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Background: Protein-Protein Interactions
● I’ve spent the last few years thinking about 

Protein-Protein Interactions (PPIs).

● Bio’ processes as an undirected graph of 
PPIs.

* An incomplete model,
  but it’s gotten us pretty far. 
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Background: Protein-Protein Interactions

See:
Kanehisa M. et al.
10.1093/nar/gkr988
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Background: Protein-Protein Interactions
● Protein interactions are typically identified 

through “wet lab” experiments.

● These experiments typically:
– Take days/weeks.

– Expensive reagents.

– Often produce a lot of plastic waste.

– Are quite definitive.
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Background: Protein-Protein Interactions
● Predicting protein interactions using 

computational models try to address some 
of the trade-offs of lab experiments.

– Take seconds/minutes.

– Low-to-no cost.

– Consume electricity and produces e-waste.

– Not yet definitive.
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Background: Protein-Protein Interactions

Given two proteins, do 
they interact ?

???
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Background: Protein-Protein Interactions

Homology
Marcotte et al., 1999
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Background: Protein-Protein Interactions

Homology
Marcotte et al., 1999

Support Vector Machines
Ben-Hur & Noble, 2005

Sequence Similarity
Pitre et al., 2006

Deep Learning
Chen et al., 2019
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The Problem?
● It’s hard to plug data leaks in PPI datasets.

● Many models depend on these leaks for 
their performance. 

● How do we plug the leak?
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Introducing                

Regularised Automatic Prediction 
of Protein-Protein Interactions 

using Deep Learning

Szymborski, J. & Emad, A. RAPPPID: Towards Generalisable Protein 
Interaction Prediction with AWD-LSTM Twin Networks. bioRxiv 
2021.08.13.456309 (2021) doi:10.1101/2021.08.13.456309.10



RAPPPID Architecture
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RAPPPID Architecture
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RAPPPID Architecture
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RAPPPID Architecture
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What makes RAPPPID different?

● In short, lots of regularisation

– AWD-LSTM

– Embedding dropout

– Ranger21 Optimiser

– Stochastic Weight Averaging (SWA)
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What makes RAPPPID different?

● In short, lots of regularisation

– AWD-LSTM

– Embedding dropout

– Ranger21 Optimiser

– Stochastic Weight Averaging (SWA)

● Also

– Sentencepiece tokenisation
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Regularising Recurrent Networks

Merity, S. et al. (2017)

Dropout
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Regularising Recurrent Networks

Merity, S. et al. (2017)

Dropout Dropconnect
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Regularising Recurrent Networks

Merity, S. et al. (2017)

Dropout Embedding Dropout

A 1 0 0 ... 0 0 0
C   0 1 0 ... 0 0 0
D   0 0 1 ... 0 0 0
.          .
.          .
.          .
V   0 0 0 ... 1 0 0
W   0 0 0 ... 0 1 0›0 0 0 ... 0 0 0
Y 0 0 0 ... 0 0 1

Dropconnect
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Weight Decay

● Just a fancy name for L2 weight regularisation.

L = l + λ ∥w∥2

Regularised 
Loss Loss Weight 

Decay 
Parameter

L2 Norm
of

Model 
Weights
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Averaged Stochastic Gradient Descent (ASGD)

● ASGD simply keeps a running average of the weights. 

– often through each epoch.

● SGD is then applied on those averaged weights instead.
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Stochastic Weight Averaging (SWA)

● Very similar to ASGD but keeps a pair of weights:

– One that the optimiser minimises (w).

– Another that is a running average of the previous weight (wSWA).
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How does RAPPPID perform?
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How does RAPPPID perform?
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How does RAPPPID perform?
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RAPPPID performance vs. data providence
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RAPPPID performance vs. data providence
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Transfer Learning on X-Ray Crystallography Data
● BioLIP dataset: semi-curated dataset of Protein/Ligand interactions based on the PDB

● We pretrain on STRINGDB, then fine-tune on BioLIP

● Training on STRING DB, fine-tuning on BioLIP, and testing on BioLIP:

– AUROC of 0.909
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RAPPPID predicts interaction of HER2 with Trastuzumab and Pertuzumab

● How might one use RAPPPID to validate hypothesized interactions between:

–  Target proteins 

– Candidate therapeutic proteins and peptides 

● Two examples: Trastuzumab and Pertuzumab.

– Recombinant humanised monoclonal antibodies

– Used for HER2-positive metastatic breast cancer
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RAPPPID predicts interaction of HER2 with Trastuzumab and Pertuzumab

(w/in P1)
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RAPPPID predicts interaction of HER2 with Trastuzumab and Pertuzumab

(w/in P2)
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Thank you
Questions?



Is RAPPPID just identifying similar sequences?
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Existing PPI datasets are not great for Deep Learning.
● We wanted to use additional datasets, like HIPPIE and iRefWeb

● Only STRING has enough high-confidence edges for deep learning purposes

– 98.5% fewer edges in HIPPIE than in STRING (human, 95% confidence)

– 87.9% fewer edges with an 85% confidence.

– 75% fewer edges in iRefWeb than in STRING (human, 95% confidence)

● This is made worse by the fact that PPI datasets overfit terribly to begin with
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False-Positive Rate
● We evaluated the false-positive rate of confidence score-filtered STRING dataset

– We used curated and experimentally validated non-interacting protein pairs from 
Negatome

● We compared the set of proteins that are:

– Both in STRING and Negatome

– Evaluating the number of negative edges in Negatome that were considered a positive 
edge in this interesection

● Estimated the false-positive rate of our STRING dataset to be 4.01%

● Falls within the extected 5% upper-bound given by our 95% confidence threshold
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Protein Over-Representation
● PPI graphs are understood to be scale-free in the general case

● That means that some hub proteins might be over-represented

● But that isn’t the case.
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Curated negative examples
● We investigated using the curated database “Negatome” for the negative samples

● There are too few (1,191 negative H. sapiens pairs; 263,130 positive pairs) 

A5


