A hybrid direct search and model-based derivative-free optimization method with dynamic decision processing

Dominic (Zhongda) Huang

Supervisor: Dr. Warren Hare

The University of British Columbia - Okanagan Campus

July 19, 2022

- 1 Introduction
- 2 DQL Method
- 3 SMART DQL Method
- 4 Solid Tank Design
- 5 Conclusion

Derivative-Free and Black-Box Optimization

- Derivative-Free: No derivative information is used or available.
- Black-Box Function: The evaluation process is hidden.

Motivation

- We have a lot of well-developed methods for black-box problems.
- Due to the nature of black-box problems, we do not know how to choose the appropriate method.
- Inspired by the RQLIF method [Manno et al., 2020], we combine the strengths of three kinds of search strategies into one method.
- Allow the method to choose search strategies dynamically and adaptively.

- Initialize
- 2 Direct Search Step
- 3 Quadratic Search Step
- 4 Linear Search Step
- 5 Update, Stop or Loop

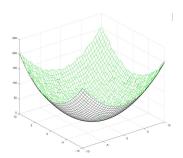
Framework of the Direct Step

Search on the directions of rotated positive and negative coordinate direction by a step length of δ^k .

Desired Direction

Undesired Direction

Direct Step Strategy 1: Random Rotation

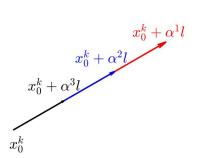

The rotation directions alternates between two options:

- the coordinate directions.
- a random rotation.

Framework of the Quadratic Step

Extract the quadratic information from the previously evaluated candidates within the trust region.

 Least-Squares Quadratic Model

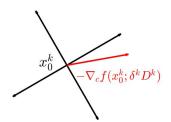


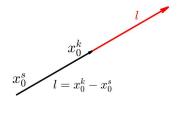
Approximate Newton's Method

Framework of the Linear Step

$$\mathbb{L} = \{x_0 + \alpha^j I\}$$

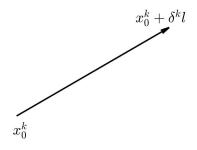
- Search direction $I \in \mathbb{R}^n$
- Linear search steps $\{\alpha^j \in \mathbb{R}\}$

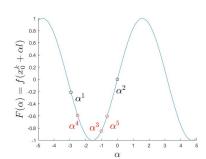



Linear Step Strategies: Determine Search Direction

 Approximate Steepest Descent

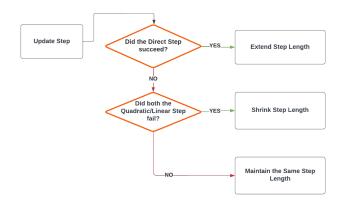
$$I = -\nabla_c f(x_0^k; \delta^k D^k)$$


• Last descent $I = x_0^k - x_0^s$

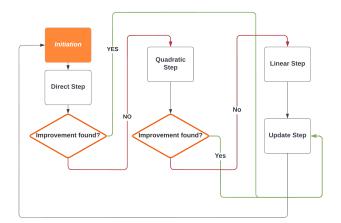


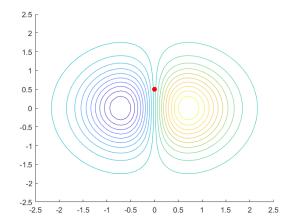
Linear Step Strategies: Determine Search Step Length

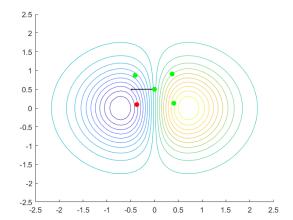
■ Step Length δ^k

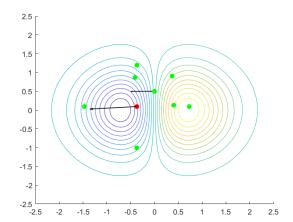


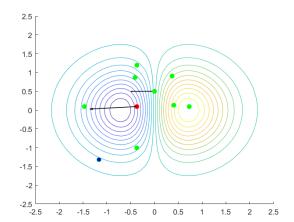
Safeguarded Bracket Search [Mifflin and Strodiot, 1989]

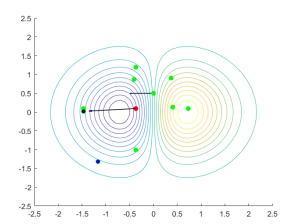


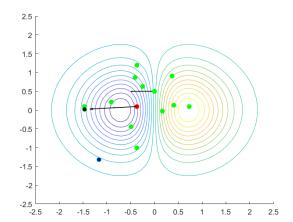

Linear Step Strategies


Label	Search Direction I	Search Step α	
Strategy 1 Steepest Descent One Step (One Step (δ^k)	
Strategy 2	Steepest Descent	Bracket Search	
Strategy 3	Last Descent	One Step (δ^k)	
Strategy 4 Last Descent		Bracket Search	




Flow Diagram of the DQL method





16 / 31

Convergence Analysis

Theorem 1

Let function $f: \mathbb{R}^n \to \mathbb{R}$ has compact level set $L(x^0)$. In addition, let ∇f be Lipschitz continuous in an open set containing $L(x^0)$. Then the DQL method results in

$$\lim_{k\to+\infty}\inf \left\|\nabla f(x^k)\right\|=0,$$

and $\{x^k\}$ has a limit point x^* for which $\nabla f(x^*) = 0$.

Proof.

The proof can be found in the thesis [Huang, 2022, Thm 3.5].

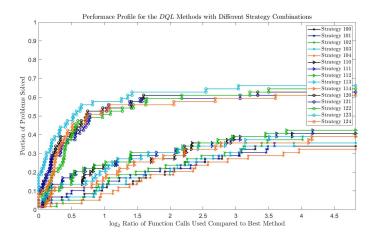
Dominic H. 2022 BIRS July 19, 2022

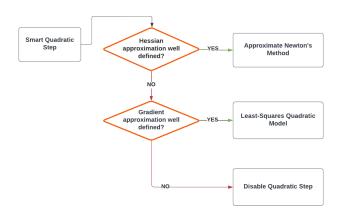
Performance Benchmark

■ Direct Step

1 option: Strategy 1

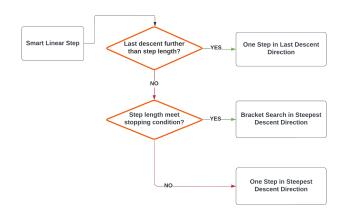
Quadratic Step


3 options: Disable, Strategy 1-2

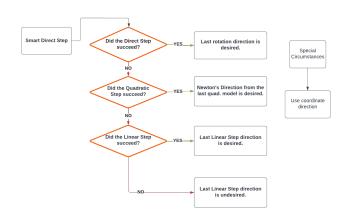

Linear Step

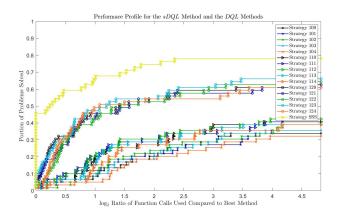
5 options: Disable, Strategy 1-4

Is there a winner among 15 combinations?

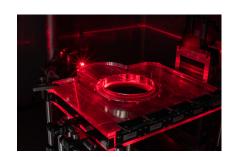

Parameter	Value
$\epsilon_{ abla}$	10^{-6}
$\epsilon_{ ext{MAX_STEP}}$	10^{-3}
$\epsilon_{ ext{min_STEP}}$	10^{-12}
MAX_SEARCH	10000

- One Step in Last Descent Direction
 - Best Exploration Ability
- Bracket Search in Steepest Descent Direction
 - Best Exploitation Ability
- One Step in Steepest Descent Direction
 - Simple and Efficient


Smart Linear Step



Smart Direct Step


What information can we extract from the last iteration?

- Direct Step Is r^{k-1} a good rotation direction?
- Quadratic Step Is m^{k-1} a good quadratic model?
- Linear Step Is I^{k-1} a good linear search direction?

Background

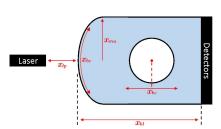


Figure: Solid Tank Design (Picture by Andy Oglivy).

Background

$$x = \begin{bmatrix} x_{bl} & x_{bc} & x_{lp} & x_{ma} & x_{be} \end{bmatrix}^{\top} \in \mathbb{R}^{5}$$

$$x_{bl} \in [200, 400]$$

$$x_{bc} \in [-30, 30]$$

$$x_{lp} \in [40, 100]$$

$$x_{ma} \in [40, 80]$$

$$x_{be} \in [0, 1]$$

$$\max\{F(x)|x\in C\}$$

Experiment Results

Table: Experimental Results for Solid Tank Design Problem

		Water	FlexDos3D	ClearView TM
Ì	SMART DQL Method	2.7676	2.9360	2.9522
	Grid Search Method	2.5611	2.9105	2.8694

Conclusion

DQL method

- is a local DFO method.
- is able to combine multiple search strategies.
- is converging to local optima for some functions.

SMART DQL method

- is built under the framework of DQL method.
- is able to choose search strategies dynamically and adaptively.
- is faster and more robust than any simple combinations from our DQL method study.
- is more reliable and efficient in real-world application as compared to the Grid Search Method

Future Development

- Develop the global search ability.
- Integrate more search strategies.
- Design a more sophisticated decision tree.
- Specialize the decision making mechanism for different real-world applications.

Reference

Thank you!

Huang, Z. (2022).

DOL Method

A hybrid direct search and model-based derivative-free optimization method with dynamic decision processing.

Manno, A., Amaldi, E., Casella, F., and Martelli, E. (2020).

A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement.

Optimization and Engineering, 21(4):1563–1598.

Mifflin, R. and Strodiot, J.-J. (1989).

A bracketing technique to ensure desirable convergence in univariate minimization

Mathematical programming, 43(1):117-130.