troduction 0	DQL Method 00000000000000	Smart DQL Method 000000	Solid Tank Design 000	Conclusio 000

A hybrid direct search and model-based derivative-free optimization method with dynamic decision processing

Dominic (Zhongda) Huang

Supervisor: Dr. Warren Hare

The University of British Columbia - Okanagan Campus

July 19, 2022

DQL Method 000000000000000	Smart DQL Method 000000	Solid Tank Design 000	Conclusion

Outline

1 Introduction

- 2 DQL Method
- 3 SMART DQL Method
- 4 Solid Tank Design

5 Conclusion

Derivative-Free and Black-Box Optimization

- Derivative-Free: No derivative information is used or available.
- Black-Box Function: The evaluation process is hidden.

Introduction	DQL Method	Smart DQL Method	Solid Tank Design	Conclusion
○●	00000000000000		000	000

Motivation

- We have a lot of well-developed methods for black-box problems.
- Due to the nature of black-box problems, we do not know how to choose the appropriate method.
- Inspired by the RQLIF method [Manno et al., 2020], we combine the strengths of three kinds of search strategies into one method.
- Allow the method to choose search strategies *dynamically* and *adaptively*.

SMART DQL Method

Solid Tank Design

Conclusion

$\mathrm{DQL}\xspace$ Method Framework

- Initialize
- 2 Direct Search Step
- 3 Quadratic Search Step
- 4 Linear Search Step
- 5 Update, Stop or Loop

Framework of the Direct Step

Search on the directions of rotated positive and negative coordinate direction by a step length of δ^k .

Desired Direction

SMART DQL Method 000000 Solid Tank Design

Conclusion 000

Direct Step Strategy 1: Random Rotation

The rotation directions alternates between two options:

- the coordinate directions.
- a random rotation.

SMART DQL Method 000000 Solid Tank Design

Conclusion

Framework of the Quadratic Step

Extract the quadratic information from the previously evaluated candidates within the trust region.

 Least-Squares Quadratic Model

 Approximate Newton's Method

DQL Method 0000●000000000	Smart DQL Method	Solid Tank Design 000	Conclusion 000

Framework of the Linear Step

$$\mathbb{L} = \{x_0 + \alpha^j I\}$$

Search direction
$$I \in \mathbb{R}^n$$

• Linear search steps $\left\{ \alpha^{j} \in \mathbb{R} \right\}$

SMART DQL Methoc 000000 Solid Tank Design

Conclusion

Linear Step Strategies: Determine Search Direction

• Approximate Steepest Descent $I = -\nabla_c f(x_0^k; \delta^k D^k)$

Last descent
$$I = x_0^k - x_0^s$$

SMART DQL Method 000000 Solid Tank Design

Conclusion

Linear Step Strategies: Determine Search Step Length

Step Length δ^k

 Safeguarded Bracket Search [Mifflin and Strodiot, 1989]

DQL Method 00000000000000	Smart DQL Method	Solid Tank Design 000	Conclusion 000

Linear Step Strategies

Label	Search Direction <i>I</i>	Search Step α
Strategy 1	Steepest Descent	One Step (δ^k)
Strategy 2	Steepest Descent	Bracket Search
Strategy 3	Last Descent	One Step (δ^k)
Strategy 4	Last Descent	Bracket Search

Framework of the Update Step

SMART DQL Method

Solid Tank Design

Conclusion

Flow Diagram of the $\mathrm{D}\mathrm{Q}\mathrm{L}$ method

DQL Method 000000000000000000000000000000000000	Smart DQL Method	Solid Tank Design 000	Conclusion 000

Convergence Analysis

Theorem 1

Let function $f : \mathbb{R}^n \to \mathbb{R}$ has compact level set $L(x^0)$. In addition, let ∇f be Lipschitz continuous in an open set containing $L(x^0)$. Then the DQL method results in

$$\liminf_{k\to+\infty}\left\|\nabla f(x^k)\right\|=0,$$

and $\{x^k\}$ has a limit point x^* for which $\nabla f(x^*) = 0$.

Proof.

The proof can be found in the thesis [Zhongda, 2022, Thm 3.5].

Performance Benchmark

- Direct Step
 1 option: Strategy 1
- Quadratic Step3 options: Disable, Strategy 1-2
- Linear Step
 - 5 options: Disable, Strategy 1-4

Is there a winner among 15 combinations?

SMART DQL Method

Solid Tank Design

Conclusion 000

Performance Benchmark: Stopping Conditions

Parameter	Value
$\epsilon_{ abla}$	10 ⁻⁶
$\epsilon_{ m MAX_STEP}$	10 ⁻³
$\epsilon_{ m MIN_STEP}$	10 ⁻¹²
MAX_SEARCH	10000

SMART DQL Metho 000000 Solid Tank Design

Conclusion 000

Performance Benchmark: Numerical Result

DQL Method 00000000000000	SMART DQL Method	Solid Tank Design 000	Conclusion 000

Smart Quadratic Step

DQL Method 00000000000000	Smart DQL Method 0●0000	Solid Tank Design	Conclusion

Smart Linear Step

- One Step in Last Descent Direction
 - Best Exploration Ability
- Bracket Search in Steepest Descent Direction
 - Best Exploitation Ability
- One Step in Steepest Descent Direction
 - Simple and Efficient

DQL Method 00000000000000	Smart DQL Method 00●000	Solid Tank Design	Conclusion 000

Smart Linear Step

DQL Method 00000000000000	Smart DQL Method	Solid Tank Design 000	Conclusion 000

Smart Direct Step

What information can we extract from the last iteration?

- Direct Step Is r^{k-1} a good rotation direction?
- Quadratic Step Is m^{k-1} a good quadratic model?

Linear Step Is I^{k-1} a good linear search direction?

DQL Method 00000000000000	SMART DQL Method	Solid Tank Design 000	Conclusion 000

Smart Direct Step

SMART DQL Method

Solid Tank Design

Conclusion

Performance of $\operatorname{Smart}\,\operatorname{DQL}$ Method

DQL Method 00000000000000	Smart DQL Method	Solid Tank Design ●00	Conclusion 000

Background

Figure: Solid Tank Design (Picture by Andy Oglivy).

DQL Method 00000000000000	Smart DQL Method	Solid Tank Design ○●○	Conclusion 000

Background

$$x = \begin{bmatrix} x_{bl} & x_{bc} & x_{lp} & x_{ma} & x_{be} \end{bmatrix}^{\top} \in \mathbb{R}^{5}$$
$$x_{bl} \in [200, 400]$$
$$x_{bc} \in [-30, 30]$$
$$x_{lp} \in [40, 100]$$
$$x_{ma} \in [40, 80]$$
$$x_{be} \in [0, 1]$$

$$\max\{F(x)|l\leq x\leq u\}$$

DQL	Smart DQL Method	Solid Tank Design 00●	Conclusion 000

Experiment Results

Table: Experimental Results for Solid Tank Design Problem

	Water	FlexDos3D	ClearView TM
SMART DQL Method	2.768	2.936	2.952
Grid Search Method	2.561	2.911	2.869
NOMAD(v3.9.1)	2.765	2.942	2.950

DQL Method 00000000000000	Smart DQL Method	Solid Tank Design 000	Conclusion ●00

Conclusion

$\mathrm{DQL}\xspace$ method

- is a local DFO method.
- is able to combine multiple search strategies.
- is converging to local optima for some functions.

$\operatorname{Smart}\,\operatorname{DQL}\,$ method

- is built under the framework of DQL method.
- is able to choose search strategies dynamically and adaptively.
- is faster and more robust than any simple combinations from our DQL method study.
- is more reliable and efficient in real-world application as compared to the Grid Search Method

DQL Method 00000000000000	Smart DQL Method	Solid Tank Design 000	Conclusion ○●○

Future Development

- Integrate more search strategies.
- Design a more sophisticated decision tree.
- Specialize the decision making mechanism for specific real-world applications.

DQL Method 000000000000000	Smart DQL Method	Solid Tank Design 000	Conclusion 00●

Reference

Thank you!

Code (MATLAB) is available at : https://github.com/ViggleH/DQL.git.

Manno, A., Amaldi, E., Casella, F., and Martelli, E. (2020).

A local search method for costly black-box problems and its application to CSP plant start-up optimization refinement.

Optimization and Engineering, 21(4):1563-1598.

Mifflin, R. and Strodiot, J.-J. (1989).

A bracketing technique to ensure desirable convergence in univariate minimization.

Mathematical programming, 43(1):117–130.

Zhongda, H. (2022).

A hybrid direct search and model-based derivative-free optimization method with dynamic decision processing.

Master's thesis, University of British Columbia.