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Outline

Phenome-wide association studies using EHR data
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Genome-wide association studies (GWAS)
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® Only one phenotype is investigated yet many traits share
causal SNPs

® Many genetically correlated or the upstream causal
phenotypes are often unknown
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Phenome-wide association studies (PheWAS) design

Step 1: “deep” phenotyping [Bush et al., 2016]
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Phenome-wide association studies (PheWAS) design

Step 2: genotyping [Bush et al., 2016]
EHR-based phenotyping epidemiology-based phenotyping
L |
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UK Biobank pheno/genotyping of half million individuals

[Bycroft et al., 2018|
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PheWAS reveals pleiotropic SNPs
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Electronic Medical Records and Genomics (eMERGE) Network
[Denny et al., 2013]
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Electronic health records contain rich patient-level data
[Jensen et al., 2012]
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Jensen et al., Nature Rev. Gen. 2012

Clinical notes (unstructured free-form text)

Billing code: International Classification of Disease (ICD-CM)
Billing code: ICD Current Procedural Terminology (ICD-CPT)
Lab tests: Logical Obs. Identifiers Names & Codes (LOINC)
Pharmaceutical: Prescription data (RxNorm)

Radiology, electrocardiogram, MRI, etc
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Rapid adoption of EHR in the US hospitals 2008-2015
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International Classification of Diseases (ICD)

19x more procedure code:
in ICD-10-PCS

(3,824 versus 71,924)

5x more diagnosis codes
in ICD-10-CM

(14,025 versus 69,823)

Gross anatomy of ICD-9 and ICD-10 codes
ICD-9 structure

Cause,
‘ Category o location ‘ —
@ Ej
Increased use z;r}:{e?:ﬁ&nptlon
of alpha codin disease ca;Jse
ICD-10 structure
Cause, location,
Category severity Extension </

1 —

0000000

Translation using standardized
general equivalence mappings
available from the CDC'’s
National Center for Health
Statistics

ICD-9 taxonomy: https://icdlist.com/icd-9/index
ICD-10 taxonomy: https://icdlist.com/icd-10/index
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https://icdlist.com/icd-9/index
https://icdlist.com/icd-10/index

Focus of this talk: unsupervised learning of disease topics

to aid phenome-wide association studies
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Represent EHR as a bag of words

Tokenized
We can expand EHR code count vector long vector

ng in patient d into a long vector of code  gurofpatientd geer
indices x4 of length equal to Ny

Each patient EHR profile is a “document”
Each record code is a “token”

The it" token in document d is the "
EHR code from patient d

The total count of EHR “word” w in
patient document d is the sum of the
tokens that are word w:

Nyg = Z[Xid = w|

[(ofaJo[s][sr[s][s]s[r][r[e]n][=]=]=]x
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Document exhibits mixture of topics [Blei et al., 2003]

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
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The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch, education
and the social services.” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000
donation, too.
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Total score for past 12-month psychological distress (high)
Past 12-month high psychological distress level (yes)
Accomplish less (yes)

Been happy (some of the time) -

Feel helpless to problems (agree)

Mental problems medications past 12-month (yes) - 007
stimulants (no) -
Antipsychotics (no) -

Mood stabilizers (no) - 0.06
Mental problems medications past 2 days (o) -

Questionnaires

LT-Drug abuse or dependence (including cannabis) (yes)
LT-Cannabis abuse or dependence (yes)

How recently the problems due to marijuana or hashish (>= 12 months ago) -

Sought professional help (no) -

LT-Alcohol abuse or dependence (yes) -

As healthy as anybody (definitely true) -

Could do anything when mind sets (strongly agree) -

Expect health to get worse (definitely false) -

Get sick easier than others (definitely false) -

Feel unable to solve problems (strongly disagree) - 003
Limited in bending, kneeling, or stooping (not at all limited) -
Limited in climbing several flights of stairs (not at all limited) -

Topic 1

Pain affected work (not at all) -
(low) -
. Past 12-month high psychological distress level (no) -
Topic2 LASSO regression Total score for past 12-month psychological distress (low) - -0.01
Nothing could cheer up (none of the time) -
. Health limited social activities (none of the time) -
Been happy (most of the time) -

R ] -0.00
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Genotyping

ettt

PLINK
\ Summary

Heritability statistics

PASCAL |—> Gene scores ———>

Meng, X.*, Wang, M., ..., Li, Y.* (2022) Integrative PheWAS analysis in risk
categorization of major depressive disorder and identifying their associations with
genetic variants using a latent topic model approach. Translational Psychiatry
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Inferring multimodal topics from EHR!

A. Multi-view learning of EHR data

Top-risk patients in select disease topics
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i, Y. et al. Inferring multimodal latent topics from electronic health records.

Nat Commun 11, 2536 (2020). [Li et al.,

2020]
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Learning accurate phenotypes from EHR data
Challenges:
® noisy and sparse EHR
® topic interpretability and identifiability

Three strategies (trainees, ..., *correspondence):

Modelling specialist-specific decision process:

® Song, Z., ..., Li, Y.* (2021) Supervised multi-specialist topic model with
applications on large-scale EHR data. In 12th ACM Conference on
Bioinformatics, Computational Biology, and Health Informatics (ACM-BCB)

Leverage taxonomical knowledge graphs:

® Wang, Y., ..., Li, Y.* (2022) A graph-embedded topic model enables
characterization of diverse pain phenotypes among UK Biobank individuals.
iScience 104390

® ZouY., ..., Li, Y.* (2022) Modeling electronic health record data using a
knowledge-graph-embedded topic model. arXiv.

Leverage expert-curated phenotype definitions as guides:

® Anjuha, Y., ..., Li, Y.*. (2022) MixEHR-Guided: A guided multi-modal topic
modeling approach for large-scale automatic phenotyping using EHR. (in rev.)
® Song, Z., ..., Li, Y.* (2022) Automatic phenotyping by a seed-guided topic

model. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 16 /46



Outline

Graph-informed EHR topic modeling
GETM: Graph-embedded topic model
GAT-ETM: an end-to-end graph-topic model
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Graph-ETM (GETM)?
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patients

medications -
.
conditions .

izeconditions

Node2Vec
condition
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c
2Wang, Y., ..., & Li, Y. (2022) A graph-embedded topic model enables

characterization of diverse pain phenotypes among UK Biobank individuals. iScience
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Modeling conditions and medications data of 450K
individuals from UK Biobank [Bycroft et al., 2018]

® 457,461 individuals of European descent individuals to reduce
confounding caused by different ethic groups

® 802 active ingredients for medications

® 443 phenotypic conditions

In collaboration with Audrey Grant at the Department of Anesthesia
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Visualize embedding of topics and conditions/medications
(a) (b)
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Prediction performance on chronic musculoskeletal pain

0.75 AUROC 0.65 AUPRC
= topic mixture . topic mixture
- raw - raw

0.6

0.7
0.55
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® | ogistic regression was performed using © obtained from
GETM with 128 topics to predict CMK pain.

® The baseline used raw conditions and medications data as
input features.

® We experimented on seven data configurations with different
condition sets and medication sets as indicated by x-axis.

21/46



Top topics for chronic musculoskeletal pain
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Logistic regression coefficient
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Predicting chronic pain types on different body sites
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Outline

Graph-informed EHR topic modeling
GETM: Graph-embedded topic model
GAT-ETM: an end-to-end graph-topic model
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Graph Attention neTworks (GAT) [Cucurull et al., 2017]
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Bag of Word
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3ZouY., ..., & Li, Y. (2022) Modeling EHR data using GAT-ETM. arXiv.
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GAT-ETM evaluation on Montreal PopHR data*

Montreal PopHR Dataset [Shaban-Nejad et al., 2017]:
® 5107 unique ICD codes

® 1057 unique ATC (i.e., medication) codes

¢ 1.2 million patients (6/2/2 training/validation/testing)

Model Recon. Topic Quality [ICD,ATC]

NLL. topic coherence  topic diversity topic quality TQ(ave.)
ETM 198.26 0.113, 0.233 0.373, 0.423 0.0421, 0.0986 0.0704
GETM 184.32 0.167, 0.271 0.86, 0.83 0.1436, 0.2249 0.1843
GAT-ETM | 172.69 0.18, 0.314 0.76, 0.787 0.1368, 0.2471 0.1920

*PopHR data accessed via collaboration with David Buckeridge from School
of Public Health at McGill
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Embedding of EHR codes generated by the GAT
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Outline

Phecode-guided EHR topic modeling
MixEHR-guided: a phecode-guided multimodal topic model
MixEHR-seed: a seed-guided VAE-EM hybrid topic model
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Key ldea: based on patients’ ICD-9 codes from a particular

Phecode Map 1.1 with ICD-9 Codes

This i the previous version of the map used in the HLA analysis. You can download this with the Export All button.

icos @

icdo

1CDo String @ v PheCode @
description code

Cholera 008
Cholera due to Vibrio cholerae 008
Cholera due to Vibrio cholerae el tor 008
Cholera NOS 008
Typhoid and paratyphoid fevers 008
Typhoid fever 0085
Paratyphoid fever A 008
Paratyphoid fever B 008
Paratyphoid fever 008
Paratyphoid fever NOS 008
Other salmonella infections 0085
Salmonella gastroenteritis 0085
Salmonella septicemia 038.1
Localized salmonella infections 0085
Localized salmonella infection, unspeci... 0085
Salmonella meningitis 320
Salmonella pneumonia 4801
Salmonella arthritis 7
Salmonella osteomyelitis 7101
Other localized saimonela infections 0085
Other specified salmonella infections 0085
Salmonella infection NOS 0085
Shigellosis 0085
Shigella dysenteriae 0085

1623 > | Ml 25 v items perpage

Phenotype @
phenotype

Intestinal infection
Intestinal infection
Intestina infection
Intestina infection
Intestina infection
Bacterial enteritis
Intestinal infection
Intestinal infection
Intestinal infection
Intestina infection
Bacterial enteritis
Bacterial enteritis
Gram negative septicemia
Bacterial enteritis
Bacterial enteritis
Meningitis
Bacterial pneumonia
Arthropathy associated with infections
Osteomyelitis
Bacterial enteritis
Bacterial enteritis
Bacterial enteritis
Bacterial enteritis

Bacterial enteritis

Excl. Phecodes @
excl. phecode
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99
010-041.99
001-009.99
001-009.99
320-326.9
480-488.99
710-716.99
710-716.99
001-009.99
001-009.99
001-009.99
001-009.99
001-009.99

dataset, infer 1500 Phecode-guided topics

Clear Fiters || Export Al

Excl. Phenotypes @

Export Visible

Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
Intestinal infection
bacterial infection
Intestinal infection
Intestinal infection
INFLAMMATORY DISEASES OF THE C...
Pneumonia and influenza
Arthropathies
Arthropathies

Intestinal infection
Intestinal infection

Intestinal infection

Intestinal infection
Intestinal infection

12 25 of 15558 items

30/46



MixEHR-Guided®

PheCode Disease ICD-9 codes
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SAnjuha, Y., ..., Li, Y.*. MixEHR-Guided: A guided multi-modal topic

modeling approach for large-scale automatic phenotyping using EHR. (in rev.)
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Top 5 features for each of 9 diverse disease phenotypes

PopHR (1.2 million patients)

RISPERIDONE
OLANZAPINE
Schizophrenic psychoses unspecified
Schizophrenic psychoses paranoid type.
QUETIAPINE (QUETIAPINE FUMARATE)
VALPROIC ACID (DIVALPROEX SODIUM)
Affective psychoses manic-depressive psychosis other and
LITHIUM CARBONATE
QUETIAPINE (QUETIAPINE FUMARATE)
OLANZAPINE
VENLAFAXINE (VENLAFAXINE HYDROCHLORIDE)
Depressive disorder not elsewhere classified
Thérapie psychiatrique de soutien - en...
CITALOPRAM (CITALOPRAM HYDROBROMIDE)
SERTRALINE (SERTRALINE HYDROCHLORIDE)
METFORMIN HYDROCHLORIDE
Diabetes melitus diabetes melltus without mention.
GLYBURIDE
ACETYLSALICYLIC ACID
ATORVASTATIN (ATORVASTATIN CALCIUM)
ACETYLSALICYLIC ACID
NITROGLYCERIN
Other forms of chronic ischaemic heart...
METOPROLOL TARTRATE
ATORVASTATIN (ATORVASTATIN CALCIUM)
FUROSEMIDE
Heart failure unspecified
Dans un centre d'hébergement et de..
NITROGLYCERIN
DIGOXIN
Chronic airways obstruction not elsewhere classified
ans un centre dhébergement et de.
PREDNISONE
FLUTICASONE PROPIONATE
SALBUTAMOL (SALBUTAMOL SULFATE)
Acute renal failure
Chronic kidney disease
Renal failure unspecified
Radiological examination not elsewhere classified
Examen microscopique du sédiment urinare et.
FUROSEMIDE
Cirthosis of liver without mention of,
SPIRONOLACTONE
Chronic liver disease and cirthosis alcoholic.
ADOLOL

CKD COPD HF CAD Diabetes  Depression  Bipolar Schizo.

Cirthosis.

Schizo.
Bipolar
Depression
Diabetes
CAD

HF

COPD
CKD
Cirrhosis

ey ¢ ¢ ¢ ¢ | | | |

MIMIC-ITT (40K patients)

Schizophrenia NOS-unspec.
Schizoaffective dis NOS
Paranoid schizo-unspec
Paranoid schizo-chronic
Schizophr dis resid-chr
Bipolar disorder NOS [l
Bipolor | current NOS
Bipol | cur depres NOS
PSYCHOSES
Poisoning Of Medicinal Agents
Citalopram
Major Respiratory Infections & Inflammations
RESPIRATORY INFECTIONS & INFLAMMATIONS W MCC
Diabetes
CHRONIC OBSTRUCTIVE PULMONARY DISEASE W MCC

DM wo cmp nt st uncntrl
Abnormal glucose NEC
Neuropathy in diabetes

Depression  Bipolar Schizo.

Diabetes

Diabetic retinopathy NOS
DMIl neuro nt st uncntrl
Cor ath unsp vsl tv/gft
Ac ischemic hrt dis NEC "ﬂé’x
Mth sus Stph aur elsINOS o5
Kiebsiella pneumoniae I
Insert 2 vascular stents | o
Ac on chr diast hrt fail | Bl
Inject/infus nesiritide moRe
Ac on chr syst hrt fail
HEART FAILURE & SHOCK
Chr diastolic hr fail
Emphysema NEC
Bronchiectas w/o ac exac
Chronic bronchis NOS
Abdom aortic aneurysm
Resect abdm aorta w repl
Chro kidney dis stage Il
RENAL FAILURE
DMIl reni nt st uncntrid
RENAL FAILURE W MCC
Closed bx skin/suba tiss
Chronic liver dis NEC
Hepatic encephalopathy
DISORDERS OF LIVER EXCEPT MALIGNANCY CIRRHOSIS...
CIRRHOSIS & ALCOHOLIC HEPATITIS
Hepatorenal syndrome

cAD

HF

COPD

c
datatype INNNNNENEN  INENEN D R

Cirthosis.

Cirrhosis
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Automatic phenotyping performance

schizophrenia:
ihd-
hypertension-
hiv-

epilepsy-
diabetes-

Method

l PheCode

§ MAP

§ sureLDA

 mixEHR-G

copd-
chf-
autism-
asthma-
ami
adhd-

0.25 0.50 0.75 1.00
AUPRC

o
o
)
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Outline

Phecode-guided EHR topic modeling
MixEHR-guided: a phecode-guided multimodal topic model
MixEHR-seed: a seed-guided VAE-EM hybrid topic model
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MixEHR-seed model®

Age-dependent phenotype topic prior

)\/ t=1..T

Phenoty Seed-topic rate
enotype
topic mixture Gd z, m us
for record|d )
Topic assignment of isne;icclz:?cilc k=1..K
EHR code|i
Observed EHR @
code i=1..N,
d=1...D
Seed topic Regular topic
distribution of @ @ distribution of
phenotype k k=1..K phenotype k
®Song, Z., ..., & Li, Y. (2022) Automatic phenotyping by a seed-guided

topic model. In Proceedings of the 28th ACM SIGKDD Conference
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a. MixEHR-seed PGM

"Age-dependent phenotype topic prior

Phenotype
topic mixtu)

@

8 ()

Seed-topi
pic rate

d
for record/d

Topic assignment of
EHR code|i

Observed EHR

code S

Seed topfid k

indicator

N

4

d=1...D

Seed topic Regular topic
distribution of @ @ distribution of
phenotype k k=1..K phenotype k

Nonrheumatic tricuspid valve disorders
Ischemic heart disease

Congestive heart failure

Joint/ligament sprain

Hypertension

Conductive hearing loss

Diabetes mellitus

Muscular calcification and ossification
Cataract

Dementias

Allergic reaction to food

Anxiety disorder

Concussion

Pervasive developmental disorders
Dyspepsia and other specified disorders
Fever of unknown origin

Chronic tonsillitis and adenoiditis

Viral warts & HPV/

Dysplasia of female genital organs
Anxiety, phobic and dissociative disorders

old

Young

Prevalence

0-4 59

10-14 15-19 20-24 25-29

b. Amortized variational inference of topic prior

A1) = softmax(ud + vO N(0,1))
v

“(t)
At-1 At-1

LST™M e

x3

w®

ee —

—— Anxiety, phobic and dissociative disorders
-~ Dysplasia of female genital organs

Viral warts & HPV
--- Nonrheumatic tricuspid valve disorders
.~ Tschemic heart disease
-+~ Congestive heart failure

30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90+

Inferred age-dependent phenotypes in 1/4 Montreal PopHR
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Application on UK Biobank data (unpublished & prelim.)
ICD-10 processing:
® 500,000 UKB subjects (including all races)
® 6807 unique ICD-10 codes are mapped 1484 PheCodes
® Remove PheCodes with frequency < 10 subjects
® 6.12 million observed ICD-10 records
Drug code processing:
® Group all same drugs with different dosage, tablet/liquid to a
unique ATC codes
® Remove ATC with frequency < 10
® 803 unique ATC codes
® 1.19 million ATC records
Drug usage prediction:
® 139 PheCodes have at least one known drug treatment
® Remove patients that use any of those drugs in the first visit
® For patients in the following visits, they were labelled as
positive if they took the phecode-linked drugs
e Average AUPRC: 60% (in contrast to 40% using 2-PMM or
20% using only PheCode) 37/46



Select phecode-guided topics inferred from the UKB data

ATC code (medication)

-J45.9 Asthma, unspecified - salbutamol
-}45.0 Predominantly allergic asthma - - Montelukast
- - Salmeterol [Fluticasone Propionate

-J33.9 Nasal polyp, unspecified

-¥84.5 Asperger's syndrome

- F84.0 Childhood autism

<R27.8 Other and unspecified lack of coordination ] -
-150.1 Left ventricular failure
-150.9 Heart failure, unspenFed

-150.0 Congestive heart failure -

-143.9 Emphysema, unspetvﬁed LB |

-}44.0 Chronic obstructive pulmonary disease with acute lower respiratory infection || [Nl I

-J44.1 Chronic obstructive pulmonary disease with acute exacerbation, unspecified = -
|

-£10.9 Without complications
- H36.0 Diabetic retinopathy

- E11.3 With ophthalmic complications

- R56.8 Other and unspecified convulsions

-G40.9 Epilepsy, unspecified

+§40.3 Generalised idlopathic epilepsy and epileptic syndromes

- B24 Unspecified human immunodeficiency virus [HIV] d

~221 Aymptomatic human mmunedeficioncy virus [HIV infection status
- Y415 Antiviral drugs

-115.1 Hypertension secondary to other renal disorders

-112.0 Hypertensive renal disease with renal failure

-113.9 Hypertensive heart and renal disease, unspecified

B -12520id myoca ction
-121.9 Acute myocardial infarction, unspecified -
M -121.0 Acute transmural myocardial infarction of anterior wall
F20.9 Schizophrenia, unspecified -
F20.0 Paranoid schizophrenia .|
= | I -F25.9 Schizoaffective disorder, unspecified . . )
gEERE §2¢ REER 5
f£zvgg <5 Eg©o g 2
73 3 5§ = 73 g
B kK g 5 (g g
° @ I @
g = Seed codes g
z 3 = Regular codes 2
Certaiin infectious and parasitic diseases [ 0.5 Alimentary tract and metabolism
Endocrine, nutritional and metabolic diseases 0.4 Bl00d and blood forming organs
Mental and behavioural disorders Cardiovascular system
Diseases nervous system 03 Dermatologicals
Diseases eye and adnexa 02 Genito-urinary system and sex hormones L o1
= Diseases circulatory system g = Systemic hormonsl reparations, exclucing sex hormones and insuins
= Diseases respiratory system S0 - tives for systemic us - 0.05
= Symptoms, signs and abnormal clnical and lab findings 00 - An(meoplasuc and mmonomedulating agents 00
= External causes of morbidity and mortality -0 = Musculo-skeletal system
m actors influencing health status m— Nervous system
m Antiparasitic products, insecticides and repellents
== Respiratory system
= Scnsory organs
- various
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PheWAS of lipoprotein(a) (LPA) genetic variant
rs10455872 using non-UKB data’

15 4Coronary atherosclerosis
o
N
o
=
(2]
o
-

5 Other chronic ischemic heart disease, unspecified

Nonrheumatic aortic valve gisorders ~ Diseases of he jaws Other specified benign mammary dysplasias
A Paroxysgpét icular tachycardia
. A ?‘ A y A A A N

Phenotypes

713,900 adults from DNA biobank at Vanderbilt University Medical Center; Wu, P.
et al. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Development

and Initial Evaluation. Jmir Medical Informatics 7, 14325 (2019). [Wu et al., 2019] 3946
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40

30

20

10

Phenome-topic-wide associations with LPA variant
rs10455872 from UK Biobank

genitourinary system
abnormal clinical findings
Factors influencing health
nervous
eye, ear and adnexa
digestive system
musculoskeletal system and connective tissue
External causes
morbidity and mortality
Endocrine, nutritional and metabolic
respiratory system
circulatory system
infectious and parasitic diseases
Neoplasms
Mental and behavioural
Pregnancy, childbirth
blood and blood-forming organs
skin and subcutaneous tissue
A11.2 Myocardial infarction chromosomal abnormalities
@ Certain conditions originating in the perinatal period

(A11.4 Coronary atherosclerosis

A11.3 Angina pectoris

.11
Hypercholesterolemia 411.8 Other chronic ischemic heart disease, unspecified

747.13 Congenital anomalies of great vessels

443.9 Peripheral vascular disease, unspecified
4111 Unstable angina (intermediate coronary syndrome)
272.1 Hyperlipidemia
#33.1 Occlusion and stenosis of precerebral arteries

47.1 Stricture of artery
94.3 Adrtic Valve d
-

o e

CIR I
e a % s,
eSS 8

0 200 400 600 800 1000
phenotypes
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Fine-mapped SNPs for metabolic measurements®
B

10 estimated w FEVI1-FVC ratio [
s glomerular filtration rate 08 .
a w L
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04 w©
a 08
02 2 &
00 o 04
I rerzs026 100
10| glucose . w 02
08 ] ’l
a o @ it L " o W
2o 00 0
04 o 100
o " 1o Pulse rate s
00 3 bao
08
100
10 | pulse rate waazs N ©
3 wi = os
08 a
S o © 04 [«
04 w©
o o 02 A ®
> |
00 3 00 (" 5 il .
- erzs026 100 - .
10 total protein o 1o | total protein waars “

274 26 278 El 22 n 72 04 75 e

8Zhang, W., Najafabadi, H., Li, Y.* SparsePro: an efficient genome-wide
fine-mapping method integrating summary statistics and functional annotations.

bioRxiv (under review)
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- log p-values

PhenoTopicWAS on the fine-mapped SNP rs1260326

272.11
25 Hypercholesterolemia groups

genitourinary system
abnormal clinical findings

Factors influencing health

nervous

eye, ear and adnexa

digestive system

musculoskeletal system and connective tissue
External causes

morbidity and mortality

Endocrine, nutritional and metabolic

respiratory system

circulatory system

infectious and parasitic diseases

Neoplasms

Mental and behavioural

Pregnancy, childbirth

blood and blood-forming organs

skin and subcutaneous tissue

chromosomal abnormalities

Certain conditions originating in the perinatal period

20

"
o
s000000 0

see00e0cee

=
o
.

274.1 Gout

2502 Type 2 diabetes S74.1 Cholelithiasis

5 $74.12 Cholelithiasis with other cholecystitis

phenotypes
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Summary

® Modelling multi-modal EHR data allows us to better quantify
phenotypic risk as the topic probabilistic score

® Harnessing knowledge graph in representational learning help
deriving interpretable topics from otherwise sparse and noisy
EHR data

® Anchoring 1500 phecode-defined phenotypes enables inferring
identifiable and interpretable phenotypic topics that can be
used for downstream PheWAS
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