Case-Base Neural Networks: survival analysis with time-varying, higher-order interactions

Jesse Islam

Co-Authors:

Maxime Turgeon

Rob Sladek

Sahir Bhatnagar

What is survival analysis?

- Any dataset concerning time to an event.
 - Time to death.
 - Time to graduation.
 - Time to getting a disease.
- Dataset consists of individuals who were followed over time.
 - Study may have a fixed duration or be open ended.
 - The event is not necessarily experienced until the study is over ("Censored").
 - Participants may drop out early for any unrelated reason ("Censored").

Survival time till assignment completion

Time (weeks)

Censored: Individual may experience the event of interest after follow-up has ended.

Hazard function:

Instantaneous potential of experiencing an event at time t, given you survived up to time t.

Hazard ratio:

Cox regression: Assumes proportional hazards... Effect of covariates do not vary with time.

 $h(X,t) = h_0(t)e^{\beta X}$

 $\frac{h(X,t)}{h(0,t)} = \frac{h_0(t)e^{\beta X}}{h_0(t)e^0} = e^{\beta X}$

- *h*(*X*,*t*) : hazard function.
- $h_0(t)$: baseline hazard.
- β*X* : linear predictor

3-week risk?

Time (weeks)

Follow-up time

Case-base sampling with logistic regression

Case-base sampling

Time (weeks)

Time (weeks)

Base: All the person-moments experienced in the study.

Case-base sampling

Time (weeks)

Time (weeks)

- Base: All the person-moments experienced in the study.
- Case series: all the personmoments where an event occurred.

Case-base sampling

Time (weeks)

Time (weeks)

- Base: All the person-moments experienced in the study.
 - Case series: all the personmoments where an event occurred.
- Base series: sample of the base

Case-base sampling and logistic regression

$$e^{\beta(x,t)} = \frac{Pr(Y = 1|x,t)}{Pr(Y = 0|x,t)}$$

$$\frac{Pr(Y = 1|x,t)}{Pr(Y = 0|x,t)} = \frac{h(x,t) * B(x,t)}{b[B(x,t)/B]}$$

$$\frac{h(x,t) * B(x,t)}{b[B(x,t)/B]} = \frac{h(x,t) * B}{b}$$

$$h(x,t) = e^{\beta(x,t)} \frac{b}{B}$$

$$h(x,t) = \beta(x,t) + ln\left(\frac{b}{B}\right) = \# \text{Blue}$$

$$B = \# \text{Moments}$$

Case-base sampling and logistic regression

$$e^{\beta(x,t)} = \frac{Pr(Y=1|x,t)}{Pr(Y=0|x,t)}$$

...

 $ln(\hat{h(x,t)}) = \hat{\beta}(x,t) + ln\left(\frac{b}{B}\right)$ b = # (sample of moments) B = # All moments

To have a flexible baseline hazard:

$$n(\hat{h}(x,t)) = \hat{\beta}_{t_1}t + \hat{\beta}_{t_2}t^2 + \hat{\beta}_{t_3}t^3 + \hat{\beta}x + \ln\left(\frac{b}{B}\right)$$

Case-base sampling and logistic regression

12

Case-base sampling permits flexible baseline hazard.

 $h(X,t) = h_0(t) e^{\beta X}$

- h(X,t) : hazard function.
- $h_0(t)$: baseline hazard.
- β*X* : linear predictor

What about flexibility in **Case-base sampling** covariates? permits flexible baseline hazard. $h(X,t) = h_0(t)e^{\beta X}$

- h(X,t) : hazard function.
- $h_0(t)$: baseline hazard.
- β*X* : linear predictor

Exhaustive search with regression is hard

Many covariates.

- How many contribute?
- Interactions?
- Non-linearity?
- Genotypes, CT scans, etc.

Ideally, the model learns from the data.

- Neural networks can be used.
- Case-base + NN = CBNN

State of neural network survival analysis

DeepSurv – Cox neural networks.

- Cox regression extended using neural networks.
- Only uses proportional hazards (PH).

DeepHit – First Hitting Time neural networks.

- Inverse Gaussian distribution used as baseline hazard.
- Does not let model determine baseline hazard.

DeepSurvivalMachines (DSM) – Mixture model used for baseline hazard.

- User specifies a set of distributions to be used as the baseline hazard.
- Does not permit time-varying interactions.

Need a parametric method that permits non-PH and flexible baseline hazard.

Case-Base Neural Networks (CBNN)

- Provides a flexible baseline hazard.
- Permits time-varying interactions among covariates.

CBNN steps

- 1. Case-base sampling.
- 2. Neural network model.
- 3. Set offset to 0 when predicting on new data.

CBNN to hazard

$$\log\left(h(t \mid X_i)\right) = \log\left(\frac{\operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{1 - \operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}\right) + \log\left(\frac{b}{B}\right)$$

$$\begin{split} \log\left(h(t \mid X_i)\right) &= \log\left(\frac{\operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{1 - \operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}\right) + \log\left(\frac{b}{B}\right) \\ &= \log\left(\frac{\frac{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}}{1 - \frac{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}}\right) + \log\left(\frac{b}{B}\right) \end{split}$$

$$\begin{split} \log\left(h(t \mid X_i)\right) &= \log\left(\frac{\operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{1 - \operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}\right) + \log\left(\frac{b}{B}\right) \\ &= \log\left(\frac{\frac{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}}{1 - \frac{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}}\right) + \log\left(\frac{b}{B}\right) \\ &= \log\left(\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)\right) + \log\left(\frac{b}{B}\right) \end{split}$$

$$\begin{split} \log\left(h(t \mid X_i)\right) &= \log\left(\frac{\operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{1 - \operatorname{sigmoid}\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}\right) + \log\left(\frac{b}{B}\right) \\ &= \log\left(\frac{\frac{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)}{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}}{1 - \frac{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}{\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right) + 1}}\right) + \log\left(\frac{b}{B}\right) \\ &= \log\left(\exp\left(f_{\theta}(X, T) + \log\left(\frac{B}{b}\right)\right)\right) + \log\left(\frac{b}{B}\right) \\ &= f_{\theta}(X, T) + \log\left(\frac{B}{b}\right) + \log\left(\frac{b}{B}\right) \\ &= f_{\theta}(X, T) \end{split}$$

Metrics and hyperparameters

Right-censored Brier score

$$\mathrm{BS}(t) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{\left(\widehat{CI}(X,t) - 1\right)^2 \cdot \mathbf{1}_{S_i \le t, \delta_i = 1}}{\widehat{G}(S_i)} + \frac{\left(\widehat{CI}(X,t)\right)^2 \cdot \mathbf{1}_{S_i > t}}{\widehat{G}(t)} \right)$$

- S_i <- Survival time of i-th individual.
- *t* <- Survival time of interest.
- $\widehat{CI}(X,t)$ <- Cumulative incidence.
- $\hat{G}(m)$ <- Inverse probability censoring weighting (IPCW) at time m.
- δ_i <- Indicator: 1 = event , 0 = censored.

Index of Prediction Accuracy

- IPA > 0: model performs better than null.
- IPA < 0: model performs worse than null.

Kattan, M. W., & Gerds, T. A. (2018). The index of prediction accuracy: an intuitive measure useful for evaluating risk prediction models. *Diagnostic and prognostic research*, *2*(1), 1-7.

Hyperparameters

- Epochs = 2000
- Batch size = 512
- Learning rate = 10e-3
- Decay = 10e-7
- Hidden layers = {50,50,25,25}
 - 50% dropout after each hidden layer.
- 60/20/20% train/validation/test.
- Stopping condition: minimum change in loss = 10e-7.

Simulation studies

Simulated covariates

 $z_1 \sim \text{Bernoulli}(0.5)$

$$z_2 \sim \begin{cases} N(0, 0.5) & \text{if } z_1 = 0 \\ N(10, 0.5) & \text{if } z_1 = 1 \end{cases}$$

$$z_3 \sim \begin{cases} N(8, 0.5) & \text{if } z_1 = 0\\ N(-3, 0.5) & \text{if } z_1 = 1 \end{cases}$$

Simple simulation

$$h(t \mid X_i) = \lambda \cdot e^{\beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3}$$

•
$$\beta 1 = \beta 2 = \beta 3 = 0.1$$

• $\lambda = 1.0$

Simple simulation result

31

Complex simulation

$$h(t \mid X_i) = \sum_{i=1}^{5} (\gamma_i \cdot basis_i) + \beta_1 \cdot z_1 + \beta_2 \cdot z_2 + \beta_3 \cdot z_3 + \boxed{\tau_1 \cdot z_1 \cdot z_2 \cdot time} + \boxed{\tau_2 \cdot z_1 \cdot z_3 + \tau_3 \cdot z_2 \cdot z_3}$$

 $\beta 1 = \beta 2 = \beta 3 = 1$

 $\tau 1 = 10, \, \tau 2 = 2, \, \tau 3 = 2$

 $\gamma 1 = 3.9, \gamma 2 = 3, \gamma 3 = -0.43, \gamma 4 = 1.33, \gamma 5 = -0.86$

- Breast cancer dataset from the *Flexsurv* package.
- 686 patients with primary node positive breast cancer.
 - 43% die over 7.28 years.
 - Breast cancer dataset originally used to demonstrate the benefit of flexible baseline hazards.

Complex simulation result

33

Real data studies

SUPPORT study

Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT) Phase I 8873 hospitalized adults.

- Followed up to 5.56 years.
- 68% incidence (death).
- 14 covariates (after imputation).

Requires imputation. For comparison with competitors a preprocessed version from DeepSurv is used.

• Age, sex, race, number of comorbidities, presence of diabetes/dementia/cancer, blood pressure, heart/respiration rate, temperature, white blood cell count, sodium and creatinine.

SUPPORT result

METABRIC study

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

1980 individuals:

- 57.72% die due to breast cancer.
- with 30 years of follow-up.

There are 9 covariates in total for this study (from Deepsurv):

- 4 genes (MKI67, EGFR, PGR, and ERBB2).
- 5 clinical features:
 - (hormone treatment/radiotherapy/chemotherapy/ER-positive indicator and age at diagnosis).

Pre-processed version from DeepSurv is used.

Case series

METABRIC result

Conclusion

If time varying interactions and a flexible baseline hazard without user specification are of interest, CBNN Should be strongly considered.

- Provides a parametric, flexible baseline hazard.
- Permits time-varying effects of covariates.
- Applicable to high-dimensional datasets.

https://github.com/Jesse-Islam/cbnn

https://github.com/Jesse-Islam/cbnnManuscript