
A derivative-free trust-region algorithm using
calculus rules to build the model function

Presenter: Gabriel Jarry-Bolduc gabjarry@alumni.ubc.ca
Presentation based on research done with Warren Hare

July 18, 2022.

The University of British Columbia- Okanagan Campus

1

Goals

• Compare two versions of a derivative-free trust-region
algorithm:

• One version employs a calculus approach to build the model
function.

• The second version employs a non-calculus approach to build the
model function.

2

Establishing the context

• The optimization problem considered is

min
ℓ≤x≤u

F(x)

where

• F : Rn → R is obtained by manipulating two blackboxes with a
similar degree of expensiveness,

• F is C2 on the box,
• the inequalities ℓ ≤ x ≤ u are taken component-wise
(ℓi ≤ xi ≤ ui ∀i ∈ {1, . . . ,n}).

3

Establishing the context

• The optimization problem considered is

min
ℓ≤x≤u

F(x)

where

• F : Rn → R is obtained by manipulating two blackboxes with a
similar degree of expensiveness,

• F is C2 on the box,
• the inequalities ℓ ≤ x ≤ u are taken component-wise
(ℓi ≤ xi ≤ ui ∀i ∈ {1, . . . ,n}).

3

Form of F considered

In this presentation, we consider two different cases for F:

1. F is the product of two blackboxes f1 and f2 :

F = f1 · f2,

where f1 : Rn → R ∈ C2, f2 : Rn → R ∈ C2.
2. F is the quotient of two blackboxes f1 and f2 :

F = f1
f2
,

where f1 : Rn → R ∈ C2, f2 : Rn → R ∈ C2 and f2(x) ̸= 0 for any x
in the box.

4

What is a blackbox?

A blackbox is any process that returns an output whenever we provide
an input, but the mechanism of the process is not analytically available
to the optimizer.

input: x−−−−→ ? output: f(x)−−−−−−→

• Example: Computer simulations, laboratory experiments.

5

The main algorithm

• It is a derivative-free trust-region algorithm.

• It is inspired by the the pseudo-code presented in [Conn,
Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

• It has been adapted for box constrained optimization problems by
considering the projected gradient onto the box.

• The convergence theory may be derived from the recent paper by
Hough and Roberts: Model-based derivative-free methods for
convex-constrained optimization (2022).

6

The main algorithm

• It is a derivative-free trust-region algorithm.

• It is inspired by the the pseudo-code presented in [Conn,
Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

• It has been adapted for box constrained optimization problems by
considering the projected gradient onto the box.

• The convergence theory may be derived from the recent paper by
Hough and Roberts: Model-based derivative-free methods for
convex-constrained optimization (2022).

6

The main algorithm

• It is a derivative-free trust-region algorithm.

• It is inspired by the the pseudo-code presented in [Conn,
Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

• It has been adapted for box constrained optimization problems by
considering the projected gradient onto the box.

• The convergence theory may be derived from the recent paper by
Hough and Roberts: Model-based derivative-free methods for
convex-constrained optimization (2022).

6

The main algorithm

• It is a derivative-free trust-region algorithm.

• It is inspired by the the pseudo-code presented in [Conn,
Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

• It has been adapted for box constrained optimization problems by
considering the projected gradient onto the box.

• The convergence theory may be derived from the recent paper by
Hough and Roberts: Model-based derivative-free methods for
convex-constrained optimization (2022).

6

Details on the model function

• The model m at iteration k, denoted mk, has the form

mk(x) = F(xk) + (gk)⊤(x− xk) + 1
2 (x− x

k)⊤Hk(x− xk),

where

• xk is the incumbent solution,
• gk is an approximation of the gradient ∇F(xk),
• Hk is a symmetric approximation of the Hessian ∇2F(xk).

7

Model function continued

• Letting x = xk + sk, where sk ∈ Rn is a step direction, the model
can be written as

mk(xk + sk) = F(xk) + (gk)⊤sk + 1
2 (s

k)⊤Hksk.

8

How do we build gk and Hk?

• Let QF(xk) be a quadratic interpolation function of F at xk using the
(n+ 1)(n+ 2)/2 distinct sample points

xk, xk ⊕ h Id, xk ⊕ h Id⊕h Id

where h ̸= 0.

Non-calculus approach

Hk: It is ∇2QF(xk), the Hessian of the quad. interpolation function QF.

gk : It is ∇QF(xk), the gradient of the quad. interpolation function QF.

9

How do we build gk and Hk?

• Let QF(xk) be a quadratic interpolation function of F at xk using the
(n+ 1)(n+ 2)/2 distinct sample points

xk, xk ⊕ h Id, xk ⊕ h Id⊕h Id

where h ̸= 0.

Non-calculus approach

Hk: It is ∇2QF(xk), the Hessian of the quad. interpolation function QF.

gk : It is ∇QF(xk), the gradient of the quad. interpolation function QF.

9

Calculus approach

• When F = f1 · f2,

Hk = f2(xk)∇2Qf1(xk) +∇Qf1(xk)
(
∇Qf2(xk)

)⊤

+∇Qf2(xk)
(
∇Qf1(xk)

)⊤
+ f1(xk)∇2Qf2(xk),

and

gk = f1(xk)∇Qf2(xk) + f2(xk)∇Qf1(xk).

10

Calculus approach

• When F = f1
f2 ,

Hk = 1
[f2(xk)]3

[
[f2(xk)]2∇2Qf1(xk)− f1(xk)f2(xk)∇2Qf2(xk)

+2f1(xk)∇Qf2(xk)∇Qf2(xk)⊤

−f2(xk)
(
∇Qf1(xk)∇Qf2(xk)⊤ +∇Qf2(xk)∇Qf1(xk)⊤

)]
,

and

gk =
f2(xk)∇Qf1(xk)− f1(xk)∇Qf2(xk)

[f2(xk)]2
.

• For both approaches, Hk and gk are obtained with (n+ 1)(n+ 2)/2
function evaluations.

11

Calculus approach

• When F = f1
f2 ,

Hk = 1
[f2(xk)]3

[
[f2(xk)]2∇2Qf1(xk)− f1(xk)f2(xk)∇2Qf2(xk)

+2f1(xk)∇Qf2(xk)∇Qf2(xk)⊤

−f2(xk)
(
∇Qf1(xk)∇Qf2(xk)⊤ +∇Qf2(xk)∇Qf1(xk)⊤

)]
,

and

gk =
f2(xk)∇Qf1(xk)− f1(xk)∇Qf2(xk)

[f2(xk)]2
.

• For both approaches, Hk and gk are obtained with (n+ 1)(n+ 2)/2
function evaluations.

11

Accuracy of the techniques

• The Hessian of QF is a O(h) accurate approximation of the
Hessian at xk.

• The gradient of QF is O(h2).

• The calculus approach to approximate the Hessian and the
gradient are also
• O(h) and O(h2) respectively [Chen, Hare, Jarry-Bolduc, 2022].

12

Accuracy of the techniques

• The Hessian of QF is a O(h) accurate approximation of the
Hessian at xk.

• The gradient of QF is O(h2).

• The calculus approach to approximate the Hessian and the
gradient are also
• O(h) and O(h2) respectively [Chen, Hare, Jarry-Bolduc, 2022].

12

Theoretical advantages of the calculus approach

The non-calculus approach:
If f1, f2 are linear functions, then gk and Hk are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:
If f1, f2 are quadratic functions, then Hk and gk are perfectly accurate.

(A calculus approach also allows to use different approximation
techniques depending on the sub-function).

• Will it make a significant difference in an algorithm?

13

Theoretical advantages of the calculus approach

The non-calculus approach:
If f1, f2 are linear functions, then gk and Hk are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:
If f1, f2 are quadratic functions, then Hk and gk are perfectly accurate.

(A calculus approach also allows to use different approximation
techniques depending on the sub-function).

• Will it make a significant difference in an algorithm?

13

Theoretical advantages of the calculus approach

The non-calculus approach:
If f1, f2 are linear functions, then gk and Hk are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:
If f1, f2 are quadratic functions, then Hk and gk are perfectly accurate.

(A calculus approach also allows to use different approximation
techniques depending on the sub-function).

• Will it make a significant difference in an algorithm?

13

Numerical experiments

Implementation

• Two versions of a derivative-free trust-region algorithm have been
implemented in Matlab2021b.

• The initial values for the parameters have been influenced by
preliminary numerical results and the values proposed in Trust
region methods, Chapter 6.

14

The values of the parameters

∆0
t = 1 (initial trust-region radius),

∆t max = 1e+ 03 (maximal trust-region radius),
∆0
s = 1 (Initial sampling radius),

∆s min = 1e− 03 (minimal sampling radius),
∆s max = 1 (maximal sampling radius),

η1 = 0.1 (parameter for accepting the trial point),
η2 = 0.9 (parameter for the trust-region radius update),
γ = 0.5 (parameter to decrease trust-region radius),

γinc = 2 (parameter to increase the trust-region radius),
ϵstop = 1e− 05 (parameter to verify optimality),

µ = 1 (parameter to verify the size of the trust-region radius).

15

More details on the model function

• Note: the sampling points are allowed to be taken out of the box
constraint.

• Every time the incumbent solution xk is updated, Hk and gk are
computed again so that the the model is always fully linear on the
trust region ball.

• This requires (n+ 1)(n+ 2)/2 function evaluations.

16

Trust-region subproblem

• To solve the trust-region subproblem in Matlab, we use the
quadprog with the algorithm trust-region reflective.

17

Comparison

Using data profiles with τ = 1e− 01, 1e− 03, 1e− 05, we compare two
versions of our derivative-free trust-region algorithm:

• Version 1 builds the model with a non-calculus approach.
• Version 2 builds the model with a calculus approach.

• To check if our algorithms are not that bad compared to
well-established algorithms, we include fmincon in the comparisons.

18

Details on the experiments

• f1 and f2 are taken to be linear functions or quadratic functions
with random dimensions n between 1 and 30.

• The coefficients in f1 and f2 are generated randomly with randi
(integers in [−10, 10]).

• The starting point x0 ∈ Rn is generated with randi (each
component is in [−5, 5])

• The lower bound ℓ is set to ℓi = x0i − 1 for all i ∈ {1, . . . ,n}

• The upper bound u is set to ui = x0i + 1 for all i.

• We repeat 100 times each experiment.

19

Experiment 1: product

• First, we investigate the case F = f1 · f2 for the 3 following
situations:

• f1: linear, f2: linear,
• f1: quadratic, f2: linear,
• f1: quadratic, f2: quadratic.

20

Data profiles, F = f1 · f2, f1 linear, f2 linear

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

no calculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

21

Data profiles, F = f1 · f2, f1 quadratic, f2 linear

0 500
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 500
0

0.2

0.4

0.6

0.8

1
=1e-03

0 500
0

0.2

0.4

0.6

0.8

1
=1e-05

22

Data profiles, F = f1 · f2, f1 quadratic, f2 quadratic

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

23

Experiment 2: easy quotient

• Second, we investigate the case F = f1
f2 for the following 4

situations:

• f1: linear, f2: linear,
• f1: quadratic, f2: linear,
• f1: linear, f2: quadratic,
• f1: quadratic, f2: quadratic.

• f2 and the box are built so that there are no roots of f2 close to the
box.

24

Data profiles, F = f1
f2 , f1 linear, f2 linear

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

25

Data profiles, F = f1
f2 , f1 linear, f2 quadratic

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

26

Data profiles, F = f1
f2 , f1 quadratic, f2 linear

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

27

Data profiles, F = f1
f2 , f1 quadratic, f2 quadratic

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

28

Experiment 3: hard quotient

• We repeat the experiments for F = f1
f2 , but this time,

we let a root of f2 be near the box constraint.

29

Data profiles, F = f1
f2 , f1 linear, f2 linear

0 500
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 500
0

0.2

0.4

0.6

0.8

1
=1e-03

0 500
0

0.2

0.4

0.6

0.8

1
=1e-05

30

Data profiles, F = f1
f2 , f1 linear, f2 quadratic

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

31

Data profiles, F = f1
f2 , f1 quadratic, f2 linear

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

32

Data profiles, F = f1
f2 , f1 quadratic, f2 quadratic

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-01

calculus

nocalculus

fmincon

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-03

0 200 400
0

0.2

0.4

0.6

0.8

1
=1e-05

33

Analyzing the results

• The calculus approach is as good or better than the non-calculus
approach on all experiments.

• The calculus approach is significantly better when F = f1
f2 and f2

has a root near the box constraint.

34

Conclusion

• A calculus approach seems to improve the efficiency and
robustness of our derivative-free trust-region algorithm.

• A calculus approach is not more difficult to implement than a
non-calculus approach.

• Another advantage of a calculus approach is that it allows to use
different approximation techniques depending on the sub-function
and/or different sample points.

35

Conclusion

• A calculus approach seems to improve the efficiency and
robustness of our derivative-free trust-region algorithm.

• A calculus approach is not more difficult to implement than a
non-calculus approach.

• Another advantage of a calculus approach is that it allows to use
different approximation techniques depending on the sub-function
and/or different sample points.

35

Conclusion

• A calculus approach seems to improve the efficiency and
robustness of our derivative-free trust-region algorithm.

• A calculus approach is not more difficult to implement than a
non-calculus approach.

• Another advantage of a calculus approach is that it allows to use
different approximation techniques depending on the sub-function
and/or different sample points.

35

Future research directions

• Consider other test sets.

• Integrate techniques to reuse sampling points.

• Find and solve a real-world problem that has this structure
(product of two blackboxes or quotient of two blackboxes).

36

Papers related to this talk

[CHJ21] Y. Chen, W. Hare, and G. Jarry-Bolduc. “Error Analysis of
Surrogate Models Constructed through Operations on
Sub-models”. In: arXiv preprint arXiv:2112.08411 (2021).

[HJP20] W. Hare, G. Jarry-Bolduc, and C. Planiden. “Hessian
approximations”. In: arXiv preprint arXiv:2011.02584 (2020).

37

Thank you!

38

Details on the sampling radius

• Each time a model mk is built, it is fully linear on the trust region
ball B(xk;∆k

t) since the sampling radius to build gk and Hk is set to

∆k
s ← min{∆k

s ,∆
k
t }.

• To ensure that the sampling radius is not too big, we then set

∆k
s ← min{∆k

s ,∆smax}.

• To decrease the risk of numerical errors, we finally set

∆k
s ← max{∆k

s ,∆s min}.

39

	Numerical experiments
	Papers related to this talk

