Searching for Consistent Associations with a Multi-Environment Knockoff Filter

Shuangning Li

Stanford University

Deep Learning for Genetics, Genomics and Metagenomics

Joint work with

Li, Sesia, Romano, Candès & Sabatti. Searching for Consistent Associations with a Multi-Environment Knockoff Filter. *Biometrika*, 2021.

Introduction

In Genome-Wide Association Studies (GWAS), geneticists have measured hundreds of thousands of genetic variants and wish to know which of these influence a trait. E.g. What are the genes that influence height?

In standard analysis, focus variables X_j's that are associated with Y. The results are very far from identifying "causal" genetic variants.

Introduction

Conditional Independence

Better goal: test for conditional independence

 $H_j: X_j \perp\!\!\!\!\perp Y \mid X_{-j}.$

If H_j is true, the *j*-th variable does not provide information about the response Y beyond what is already provided by all the other variables.

Control the false discovery rate

$$\mathsf{FDR} = \mathbb{E}\left[rac{\# \ \mathsf{false} \ \mathsf{positives}}{\# \ \mathsf{selections}}
ight].$$

Consistence across environments

- We say a variable j is null in environment e if X^e_j ⊥ Y^e |X^e_{-j}. We would like to find variables that are non-null in all environments.
- In other words, now a variable is null for "consistent independence hypothesis", if it is null in at least one environments.

Unobserved Confounder

- Shaded nodes are observed; "white" nodes are not.
- Dotted arrows represent true causal model connecting Z to Y
- Broken lines identify correlations across variables
- Filled arrows indicated detected conditional association

Knockoffs

- The method of knockoffs (Barber and Candès, 2015; Candès et al., 2018) allows one to test the conditional independence hypothesis and provably controls the FDR.
- Construct knockoffs \Rightarrow Get important statistics \Rightarrow Report selected set

Knockoffs

- ▶ We compute importance statistics *W* from machine learning algorithms.
- Large W_j says that variable j appears important.
- Conditional on |W|, signs of null W_j 's are i.i.d. coin flips crucial for FDR control!

▶ FDR is still controlled if the signs are ≤ coin flips (More conservative!)

Knockoffs

Let

$$au = \min\left\{t:\widehat{\mathsf{FDP}}(t) = rac{1\!+\!|\mathcal{S}^-(t)|}{1ee|\mathcal{S}^+(t)|} \leq q
ight\}$$

• Report
$$\hat{S} = \{W_j \ge \tau\}.$$

► Then false discovery rate is controlled.

$$\mathbb{E}\left[\frac{\# \text{ false positives}}{\# \text{ selections}}\right] \leq q$$

Method

Multi-Environment Knockoff Filter (simple version!)

- 1. Compute importance statistics for each environment $\{W^e\}_{e=1}^{E}$ as usual.
- 2. Merge the statistics as follows

$$sign(W_j) = \min_{e} sign(W_j^e)$$
$$|W_j| = f(|W_j^1|, |W_j^2|, \dots, |W_j^E|)$$

For example,

$$|W_j| = \prod_{e=1}^{E} |W_j^e|$$

- 3. Report a selected set based on W.
- ▶ If a variable is "null", then it's null in at least one environment. Say it's null in envir 1. Then sign $(W_j) = \min_e \text{sign} (W_j^e) \le \text{sign} (W_j^1) \le \text{coin flips.}$

Method

Multi-Environment Knockoff Filter (complicated version!)

Data from different environments

Pooled data, with randomly swapped knockoffs

Partial Conjunction

▶ If some of the environments have small sample size, then power can be low.
▶ Weaker goal: find variables that are non-null in ≥ r environments

UK biobank data analysis

Environment	Sample size	Self-reported ancestries
African	7,623	"African", "Caribbean", "Any other black background", "Black or Black British"
Asian	3,284	"Asian or Asian British", "Chinese", "Any other Asian background"
British	429,934	"British"
European	28,994	"Any other white background", "Irish", "White"
Indian	7,628	"Indian", "Pakistani", "Bangladeshi"

UK biobank data analysis

References

- Barber, R. F. and Candès, E. (2015). Controlling the false discovery rate via knockoffs. Ann. Stat., 43(5):2055–2085.
- Candès, E., Fan, Y., Janson, L., and Lv, J. (2018). Panning for gold: "model-X" knockoffs for high dimensional controlled variable selection. J. R. Stat. Soc. B, 80(3):551–577.

Thank you!