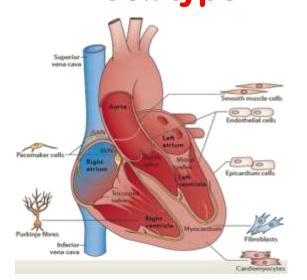
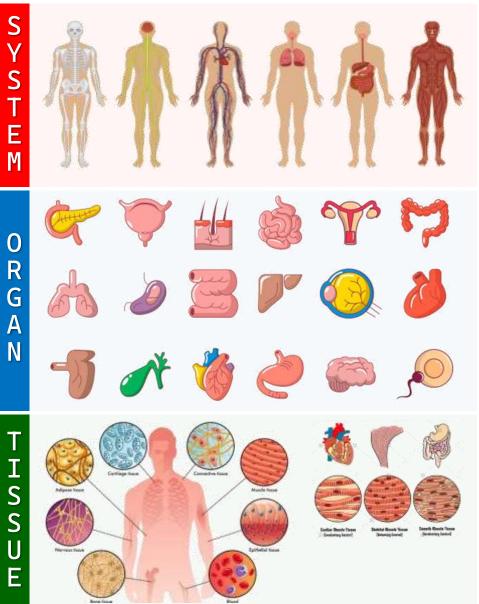
Deep learning for cell type identification based on single-cell chromatin accessibility data

Rui Jiang Tsinghua University Beijing, China Cell type

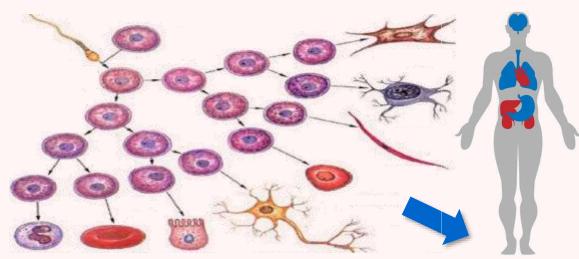
~50 trillion





Cell type identification is crucial to biology and medicine

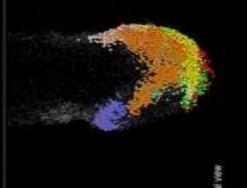
Development



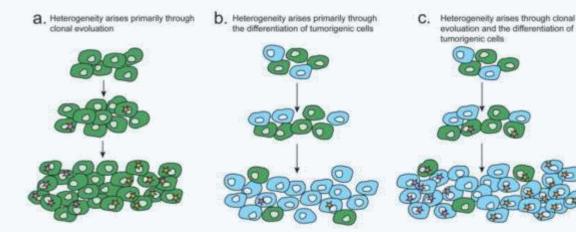
▶ 2018 Breakthrough of the year (Science)

Zebrafish development Cell by Cell

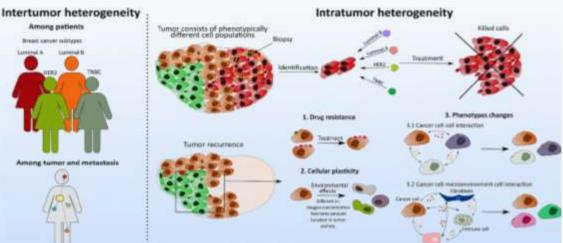




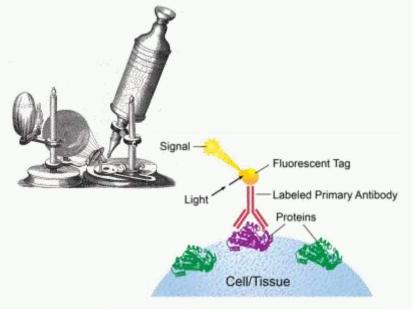
Heterogeneity

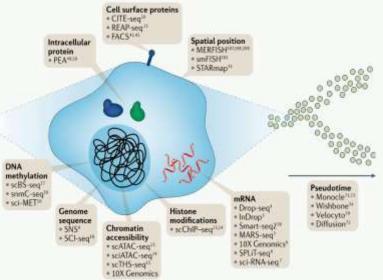


Heterogeneity of cancer cells

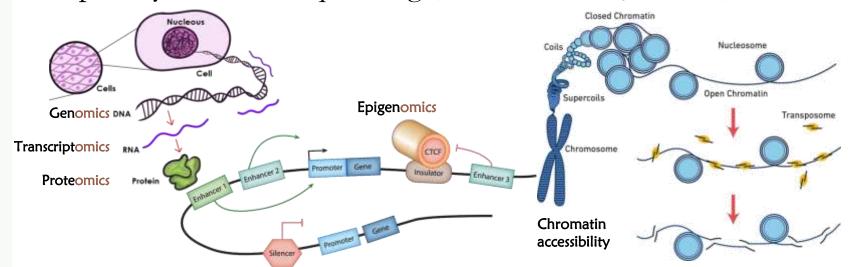


Single-cell sequencing





- DNA sequencing (Methods of the year 2013) nature methods
- RNA sequencing (Methods of the year 2013)
- Epigenome sequencing
 - Chromatin accessibility
 - Histone modification
 - DNA methylation
- Single-cell multi-omics (Methods of the year 2019)
- Spatially resolved sequencing (Methods of the year 2020)

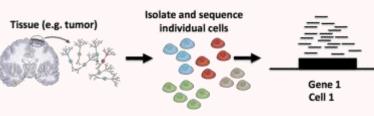


Cell type identification based on single-cell data

Trans-

scRNA-seq

- Using gene expression
- ▶ High dimensionality (~20K)
- ▶ High sparsity (>90% zeros)



Unsupervised

- Only use experimental data
- Discover novel cell types
- Clustering

scATAC-seq

- Using chromatin accessible regions
- Ultra-high dimensionality (~1M)
- Ultra-high sparsity (>99% zeros)

Multi-Omics data

- Using both gene expression and chromatin accessible regions
- Paired for single cells
- Pared for tissues

Weakly supervised

- Add data with rough annotations
- Discover novel cell types
- Clustering

Supervised

- Add data with detailed annotations
- Annotate known cell types
- Classification

More information used

We focus on single-cell chromatin accessibility data

Α

scRNA-seq

- Using gene expression
- ▶ High dimensionality (~20K)
- ► High sparsity (>90% zeros)

Unsupervised

- Only use experimental data
- Simultaneous clustering and dimensionality reduction
- **Roundtrip**
- **scDEC**

scATAC-seq

- Using chromatin accessible regions
- Ultra-high dimensionality (~1M)
- Ultra-high sparsity (>99% zeros)

Weakly supervised

Add data with rough annotations

Simultaneous clustering and

dimensionality reduction

RA₃

DC3

Barcocked get beam Tramposition of Tramposition of Tramposition of the transformation back

Multi-Omics data

- Using both gene expression and chromatin accessible regions
- Paired for single cells
- Pared for tissues

M Supervised

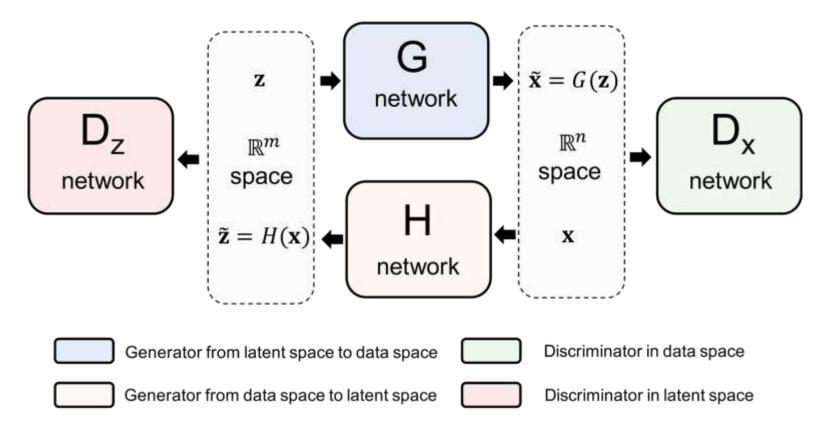
Н

- Add data with detailed annotations
- Classification for cell type annotation
- epiAnno
- scGraph

More information used

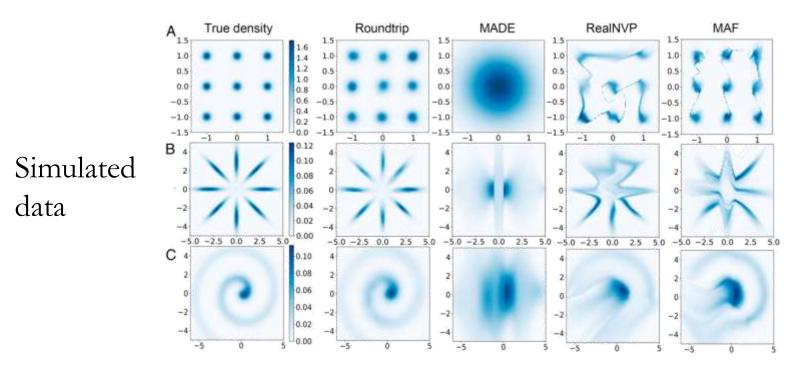
Deep generative model for density estimation Roundtrip

- Ultra-high dimensionality ultra-high sparsity
 Liu et al, PNAS, 2021, 18(15):e2101344118
- Demand for new theory and method for dealing with these data
- Construct **bi-directional mapping** between data space and latent space
- Utilize **importance sampling** or **Laplace approximation** to estimate density of the data



Deep generative model for density estimation Roundtrip

Performance is superior to existing methods



- Solve machine learning tasks
 - Supervised classification
 - Dimensionality reduction
 - Data generation
 - Outlier detection
 - Unsupervised clustering

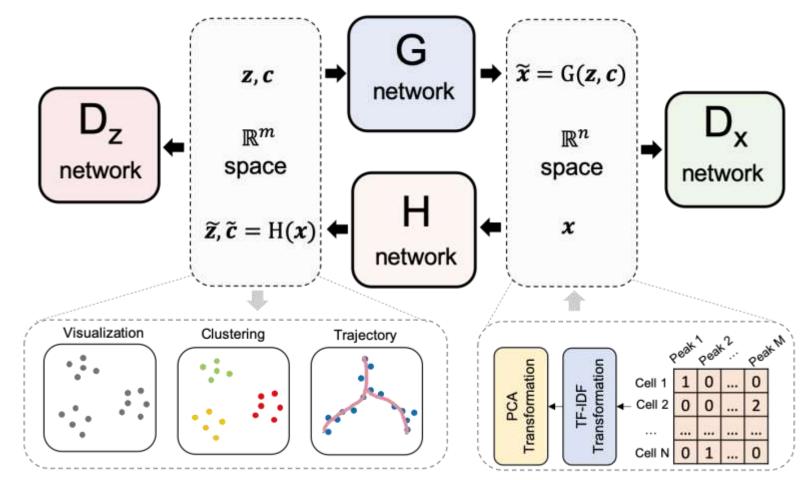
Real
data

	AReM	CASP	HEPMASS	BANK	YPMSD
KDE	6.26 ± 0.07	20.47 ± 0.10	-25.46 ± 0.03	15.84 ± 0.12	247.03 ± 0.61
MADE	6.00 ± 0.11	21.82 ± 0.23	-15.15 ± 0.02	14.97 ± 0.53	273.20 ± 0.35
RealNVP	9.52 ± 0.18	26.81 ± 0.15	-18.71 ± 0.02	26.33 ± 0.22	287.74 ± 0.34
MAF	9.49 ± 0.17	27.61 ± 0.13	-17.39 ± 0.02	20.09 ± 0.20	290.76 ± 0.33
Roundtrip	11.74 ± 0.04	28.38 ± 0.08	-4.18 ± 0.02	35.16 ± 0.14	297.98 ± 0.52

- AReM: 6 D, activity recognition
- CASP: 9 D, protein tertiary structure
- ▶ HEPMASS: 21D, particle collision
- BANK: 17D, marketing campaign
- > YPMSD: 90D, audio features of songs

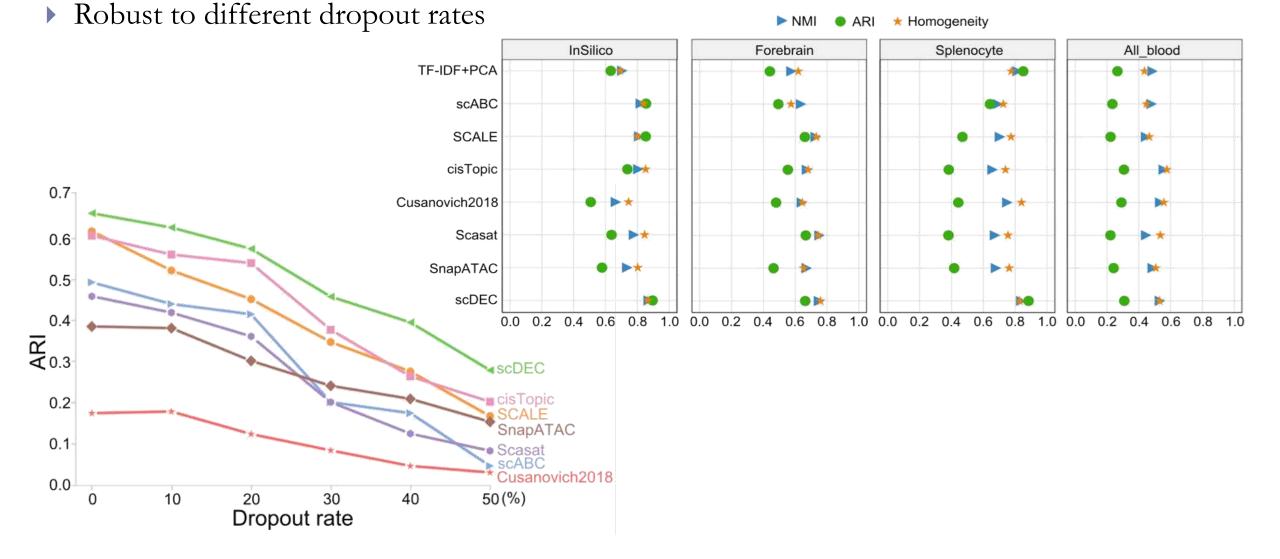
Deep generative model for cell type identification **scDEC**

- Unsupervised cell clustering
 Liu et al, Nature Machine Intelligence, 2021, 3:536-544
- Incorporating cell type label in the latent space
- Simultaneous dimensionality reduction and cell clustering



High performance

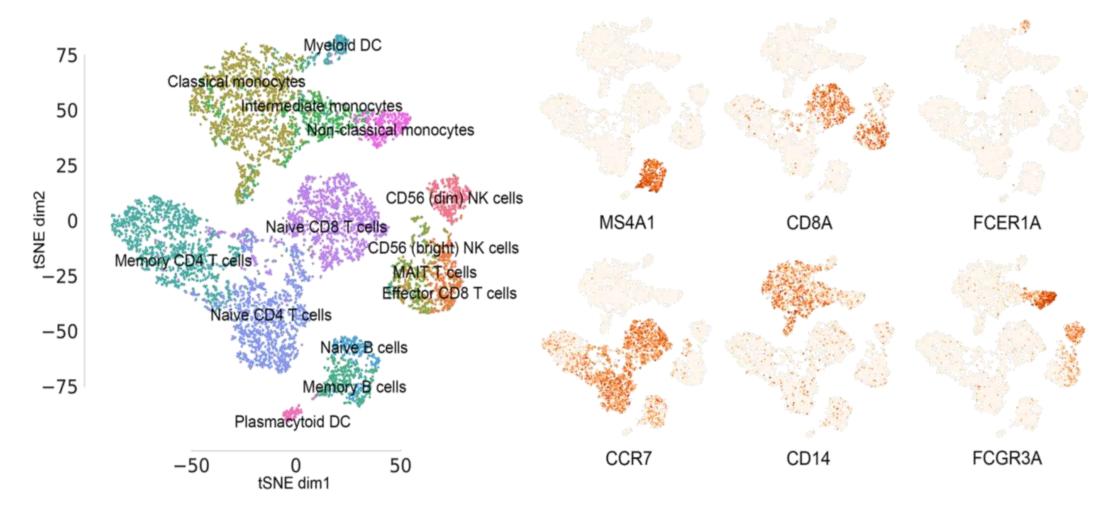
- scDEC
- Superior to 7 existing methods in 4 data sets according to 3 evaluation criteria



Visualization

scDEC

• Cell clustering with the integration of paired scRNA-seq and scATAC-seq data



10x Genomics PBMC10k data set (scRNA-seq and scATAC-seq paired for single cells)

Weakly supervised learning

Unsupervised

- Only use experimental data
- Low requirement
- Still suffer from such data features as high noise and batch effects in single-cell data
- Hard to identify rare cell types

Weakly supervised

- Abundant bulk sequencing data also contain cell type information
 - Summary information: Mean, variance
 - Low noise, low sparsity: helpful to overcome high noise, high sparsity problems
- Existing approaches make use of reference data
 - Calculate correlation between single cells and reference data (scRNA-seq)
 Li et al, Nature Genetics, 2017, 49(5):708-18
 - Apply PCA to reference data, then map single cell data (scATAC-seq)
 - Buenrostro et al, Cell, 2018, 173(6):1535-48
 - Lareau et al, Nature Biotechnology, 2019, 37(8):916-24

Limitation

• Assume biological variation is identical in single-cell data and reference data

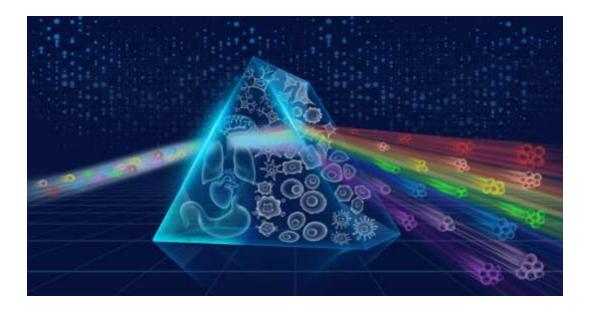
Weakly supervised generative model

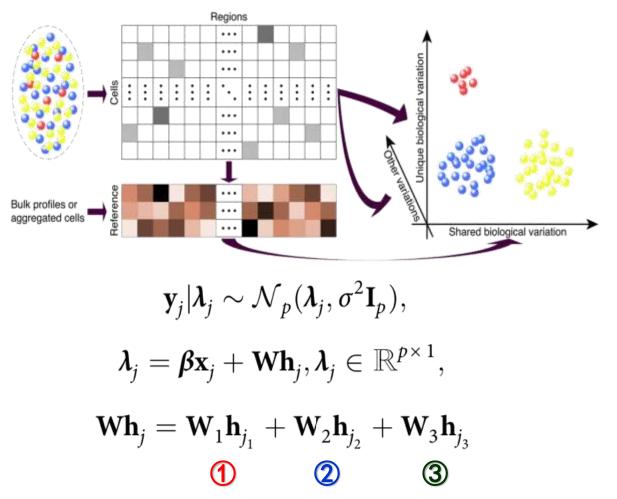
Decompose variation to:

Chen et al, Nature Communications, 2021, 12:2177

RA3

- 1 Shared biological variation between single-cell and bulk data
- 2 Unique biological variation in single-cell data
- **③** Other technical variation

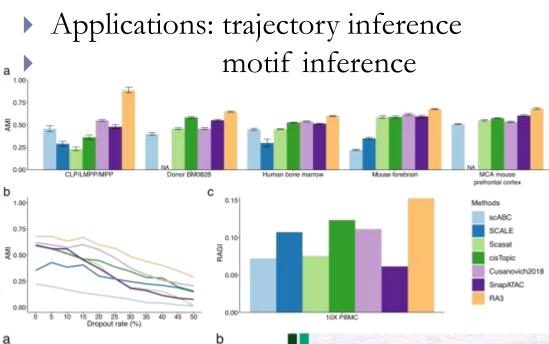


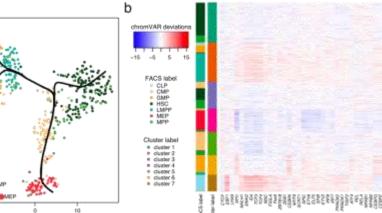


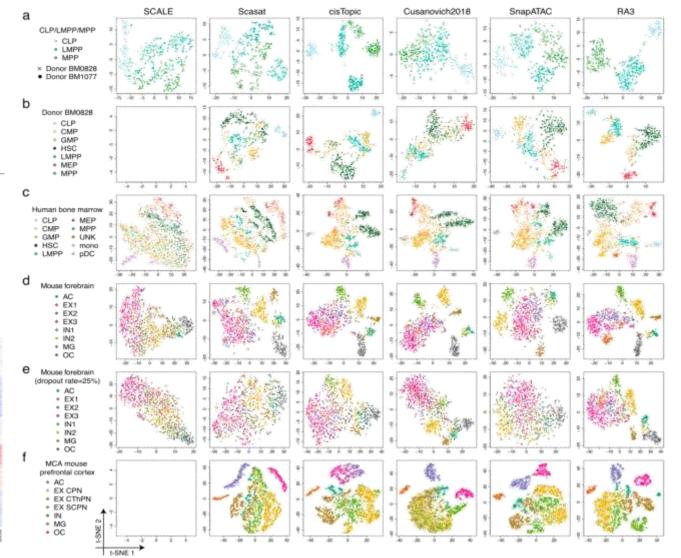
Superior performance

RA3

Visualization and cell clustering

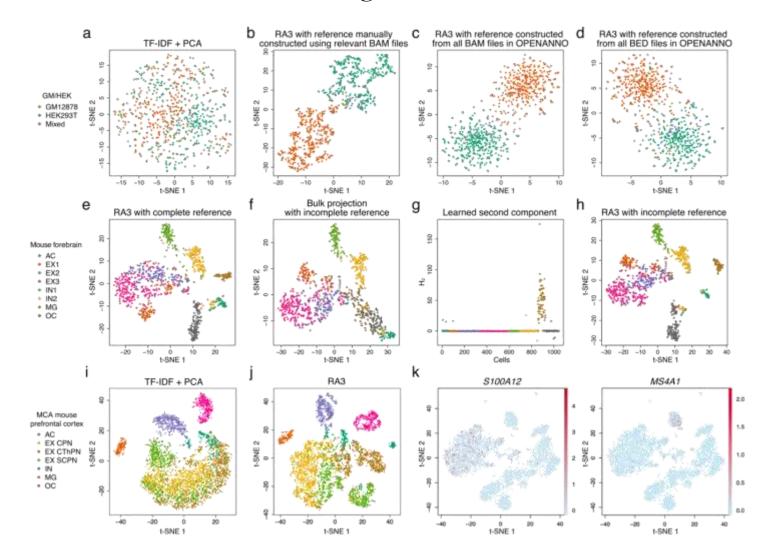






Different means for obtaining reference data

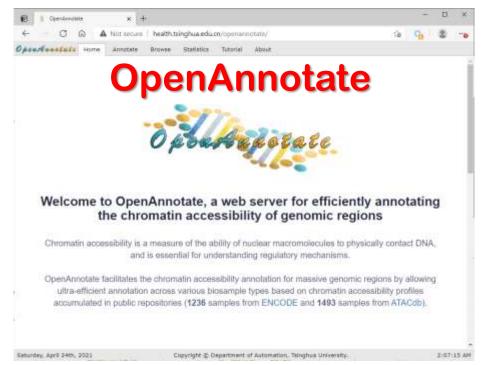
All these means of using reference data are effective



- Bulk ATAC-seq
- Bulk DNase-seq
- Aggregated scATAC-seq data

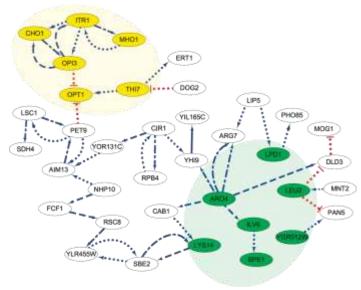
Chen et al, NAR, 2021, 49(W1):W383-W490

RA3

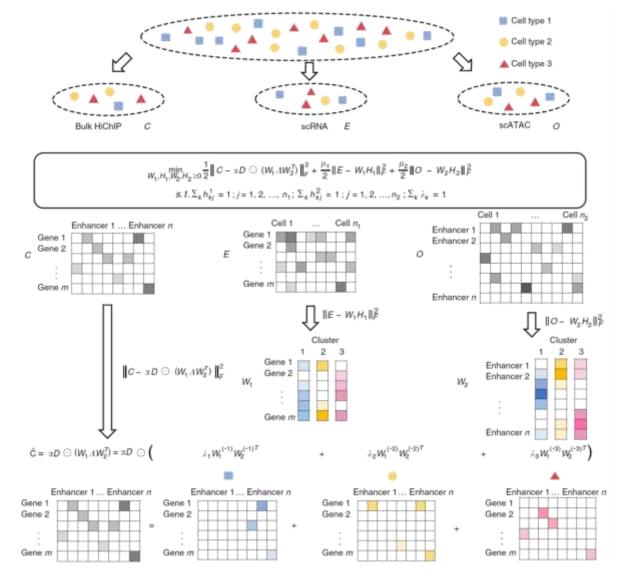


Regulatory network construction via matrix factorization **DC3**

- Multi-omics data integration
 - Single-cell RNA-seq data
 - Single-cell ATAC-seq data
 - Bulk HiChIP data
- Deconvolution of the bulk data
 - Obtain cell clusters (cell types)
 - Obtain cell type specific regulatory relationships
 - Obtain cell type specific regulatory networks



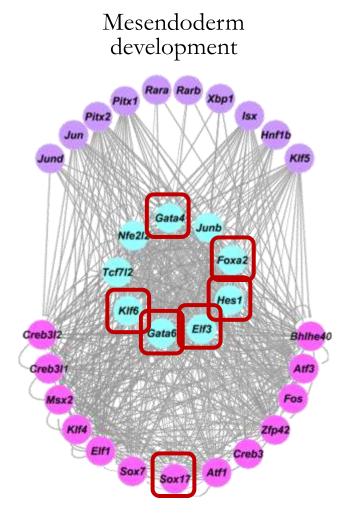
> Zeng et al, Nature Communications, 2019, 10:4613

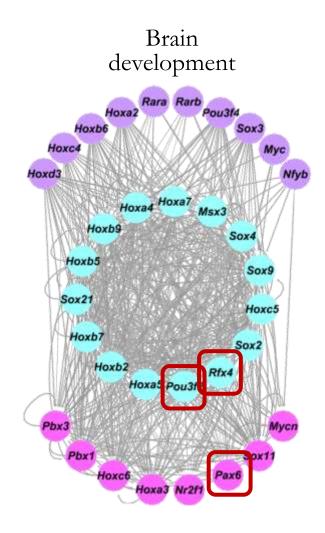


Cell type specific regulatory networks

• Regulatory networks in the differentiation of mouse embryonic stem cells (mESC)

Neural commitment Rarb Hoxa5 Hoxa7 Pbx1 Hoxb6 Hoxc4 Sor KII7 leuroc Sox1 Hoxc5 Hoxb5 Hoxb2 Hoxa4 Lhx1 Hoxc6 Hoxe





Supervised learning

Trenderson - Assessment

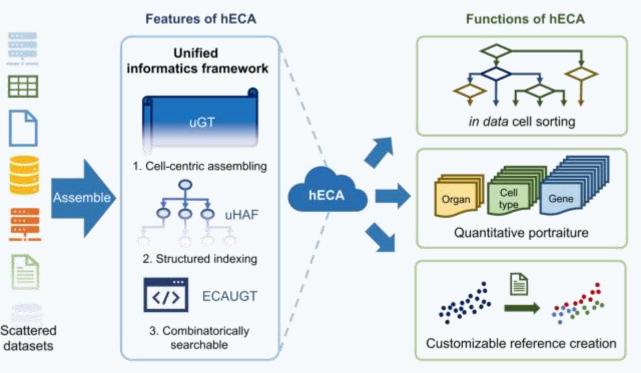
Weakly supervised

- Data of rough annotations
- Broad scope of application
- Due to imprecise annotation, only limited information is incorporated

Supervised

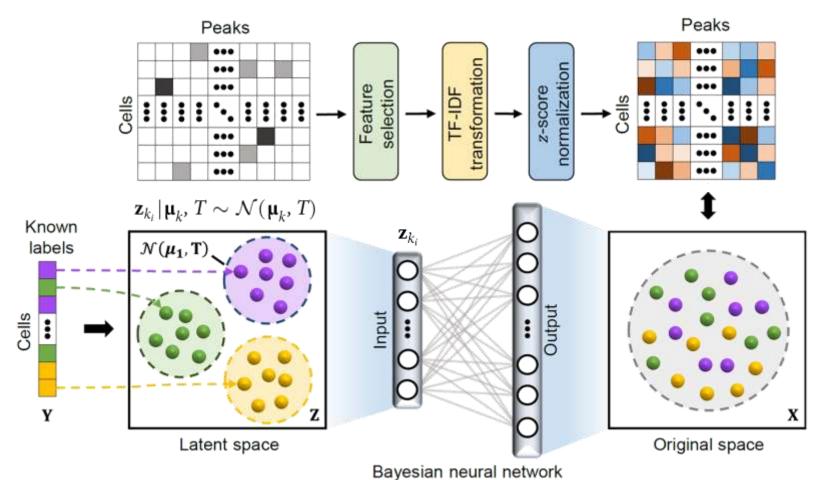
- Cell atlases often provide curated cell type annotations
- How to make use of such information to annotate known cell types?

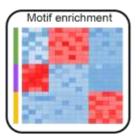
hECA: The cell-centric assembly of a cell atlas

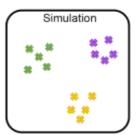


Bayesian neural network for cell type annotation epiAnno

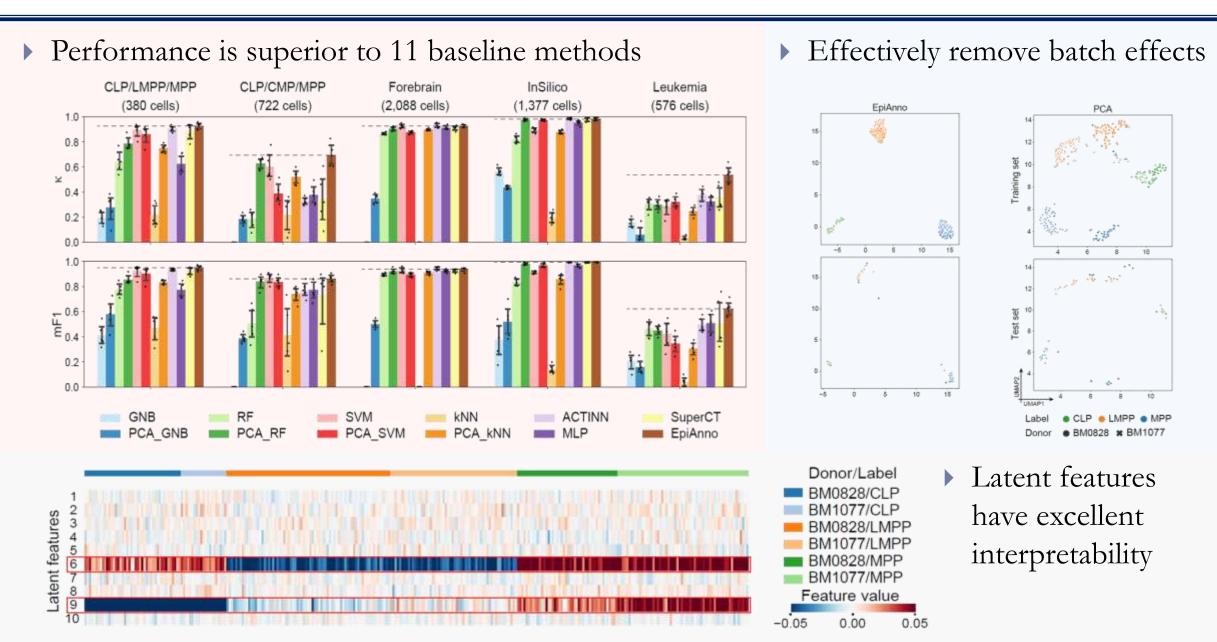
- Generative model with
 Chen et al, Nature Machine Intelligence, 2022, 4:116–126
 a supervised training procedure
- Designed for scATAC-seq data





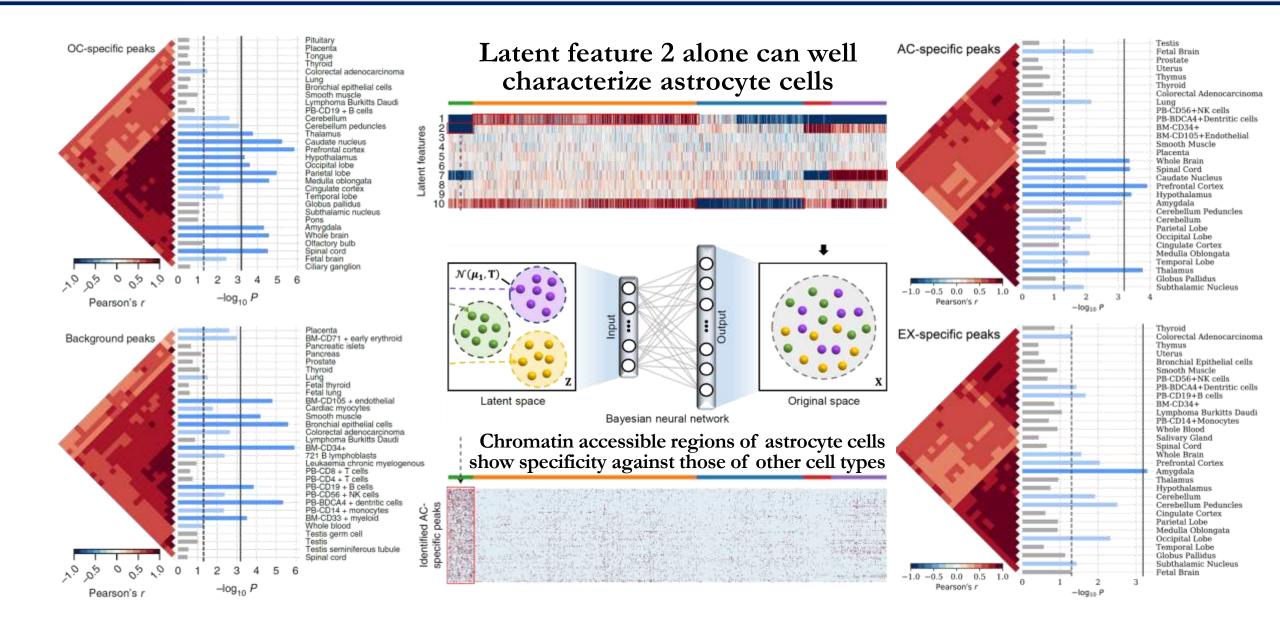


Accurate and interpretable cell type annotations epiAnno



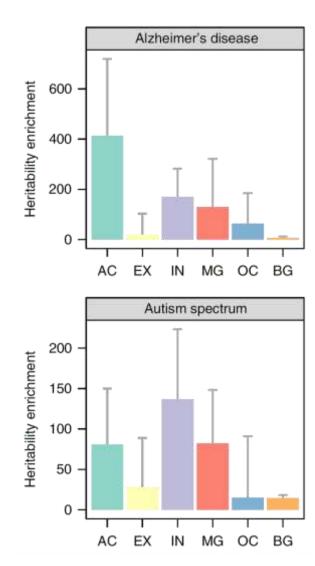
Tissue specificity of cell type specific peaks

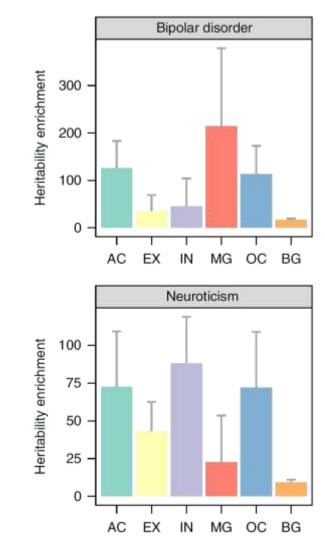
epiAnno

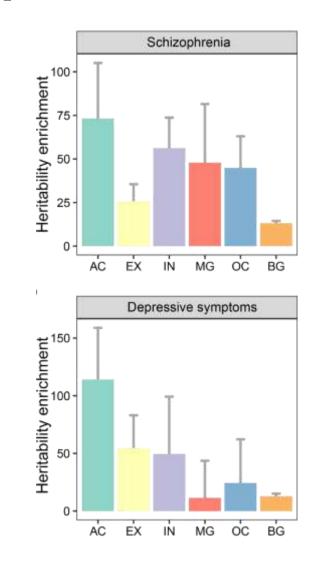


Disease association of cell type specific peaks epiAnno

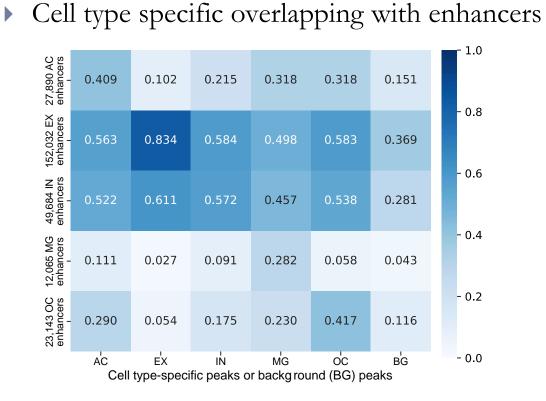
SNPs associated with neurological diseases are enriched in peaks specific to brain-related cell types



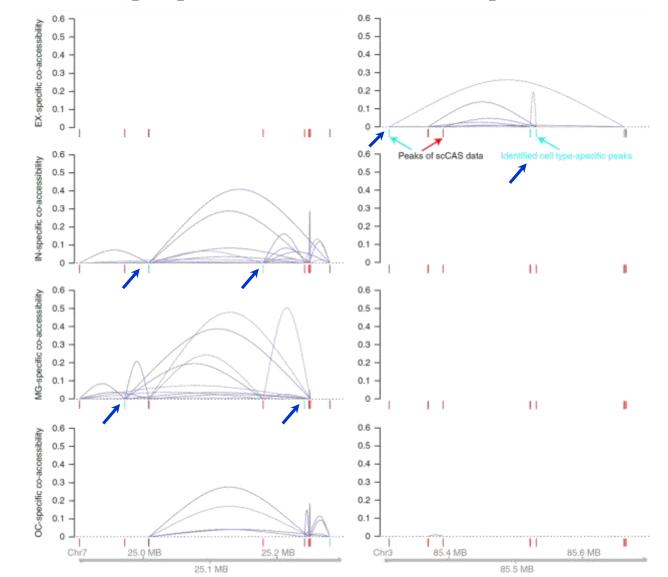




Regulatory elements and cell type specific peaks epiAnno

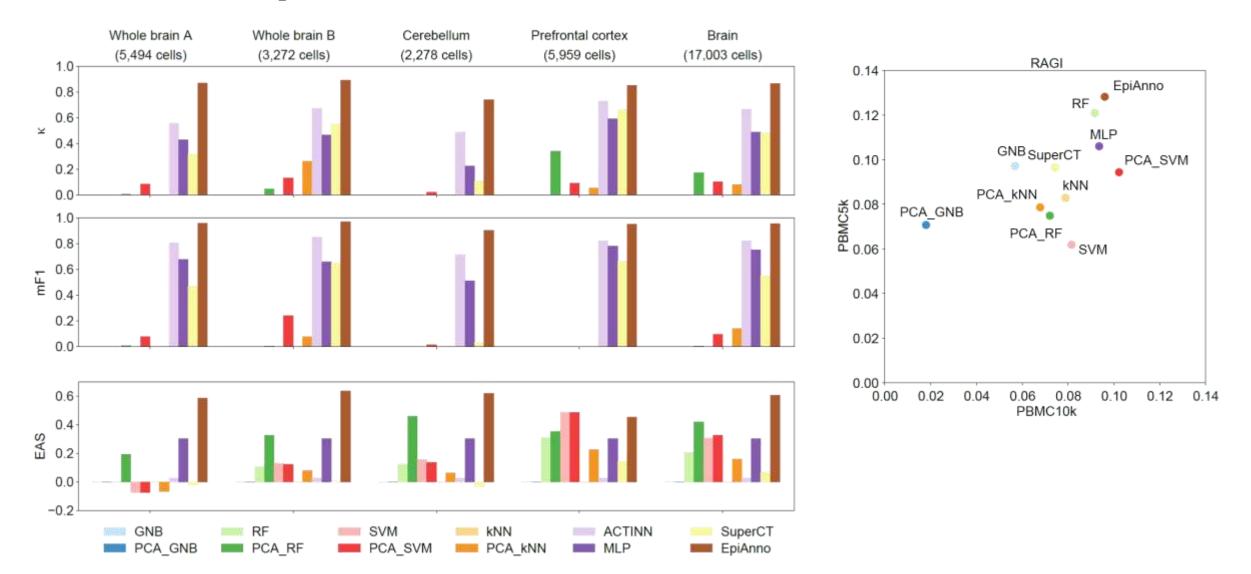


Cell type specific peaks show higher overlap with enhancers specific to the same cell type Cell type specific interaction between peaks



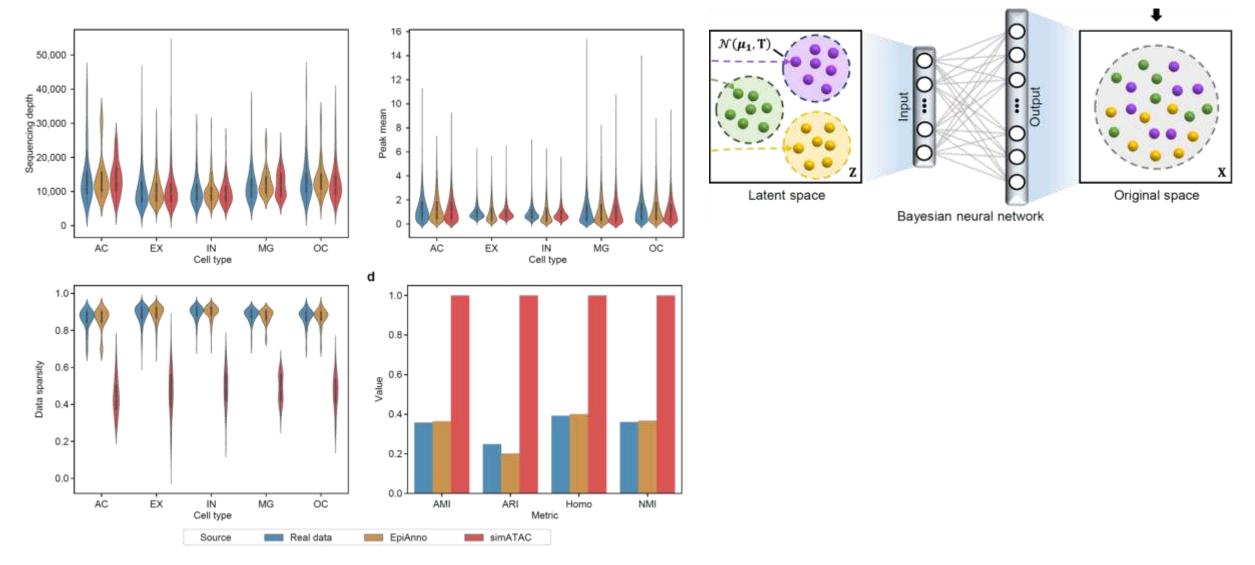
Accurate annotation of newly sequenced data

Performance is superior to baseline methods



epiAnno

Simulation of scATAC-seq data



Deep learning methods for cell type identification based on single-cell chromatin accessibility data

pased on single cen em onnam accessioner data					
Unsupervised	Weakly supervised	Supervised			
Roundtrip	► RA3	epiAnno			
▶ scDEC	► DC3	ScGraph (Bioinformatics, 2022)			
► VPAC	stPlus (Bioinformatics, 2021)				
Discover new cell types	Discover new cell types	Annotate known cell types			
 Simultaneous clustering and dimension reduction without prior knowledge 	 Simultaneous clustering and dimension reduction with reference data 	 Simultaneous classification and dimension reduction with well annotated data 			
Higher requirement for data appatation					
	ligher requirement for data annotatio				
 Need manual curation of cell types 	 Need manual curation of cell types 	 Do not need manual curation of cell types 			

Higher requirement for manual curation

Acknowledgements

Wing Hung Wong

Wanwen

Zeng

DC3

Zhixiang Lin

Qiao Liu Roundtrip scDEC Shengquan Chen scDEC RA3

epiAnno

Xiaoyang Chen

epiAnno

MOST

NHC

NSF

Tsinghua University

Thank you very much!

Rui Jiang