

A derivative-free trust-region algorithm using calculus rules to build the model function

Presenter: Gabriel Jarry-Bolduc gabjarry@alumni.ubc.ca Presentation based on research done with Warren Hare

July 18, 2022.

The University of British Columbia- Okanagan Campus

- Compare two versions of a derivative-free trust-region algorithm:
 - One version employs a **calculus approach** to build the model function.
 - The second version employs a **non-calculus approach** to build the model function.

• The optimization problem considered is

 $\min_{\ell \leq x \leq u} F(x)$

where

• The optimization problem considered is

 $\min_{\ell \le x \le u} F(x)$

where

- $F : \mathbb{R}^n \to \mathbb{R}$ is obtained by manipulating two blackboxes with a similar degree of expensiveness,
- \cdot F is \mathcal{C}^2 on the box,
- the inequalities $\ell \le x \le u$ are taken component-wise ($\ell_i \le x_i \le u_i \quad \forall i \in \{1, \dots, n\}$).

In this presentation, we consider two different cases for F:

1. *F* is the **product** of two blackboxes f_1 and f_2 :

$$F=f_1\cdot f_2,$$

where $f_1 : \mathbb{R}^n \to \mathbb{R} \in \mathcal{C}^2, f_2 : \mathbb{R}^n \to \mathbb{R} \in \mathcal{C}^2$.

2. *F* is the **quotient** of two blackboxes f_1 and f_2 :

$$F = \frac{f_1}{f_2}$$

where $f_1 : \mathbb{R}^n \to \mathbb{R} \in C^2$, $f_2 : \mathbb{R}^n \to \mathbb{R} \in C^2$ and $f_2(x) \neq 0$ for any x in the box.

A **blackbox** is any process that returns an output whenever we provide an input, but the mechanism of the process is not analytically available to the optimizer.

$$\xrightarrow{\text{input: } x} \bigcirc \xrightarrow{\text{output: } f(x)}$$

• Example: Computer simulations, laboratory experiments.

• It is a derivative-free trust-region algorithm.

- It is a derivative-free trust-region algorithm.
- It is inspired by the the pseudo-code presented in [Conn, Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

- It is a derivative-free trust-region algorithm.
- It is inspired by the the pseudo-code presented in [Conn, Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].
- It has been adapted for box constrained optimization problems by considering the projected gradient onto the box.

- It is a derivative-free trust-region algorithm.
- It is inspired by the the pseudo-code presented in [Conn, Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].
- It has been adapted for box constrained optimization problems by considering the projected gradient onto the box.
- The convergence theory may be derived from the recent paper by Hough and Roberts: *Model-based derivative-free methods for convex-constrained optimization (2022).*

• The model m at iteration k, denoted m^k , has the form

$$m^{k}(x) = F(x^{k}) + (g^{k})^{\top}(x - x^{k}) + \frac{1}{2}(x - x^{k})^{\top}H^{k}(x - x^{k}),$$

where

- x^k is the incumbent solution,
- g^k is an approximation of the gradient $\nabla F(x^k)$,
- H^k is a symmetric approximation of the Hessian $\nabla^2 F(x^k)$.

• Letting $x = x^k + s^k$, where $s^k \in \mathbb{R}^n$ is a step direction, the model can be written as

$$m^{k}(x^{k} + s^{k}) = F(x^{k}) + (g^{k})^{\top}s^{k} + \frac{1}{2}(s^{k})^{\top}H^{k}s^{k}.$$

• Let $Q_F(x^k)$ be a quadratic interpolation function of F at x^k using the (n + 1)(n + 2)/2 distinct sample points

$$x^k$$
, $x^k \oplus h \operatorname{Id}$, $x^k \oplus h \operatorname{Id} \oplus h \operatorname{Id}$

where $h \neq 0$.

• Let $Q_F(x^k)$ be a quadratic interpolation function of F at x^k using the (n + 1)(n + 2)/2 distinct sample points

$$x^k$$
, $x^k \oplus h \operatorname{Id}$, $x^k \oplus h \operatorname{Id} \oplus h \operatorname{Id}$

where $h \neq 0$.

Non-calculus approach

 H^k : It is $\nabla^2 Q_F(x^k)$, the Hessian of the quad. interpolation function Q_F . g^k : It is $\nabla Q_F(x^k)$, the gradient of the quad. interpolation function Q_F . Calculus approach

• When
$$F = f_1 \cdot f_2$$
,

and

$$g^{k} = f_{1}(x^{k})\nabla Q_{f_{2}}(x^{k}) + f_{2}(x^{k})\nabla Q_{f_{1}}(x^{k}).$$

Calculus approach

• When
$$F = \frac{f_1}{f_2}$$
,

$$H^{k} = \frac{1}{[f_{2}(x^{k})]^{3}} \left[[f_{2}(x^{k})]^{2} \nabla^{2} Q_{f_{1}}(x^{k}) - f_{1}(x^{k}) f_{2}(x^{k}) \nabla^{2} Q_{f_{2}}(x^{k}) \right. \\ \left. + 2f_{1}(x^{k}) \nabla Q_{f_{2}}(x^{k}) \nabla Q_{f_{2}}(x^{k})^{\top} - f_{2}(x^{k}) \left(\nabla Q_{f_{1}}(x^{k}) \nabla Q_{f_{2}}(x^{k})^{\top} + \nabla Q_{f_{2}}(x^{k}) \nabla Q_{f_{1}}(x^{k})^{\top} \right) \right],$$

and

$$g^{k} = \frac{f_{2}(x^{k})\nabla Q_{f_{1}}(x^{k}) - f_{1}(x^{k})\nabla Q_{f_{2}}(x^{k})}{[f_{2}(x^{k})]^{2}}.$$

Calculus approach

• When
$$F = \frac{f_1}{f_2}$$
,

$$H^{k} = \frac{1}{[f_{2}(x^{k})]^{3}} \left[[f_{2}(x^{k})]^{2} \nabla^{2} Q_{f_{1}}(x^{k}) - f_{1}(x^{k}) f_{2}(x^{k}) \nabla^{2} Q_{f_{2}}(x^{k}) \right. \\ \left. + 2f_{1}(x^{k}) \nabla Q_{f_{2}}(x^{k}) \nabla Q_{f_{2}}(x^{k})^{\top} - f_{2}(x^{k}) \left(\nabla Q_{f_{1}}(x^{k}) \nabla Q_{f_{2}}(x^{k})^{\top} + \nabla Q_{f_{2}}(x^{k}) \nabla Q_{f_{1}}(x^{k})^{\top} \right) \right],$$

and

$$g^{k} = \frac{f_{2}(x^{k})\nabla Q_{f_{1}}(x^{k}) - f_{1}(x^{k})\nabla Q_{f_{2}}(x^{k})}{[f_{2}(x^{k})]^{2}}.$$

• For both approaches, H^k and g^k are obtained with (n + 1)(n + 2)/2 function evaluations.

- The Hessian of Q_F is a $\mathcal{O}(h)$ accurate approximation of the Hessian at x^k .
- The gradient of Q_F is $\mathcal{O}(h^2)$.

- The Hessian of Q_F is a $\mathcal{O}(h)$ accurate approximation of the Hessian at x^k .
- The gradient of Q_F is $\mathcal{O}(h^2)$.
- The calculus approach to approximate the Hessian and the gradient are also
 - $\mathcal{O}(h)$ and $\mathcal{O}(h^2)$ respectively [Chen, Hare, Jarry-Bolduc, 2022].

The non-calculus approach:

If f_1, f_2 are linear functions, then g^k and H^k are perfectly accurate.

The non-calculus approach:

If f_1, f_2 are linear functions, then g^k and H^k are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:

If f_1, f_2 are quadratic functions, then H^k and g^k are perfectly accurate.

(A calculus approach also allows to use different approximation techniques depending on the sub-function).

The non-calculus approach:

If f_1, f_2 are linear functions, then g^k and H^k are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:

If f_1, f_2 are quadratic functions, then H^k and g^k are perfectly accurate.

(A calculus approach also allows to use different approximation techniques depending on the sub-function).

• Will it make a significant difference in an algorithm?

Numerical experiments

- Two versions of a derivative-free trust-region algorithm have been implemented in Matlab2021b.
- The initial values for the parameters have been influenced by preliminary numerical results and the values proposed in *Trust region methods*, Chapter 6.

$\Delta_t^0 = 1$	(initial trust-region radius),
$\Delta_{t \max} = 1e + 03$	(maximal trust-region radius),
$\Delta_s^0 = 1$	(Initial sampling radius),
$\Delta_{\rm s\ min} = 1e - 03$	(minimal sampling radius),
$\Delta_{s \max} = 1$	(maximal sampling radius),
$\eta_{1} = 0.1$	(parameter for accepting the trial point),
$\eta_{2} = 0.9$	(parameter for the trust-region radius update),
$\gamma = 0.5$	(parameter to decrease trust-region radius),
$\gamma_{inc}=2$	(parameter to increase the trust-region radius),
$\epsilon_{stop} = 1e - 05$	(parameter to verify optimality),
$\mu = 1$	(parameter to verify the size of the trust-region radius)

- Note: the sampling points are allowed to be taken out of the box constraint.
- Every time the incumbent solution x^k is updated, H^k and g^k are computed again so that the the model is always *fully linear* on the trust region ball.
- This requires (n + 1)(n + 2)/2 function evaluations.

• To solve the trust-region subproblem in Matlab, we use the **quadprog** with the algorithm **trust-region reflective**.

Using data profiles with $\tau = 1e - 01$, 1e - 03, 1e - 05, we compare two versions of our derivative-free trust-region algorithm:

- Version 1 builds the model with a non-calculus approach.
- Version 2 builds the model with a calculus approach.
- To check if our algorithms are not that bad compared to well-established algorithms, we include **fmincon** in the comparisons.

• f_1 and f_2 are taken to be linear functions or quadratic functions with random dimensions n between 1 and 30.

- The coefficients in f_1 and f_2 are generated randomly with **randi** (integers in [-10, 10]).
- The starting point $x^0 \in \mathbb{R}^n$ is generated with randi (each component is in [-5, 5])
- The lower bound ℓ is set to $\ell_i = x_i^0 1$ for all $i \in \{1, \dots, n\}$
- The upper bound *u* is set to $u_i = x_i^0 + 1$ for all *i*.
- We repeat 100 times each experiment.

- First, we investigate the case $F = f_1 \cdot f_2$ for the 3 following situations:
 - f_1 : linear, f_2 : linear,
 - *f*₁: quadratic, *f*₂: linear,
 - f_1 : quadratic, f_2 : quadratic.

Data profiles, $F = f_1 \cdot f_2$, f_1 linear, f_2 linear

Data profiles, $F = f_1 \cdot f_2$, f_1 quadratic, f_2 linear

Data profiles, $F = f_1 \cdot f_2$, f_1 quadratic, f_2 quadratic

• Second, we investigate the case $F = \frac{f_1}{f_2}$ for the following 4 situations:

- f_1 : linear, f_2 : linear,
- f_1 : quadratic, f_2 : linear,
- f_1 : linear, f_2 : quadratic,
- f_1 : quadratic, f_2 : quadratic.

• f_2 and the box are built so that there are no roots of f_2 close to the box.

Data profiles, $F = \frac{f_1}{f_2}$, f_1 linear, f_2 linear

Data profiles, $F = \frac{f_1}{f_2}$, f_1 linear, f_2 quadratic

Data profiles, $F = \frac{f_1}{f_2}$, f_1 quadratic, f_2 linear

Data profiles, $F = \frac{f_1}{f_2}$, f_1 quadratic, f_2 quadratic

• We repeat the experiments for $F = \frac{f_1}{f_2}$, but this time, we let a root of f_2 be near the box constraint.

Data profiles, $F = \frac{f_1}{f_2}$, f_1 linear, f_2 linear

Data profiles, $F = \frac{f_1}{f_2}$, f_1 linear, f_2 quadratic

Data profiles, $F = \frac{f_1}{f_2}$, f_1 quadratic, f_2 linear

Data profiles, $F = \frac{f_1}{f_2}$, f_1 quadratic, f_2 quadratic

- The calculus approach is as good or better than the non-calculus approach on all experiments.
- The **calculus approach** is significantly better when $F = \frac{f_1}{f_2}$ and f_2 has a root near the box constraint.

• A calculus approach seems to improve the efficiency and robustness of our derivative-free trust-region algorithm.

- A calculus approach seems to improve the efficiency and robustness of our derivative-free trust-region algorithm.
- A calculus approach is not more difficult to implement than a non-calculus approach.

- A calculus approach seems to improve the efficiency and robustness of our derivative-free trust-region algorithm.
- A calculus approach is not more difficult to implement than a non-calculus approach.
- Another advantage of a calculus approach is that it allows to use different approximation techniques depending on the sub-function and/or different sample points.

- Consider other test sets.
- Integrate techniques to reuse sampling points.
- Find and solve a real-world problem that has this structure (product of two blackboxes or quotient of two blackboxes).

Papers related to this talk

- [CHJ21] Y. Chen, W. Hare, and G. Jarry-Bolduc. "Error Analysis of Surrogate Models Constructed through Operations on Sub-models". In: *arXiv preprint arXiv:2112.08411* (2021).
- [HJP20] W. Hare, G. Jarry-Bolduc, and C. Planiden. "Hessian approximations". In: *arXiv preprint arXiv:2011.02584* (2020).

Thank you!

Details on the sampling radius

• Each time a model m^k is built, it is *fully linear* on the trust region ball $B(x^k; \Delta_t^k)$ since the sampling radius to build g^k and H^k is set to

 $\Delta_{s}^{k} \leftarrow \min\{\Delta_{s}^{k}, \Delta_{t}^{k}\}.$

• To ensure that the sampling radius is not too big, we then set

$$\Delta_{s}^{k} \leftarrow \min\{\Delta_{s}^{k}, \Delta_{s\max}\}.$$

• To decrease the risk of numerical errors, we finally set

$$\Delta_{s}^{k} \leftarrow \max\{\Delta_{s}^{k}, \Delta_{s \min}\}.$$