Introduction 000	DQL Method 00000000000000	Smart DQL Method 000000	Solid Tank Design 000	Conclusior 000

A hybrid direct search and model-based derivative-free optimization method with dynamic decision processing

Dominic (Zhongda) Huang

Supervisor: Dr. Warren Hare

The University of British Columbia - Okanagan Campus

June 17, 2022

Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		000000	000	000

Outline

1 Introduction

- 2 DQL Method
- **3** SMART DQL Method
- 4 Solid Tank Design

5 Conclusion

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
●00		000000	000	000

Purpose

- Develop the framework of a hybrid DFO method the DQL method and its search strategies.
- Conduct the convergence analysis and numerical experiment for the DQL method.
- Design the SMART DQL method by the integration of decision processing.
- Apply the SMART DQL method on the solid tank design problem.

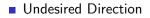
Derivative-Free and Black-Box Optimization

- Derivative-Free: No derivative information is used or available.
- Black-Box Function: The evaluation process is hidden.

Introduction	DQL	Smart DQL Method 000000	Solid Tank Design 000	Conclusion 000

Motivation

- We have a lot of well-developed methods for black-box problems.
- Due to the nature of black-box problems, we do not know how to choose the appropriate method.
- Inspired by the RQLIF method [Manno et al., 2020], we combine the strengths of three kinds of search strategies into one method.
- Allow the method to choose search strategies *dynamically* and *adaptively*.


DQL Method Framework

- Initialize
- 2 Direct Search Step
- 3 Quadratic Search Step
- 4 Linear Search Step
- 5 Update, Stop or Loop

Framework of the Direct Step

Search on the directions of rotated positive and negative coordinate direction by a step length of δ^k .

Desired Direction

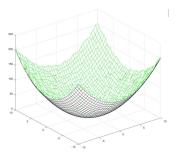
SMART DQL Method 000000 Solid Tank Design

Conclusion

Direct Step Strategy 1: Random Rotation

The rotation directions alternates between two options:

- the coordinate directions.
- a random rotation.


SMART DQL Method 000000 Solid Tank Design

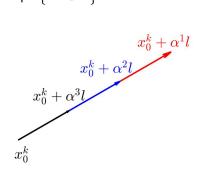
Conclusion

Framework of the Quadratic Step

Extract the quadratic information from the previously evaluated candidates within the trust region.

 Least-Squares Quadratic Model

 Approximate Newton's Method


Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	0000●0000000000	000000	000	000

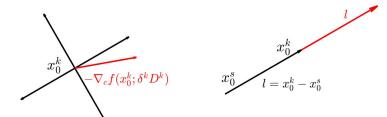
Framework of the Linear Step

$$\mathbb{L} = \{x_0 + \alpha^j I\}$$

Search direction
$$I \in \mathbb{R}^n$$

• Linear search steps $\left\{ \alpha^{j} \in \mathbb{R} \right\}$

Smart DQL Method

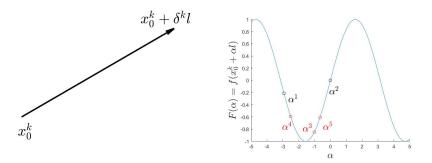

Solid Tank Design

Conclusion 000

Linear Step Strategies: Determine Search Direction

• Approximate Steepest Descent $I = -\nabla_c f(x_0^k; \delta^k D^k)$

Last descent
$$I = x_0^k - x_0^s$$

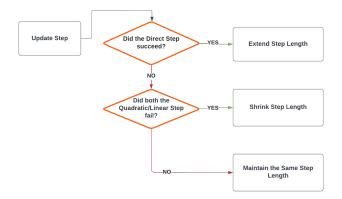

SMART DQL Method 000000 Solid Tank Design

Conclusion 000

Linear Step Strategies: Determine Search Step Length

Step Length δ^k

 Safeguarded Bracket Search [Mifflin and Strodiot, 1989]

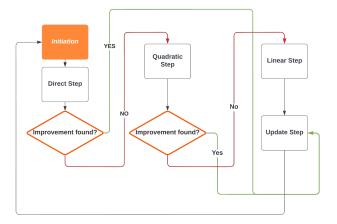


Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	0000000●0000000	000000	000	000

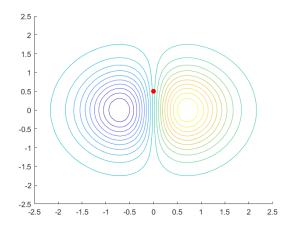
Linear Step Strategies

Label	Search Direction /	Search Step α
Strategy 1	Steepest Descent	One Step (δ^k)
Strategy 2	Steepest Descent	Bracket Search
Strategy 3	Last Descent	One Step (δ^k)
Strategy 4	Last Descent	Bracket Search

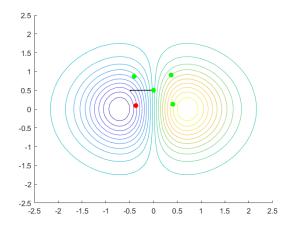
Framework of the Update Step

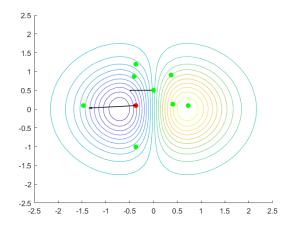


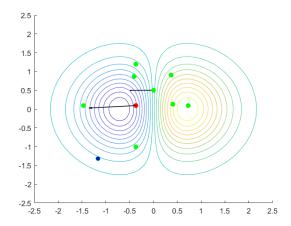
SMART DQL Method

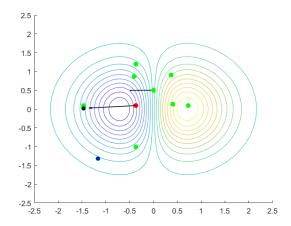

Solid Tank Design

Conclusion


Flow Diagram of the $\mathrm{D}\mathrm{Q}\mathrm{L}$ method


Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000000000000000000000000000000	000000	000	000


Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000000000000000000000000000000	000000	000	000


Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000●0000		000	000

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000●0000		000	000

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000●0000		000	000

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000●0000		000	000

Demo of the DQL method

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000000000000000000000000000000	000000	000	000

Convergence Analysis

Theorem 1

Let function $f : \mathbb{R}^n \to \mathbb{R}$ has compact level set $L(x^0)$. In addition, let ∇f be Lipschitz continuous in an open set containing $L(x^0)$. Then the DQL method results in

$$\liminf_{k\to+\infty}\left\|\nabla f(x^k)\right\|=0,$$

and $\{x^k\}$ has a limit point x^* for which $\nabla f(x^*) = 0$.

Proof.

The proof can be found in the thesis [Huang, 2022, Thm 3.5].

Performance Benchmark

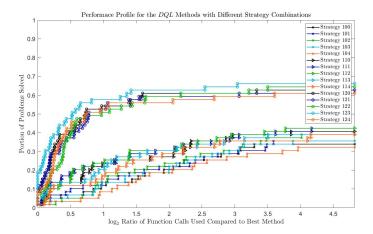
- Direct Step
 1 option: Strategy 1
- Quadratic Step3 options: Disable, Strategy 1-2
- Linear Step
 - 5 options: Disable, Strategy 1-4

Is there a winner among 15 combinations?

SMART DQL Method

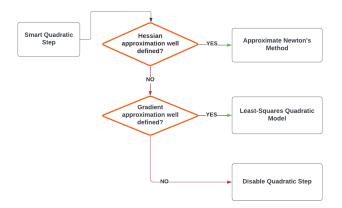
Solid Tank Design

Conclusion 000


Performance Benchmark: Stopping Conditions

Parameter	Value
$\epsilon_{ abla}$	10 ⁻⁶
$\epsilon_{ m MAX_STEP}$	10 ⁻³
$\epsilon_{ m MIN_STEP}$	10 ⁻¹²
MAX_SEARCH	10000

SMART DQL Metho 000000 Solid Tank Design

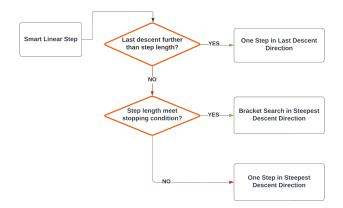

Conclusion 000

Performance Benchmark: Numerical Result

Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		●00000	000	000

Smart Quadratic Step

om		


Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		0●0000	000	000

Smart Linear Step

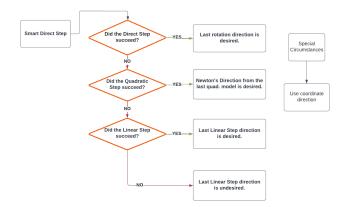
- One Step in Last Descent Direction
 - Best Exploration Ability
- Bracket Search in Steepest Descent Direction
 - Best Exploitation Ability
- One Step in Steepest Descent Direction
 - Simple and Efficient

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000000000	00●000	000	000

Smart Linear Step

Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		000●00	000	000

Smart Direct Step

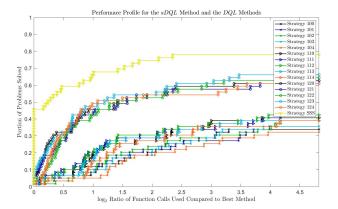

What information can we extract from the last iteration?

- Direct Step Is r^{k-1} a good rotation direction?
- Quadratic Step Is m^{k-1} a good quadratic model?

Linear Step Is I^{k-1} a good linear search direction?

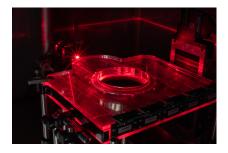
Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		0000●0	000	000

Smart Direct Step



SMART DQL Method

Solid Tank Design


Conclusion

Performance of $\operatorname{Smart}\,\operatorname{DQL}$ Method

Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		000000	●00	000

Background

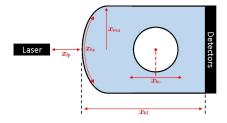


Figure: Solid Tank Design (Picture by Andy Oglivy).

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
000	000000000000000		○●○	000

Background

$$\begin{aligned} x &= \begin{bmatrix} x_{bl} & x_{bc} & x_{lp} & x_{ma} & x_{be} \end{bmatrix}^\top \in \mathbb{R}^5 \\ & x_{bl} \in [200, 400] \\ & x_{bc} \in [-30, 30] \\ & x_{lp} \in [40, 100] \\ & x_{ma} \in [40, 80] \\ & x_{be} \in [0, 1] \end{aligned}$$

$$\max\{F(x)|x\in C\}$$

Introduction 000	DQL	Smart DQL Method	Solid Tank Design 00●	Conclusion 000

Experiment Results

Table: Experimental Results for Solid Tank Design Problem

	Water	FlexDos3D	ClearView TM
SMART DQL Method	2.7676	2.9360	2.9522
Grid Search Method	2.5611	2.9105	2.8694

Introduction 000	DQL	Smart DQL Method	Solid Tank Design 000	Conclusion ●00

Conclusion

$\mathrm{DQL}\xspace$ method

- is a local DFO method.
- is able to combine multiple search strategies.
- is converging to local optima for some functions.

$\operatorname{Smart}\,\operatorname{DQL}\,$ method

- is built under the framework of DQL method.
- is able to choose search strategies dynamically and adaptively.
- is faster and more robust than any simple combinations from our DQL method study.
- is more reliable and efficient in real-world application as compared to the Grid Search Method

Introduction	DQL	Smart DQL Method	Solid Tank Design	Conclusion
000		000000	000	○●○

Future Development

- Develop the global search ability.
- Integrate more search strategies.
- Design a more sophisticated decision tree.
- Specialize the decision making mechanism for different real-world applications.

Reference

Thank you!

Huang, Z. (2022).

A hybrid direct search and model-based derivative-free optimization method with dynamic decision processing.

Manno, A., Amaldi, E., Casella, F., and Martelli, E. (2020).

A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement.

Optimization and Engineering, 21(4):1563–1598.

Mifflin, R. and Strodiot, J.-J. (1989).

A bracketing technique to ensure desirable convergence in univariate minimization.

Mathematical programming, 43(1):117–130.