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What is survival analysis?

• Any dataset concerning time to an event. 
• Time to death.

• Time to graduation.

• Time to getting a disease.

• Dataset consists of individuals who were followed over time.
• Study may have a fixed duration or be open ended.

• The event is not necessarily experienced until the study is over (“Censored”).

• Participants may drop out early for any unrelated reason (“Censored”).

2



Survival time till assignment completion

Censored: Individual may experience the event of interest after follow-up has ended.
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Hazard function:

• h(X,t) : hazard function.

• h0(t) : baseline hazard.

• βX : linear predictor
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Instantaneous potential of experiencing an event 
at time t, given you survived up to time t.

Hazard ratio:
Cox regression: Assumes proportional hazards…                  
Effect of covariates do not vary with time.



3-week risk? 
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Case-base sampling
with logistic regression
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Case-base sampling
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Time (weeks)

• Base: All the person-moments 
experienced in the study.
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Case-base sampling
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• Base: All the person-moments 
experienced in the study.

• Case series: all the person-
moments where an event 
occurred.
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Case-base sampling
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• Base: All the person-moments 
experienced in the study.

• Case series: all the person-
moments where an event 
occurred.

• Base series: sample of the base.
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Case-base sampling and logistic regression
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b = # Blue
B = # Moments
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Case-base sampling and logistic regression
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…

b = # (sample of moments)
B = # All moments

To have a flexible baseline hazard:
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Case-base sampling and logistic regression
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Case-base sampling 
permits flexible baseline hazard.

• h(X,t) : hazard function.

• h0(t) : baseline hazard.

• βX : linear predictor



• h(X,t) : hazard function.

• h0(t) : baseline hazard.

• βX : linear predictor
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Case-base sampling 
permits flexible baseline hazard.

What about flexibility in 
covariates?



Exhaustive search with regression is hard

Many covariates.

• How many contribute?

• Interactions?

• Non-linearity?

• Genotypes, CT scans, etc.

Ideally, the model learns from the data.

• Neural networks can be used.

• Case-base + NN = CBNN
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State of neural network survival analysis

DeepSurv – Cox neural networks.
• Cox regression extended using neural networks.
• Only uses proportional hazards (PH).

DeepHit – First Hitting Time neural networks.
• Inverse Gaussian distribution used as baseline hazard.

• Does not let model determine baseline hazard.

DeepSurvivalMachines (DSM) – Mixture model used for baseline hazard.
• User specifies a set of distributions to be used as the baseline hazard.

• Does not permit time-varying interactions.

Need a parametric method that permits non-PH and flexible baseline hazard.
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Proposal

Case-Base Neural Networks (CBNN)

• Provides a flexible baseline hazard.

• Permits time-varying interactions among covariates.
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CBNN steps

1. Case-base sampling.

2. Neural network model.

3. Set offset to 0 when predicting on new data.
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CBNN to hazard
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Sigmoid to hazard
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Sigmoid to hazard
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Sigmoid to hazard
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Sigmoid to hazard



Metrics and hyperparameters
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Right-censored Brier score

• Si <- Survival time of i-th individual.

• t <- Survival time of interest.

• ෢𝐶𝐼 𝑋, 𝑡 <- Cumulative incidence.

• ෠𝐺(𝑚)<- Inverse probability censoring weighting (IPCW) at time m.

• 𝛿i <- Indicator: 1 = event , 0 = censored. 

25Graf, E., Schmoor, C., Sauerbrei, W., & Schumacher, M. (1999). Assessment and comparison of 
prognostic classification schemes for survival data. Statistics in medicine, 18(17‐18), 2529-2545.



Index of Prediction Accuracy

26Kattan, M. W., & Gerds, T. A. (2018). The index of prediction accuracy: an intuitive measure 
useful for evaluating risk prediction models. Diagnostic and prognostic research, 2(1), 1-7.

• IPA > 0: model performs better than null.

• IPA < 0: model performs worse than null.



Hyperparameters

• Epochs = 2000

• Batch size = 512

• Learning rate = 10e-3

• Decay = 10e-7

• Hidden layers = {50,50,25,25}
• 50% dropout after each hidden layer.

• 60/20/20% train/validation/test.

• Stopping condition: minimum change in loss = 10e-7.
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Simulation studies
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Simulated covariates
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Simple simulation

• 𝛽1 = 𝛽2 = 𝛽3 = 0.1 

• 𝜆 = 1.0
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Simple simulation result
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Complex simulation

𝛽1 = 𝛽2 = 𝛽3 = 1 

𝜏1 = 10, 𝜏2 = 2, 𝜏3 = 2

𝛾1 = 3.9, 𝛾2 = 3, 𝛾3 = −0.43, 𝛾4 = 1.33, 𝛾5 = −0.86
• Breast cancer dataset from the Flexsurv package.

• 686 patients with primary node positive breast cancer.
• 43% die over 7.28 years.

• Breast cancer dataset originally used to demonstrate
the benefit of flexible baseline hazards.

Time-varying 
interaction Interactions

32Crowther MJ, Lambert PC. Simulating biologically plausible 
complex survival data. Stat Med 2013;32(23):4118-4134. 



Complex simulation result

33



Real data studies
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SUPPORT study

Study to Understand Prognoses Preferences 
Outcomes and Risks of Treatment (SUPPORT) Phase I

8873 hospitalized adults.
• Followed up to 5.56 years.

• 68% incidence (death).

• 14 covariates (after imputation).
Requires imputation. For comparison with 
competitors a preprocessed version from DeepSurv is 
used.
• Age, sex, race, number of comorbidities, presence 

of diabetes/dementia/cancer, blood pressure, 
heart/respiration rate, temperature, white blood 
cell count, sodium and creatinine.

Knaus, 1995



SUPPORT result
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METABRIC study

Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC)

1980 individuals:
• 57.72% die due to breast cancer.

• with 30 years of follow-up.

There are 9 covariates in total for this study (from 
Deepsurv): 

• 4 genes (MKI67, EGFR, PGR, and ERBB2). 
• 5 clinical features:

• (hormone treatment/radiotherapy/chemotherapy/ER-positive 
indicator and age at diagnosis).

Pre-processed version from DeepSurv is used.
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METABRIC result
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Conclusion

If time varying interactions and a flexible baseline hazard without user 
specification are of interest, CBNN Should be strongly considered.

• Provides a parametric, flexible baseline hazard.

• Permits time-varying effects of covariates.

• Applicable to high-dimensional datasets.

https://github.com/Jesse-Islam/cbnn

https://github.com/Jesse-Islam/cbnnManuscript
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