancer dataset originally used to demonstrate
the benefit of flexible baseéline hazards.

Crowther MJ, Lambert PC. Simulating biologically plausible
complex survivaldata. Stat Med 2013:32(23):4118-4134.

Time-varying
interaction

Interactions

Tl 'Zl 'Zz °tlm€

T2.ZI.Z?)+T3.Z2.ZB




Complex simulation result
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Real data studies



SUPPORT study

Study to Understand Prognoses Preferences
Outcomes and Risks of Treatment (SUPPORT) Phase |

8873 hospitalized adults. .
 Followedupto5.56 years. =

* 68% incidence (death).
* 14 covariates (after imputation).

Requires imputation. For comparison with R P
comJoetltors a preprocessed version from DeepSurv is Sy
used.

Population
o

* Age, sex, race, number of comorbidities, presence "’ .
ogdiabetes/dementia/cancer, blood pressure, case s
heart/respiration rate, temperature, white blood
cell count, sodium and creatinine.

Knaus, 1995



SUPPORT result
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METABRIC study

Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC)

1980 individuals:
e 57.72% die due to breast cancer.
e with 30 years of follow-up.

There are 9 covariates in total for this study (from
Deepsurv):

* 4 genes (MKI67, EGFR, PGR, and ERBB2).
e 5 clinical features:

Population

* (hormone treatment/radiotherapy/chemotherapy/ER-positive ; vt
indicator and age at diagnosis). ~ cwwm

Pre-processed version from DeepSurv is used.



METABRIC result
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Conclusion

If time varying interactions and a flexible baseline hazard without user
specification are of interest, CBNN Should be strongly considered.

* Provides a parametric, flexible baseline hazard.
* Permits time-varying effects of covariates.

* Applicable to high-dimensional datasets.

https://github.com/Jesse-Islam/cbnn

https://github.com/Jesse-Islam/cbnnManuscript
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