A derivative-free trust-region algorithm using calculus rules to build the model function

Presenter: Gabriel Jarry-Bolduc gabjarry@alumni.ubc.ca Presentation based on research done with Warren Hare

July 18, 2022.
The University of British Columbia- Okanagan Campus

Goals

- Compare two versions of a derivative-free trust-region algorithm:
- One version employs a calculus approach to build the model function.
- The second version employs a non-calculus approach to build the model function.

Establishing the context

- The optimization problem considered is

$$
\min _{\ell \leq x \leq u} F(x)
$$

where

Establishing the context

- The optimization problem considered is

$$
\min _{\ell \leq x \leq u} F(x)
$$

where

- $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is obtained by manipulating two blackboxes with a similar degree of expensiveness,
- F is \mathcal{C}^{2} on the box,
- the inequalities $\ell \leq x \leq u$ are taken component-wise $\left(\ell_{i} \leq x_{i} \leq u_{i} \quad \forall i \in\{1, \ldots, n\}\right)$.

Form of F considered

In this presentation, we consider two different cases for F:

1. F is the product of two blackboxes f_{1} and f_{2} :

$$
F=f_{1} \cdot f_{2},
$$

where $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathcal{C}^{2}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathcal{C}^{2}$.
2. F is the quotient of two blackboxes f_{1} and f_{2} :

$$
F=\frac{f_{1}}{f_{2}},
$$

where $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathcal{C}^{2}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R} \in \mathcal{C}^{2}$ and $f_{2}(x) \neq 0$ for any x in the box.

What is a blackbox?

A blackbox is any process that returns an output whenever we provide an input, but the mechanism of the process is not analytically available to the optimizer.

- Example: Computer simulations, laboratory experiments.

The main algorithm

- It is a derivative-free trust-region algorithm.

The main algorithm

- It is a derivative-free trust-region algorithm.
- It is inspired by the the pseudo-code presented in [Conn, Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].

The main algorithm

- It is a derivative-free trust-region algorithm.
- It is inspired by the the pseudo-code presented in [Conn, Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].
- It has been adapted for box constrained optimization problems by considering the projected gradient onto the box.

The main algorithm

- It is a derivative-free trust-region algorithm.
- It is inspired by the the pseudo-code presented in [Conn, Scheinberg and Vicente, 2009] and [Hough and Roberts, 2022].
- It has been adapted for box constrained optimization problems by considering the projected gradient onto the box.
- The convergence theory may be derived from the recent paper by Hough and Roberts: Model-based derivative-free methods for convex-constrained optimization (2022).

Details on the model function

- The model m at iteration k, denoted m^{k}, has the form

$$
m^{k}(x)=F\left(x^{k}\right)+\left(g^{k}\right)^{\top}\left(x-x^{k}\right)+\frac{1}{2}\left(x-x^{k}\right)^{\top} H^{k}\left(x-x^{k}\right),
$$

where

- x^{k} is the incumbent solution,
- g^{k} is an approximation of the gradient $\nabla F\left(x^{k}\right)$,
- H^{k} is a symmetric approximation of the Hessian $\nabla^{2} F\left(x^{k}\right)$.

Model function continued

- Letting $x=x^{k}+s^{k}$, where $s^{k} \in \mathbb{R}^{n}$ is a step direction, the model can be written as

$$
m^{k}\left(x^{k}+s^{k}\right)=F\left(x^{k}\right)+\left(g^{k}\right)^{\top} s^{k}+\frac{1}{2}\left(s^{k}\right)^{\top} H^{k} s^{k} .
$$

How do we build g^{k} and H^{k} ?

- Let $Q_{F}\left(x^{k}\right)$ be a quadratic interpolation function of F at x^{k} using the $(n+1)(n+2) / 2$ distinct sample points

$$
x^{k}, \quad x^{k} \oplus h \mathbf{I d}, \quad x^{k} \oplus h \mathrm{Id} \oplus h \mathrm{Id}
$$

where $h \neq 0$.

How do we build g^{k} and H^{k} ?

- Let $Q_{F}\left(x^{k}\right)$ be a quadratic interpolation function of F at x^{k} using the $(n+1)(n+2) / 2$ distinct sample points

$$
x^{k}, \quad x^{k} \oplus h \mathbf{I d}, \quad x^{k} \oplus h \mathbf{I d} \oplus h \mathrm{Id}
$$

where $h \neq 0$.

Non-calculus approach
H^{k} : It is $\nabla^{2} Q_{F}\left(x^{k}\right)$, the Hessian of the quad. interpolation function Q_{F}. g^{k} : It is $\nabla Q_{F}\left(x^{k}\right)$, the gradient of the quad. interpolation function Q_{F}.

Calculus approach

- When $F=f_{1} \cdot f_{2}$,

$$
\begin{aligned}
H^{k}= & f_{2}\left(x^{k}\right) \nabla^{2} Q_{f_{1}}\left(x^{k}\right)+\nabla Q_{f_{1}}\left(x^{k}\right)\left(\nabla Q_{f_{2}}\left(x^{k}\right)\right)^{\top} \\
& +\nabla Q_{f_{2}}\left(x^{k}\right)\left(\nabla Q_{f_{1}}\left(x^{k}\right)\right)^{\top}+f_{1}\left(x^{k}\right) \nabla^{2} Q_{f_{2}}\left(x^{k}\right),
\end{aligned}
$$

and

$$
g^{k}=f_{1}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)+f_{2}\left(x^{k}\right) \nabla Q_{f_{1}}\left(x^{k}\right) .
$$

Calculus approach

- When $F=\frac{f_{1}}{f_{2}}$,

$$
\begin{aligned}
H^{k}= & \frac{1}{\left[f_{2}\left(x^{k}\right)\right]^{3}}\left[\left[f_{2}\left(x^{k}\right)\right]^{2} \nabla^{2} Q_{f_{1}}\left(x^{k}\right)-f_{1}\left(x^{k}\right) f_{2}\left(x^{k}\right) \nabla^{2} Q_{f_{2}}\left(x^{k}\right)\right. \\
& +2 f_{1}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)^{\top} \\
& \left.-f_{2}\left(x^{k}\right)\left(\nabla Q_{f_{1}}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)^{\top}+\nabla Q_{f_{2}}\left(x^{k}\right) \nabla Q_{f_{1}}\left(x^{k}\right)^{\top}\right)\right],
\end{aligned}
$$

and

$$
g^{k}=\frac{f_{2}\left(x^{k}\right) \nabla Q_{f_{1}}\left(x^{k}\right)-f_{1}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)}{\left[f_{2}\left(x^{k}\right)\right]^{2}} .
$$

Calculus approach

- When $F=\frac{f_{1}}{f_{2}}$,

$$
\begin{aligned}
H^{k}= & \frac{1}{\left[f_{2}\left(x^{k}\right)\right]^{3}}\left[\left[f_{2}\left(x^{k}\right)\right]^{2} \nabla^{2} Q_{f_{1}}\left(x^{k}\right)-f_{1}\left(x^{k}\right) f_{2}\left(x^{k}\right) \nabla^{2} Q_{f_{2}}\left(x^{k}\right)\right. \\
& +2 f_{1}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)^{\top} \\
& \left.-f_{2}\left(x^{k}\right)\left(\nabla Q_{f_{1}}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)^{\top}+\nabla Q_{f_{2}}\left(x^{k}\right) \nabla Q_{f_{1}}\left(x^{k}\right)^{\top}\right)\right],
\end{aligned}
$$

and

$$
g^{k}=\frac{f_{2}\left(x^{k}\right) \nabla Q_{f_{1}}\left(x^{k}\right)-f_{1}\left(x^{k}\right) \nabla Q_{f_{2}}\left(x^{k}\right)}{\left[f_{2}\left(x^{k}\right)\right]^{2}} .
$$

- For both approaches, H^{k} and g^{k} are obtained with $(n+1)(n+2) / 2$ function evaluations.

Accuracy of the techniques

- The Hessian of Q_{F} is a $\mathcal{O}(h)$ accurate approximation of the Hessian at x^{k}.
- The gradient of Q_{F} is $\mathcal{O}\left(h^{2}\right)$.

Accuracy of the techniques

- The Hessian of Q_{F} is a $\mathcal{O}(h)$ accurate approximation of the Hessian at x^{k}.
- The gradient of Q_{F} is $\mathcal{O}\left(h^{2}\right)$.
- The calculus approach to approximate the Hessian and the gradient are also
- $\mathcal{O}(h)$ and $\mathcal{O}\left(h^{2}\right)$ respectively [Chen, Hare, Jarry-Bolduc, 2022].

Theoretical advantages of the calculus approach

The non-calculus approach:
If f_{1}, f_{2} are linear functions, then g^{k} and H^{k} are perfectly accurate.

Theoretical advantages of the calculus approach

The non-calculus approach:
If f_{1}, f_{2} are linear functions, then g^{k} and H^{k} are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:
If f_{1}, f_{2} are quadratic functions, then H^{k} and g^{k} are perfectly accurate.
(A calculus approach also allows to use different approximation techniques depending on the sub-function).

Theoretical advantages of the calculus approach

The non-calculus approach:
If f_{1}, f_{2} are linear functions, then g^{k} and H^{k} are perfectly accurate.

We can do better than that with the calculus based approach!

The calculus approach:
If f_{1}, f_{2} are quadratic functions, then H^{k} and g^{k} are perfectly accurate.
(A calculus approach also allows to use different approximation techniques depending on the sub-function).

- Will it make a significant difference in an algorithm?

Numerical experiments

Implementation

- Two versions of a derivative-free trust-region algorithm have been implemented in Matlab2021b.
- The initial values for the parameters have been influenced by preliminary numerical results and the values proposed in Trust region methods, Chapter 6.

The values of the parameters

$$
\begin{aligned}
\Delta_{t}^{0} & =1 & & \text { (initial trust-region radius), } \\
\Delta_{t} \max & =1 e+03 & & \text { (maximal trust-region radius), } \\
\Delta_{s}^{0} & =1 & & \text { (Initial sampling radius), } \\
\Delta_{s \min } & =1 e-03 & & \text { (minimal sampling radius), } \\
\Delta_{s \max } & =1 & & \text { (maximal sampling radius), } \\
\eta_{1} & =0.1 & & \text { (parameter for accepting the trial point), } \\
\eta_{2} & =0.9 & & \text { (parameter for the trust-region radius update), } \\
\gamma & =0.5 & & \text { (parameter to decrease trust-region radius), } \\
\gamma_{\text {inc }} & =2 & & \text { (parameter to increase the trust-region radius), } \\
\epsilon_{s t o p} & =1 e-05 & & \text { (parameter to verify optimality), } \\
\mu & =1 & & \text { (parameter to verify the size of the trust-region radius). }
\end{aligned}
$$

More details on the model function

- Note: the sampling points are allowed to be taken out of the box constraint.
- Every time the incumbent solution x^{k} is updated, H^{k} and g^{k} are computed again so that the the model is always fully linear on the trust region ball.
- This requires $(n+1)(n+2) / 2$ function evaluations.

Trust-region subproblem

- To solve the trust-region subproblem in Matlab, we use the quadprog with the algorithm trust-region reflective.

Comparison

Using data profiles with $\tau=1 e-01,1 e-03,1 e-05$, we compare two versions of our derivative-free trust-region algorithm:

- Version 1 builds the model with a non-calculus approach.
- Version 2 builds the model with a calculus approach.
- To check if our algorithms are not that bad compared to well-established algorithms, we include fmincon in the comparisons.

Details on the experiments

- f_{1} and f_{2} are taken to be linear functions or quadratic functions with random dimensions n between 1 and 30 .
- The coefficients in f_{1} and f_{2} are generated randomly with randi (integers in $[-10,10]$).
- The starting point $x^{0} \in \mathbb{R}^{n}$ is generated with randi (each component is in $[-5,5]$)
- The lower bound ℓ is set to $\ell_{i}=x_{i}^{0}-1$ for all $i \in\{1, \ldots, n\}$
- The upper bound u is set to $u_{i}=x_{i}^{0}+1$ for all i.
- We repeat 100 times each experiment.

Experiment 1: product

- First, we investigate the case $F=f_{1} \cdot f_{2}$ for the 3 following situations:
- f_{1} : linear, f_{2} : linear,
- f_{1} : quadratic, f_{2} : linear,
- f_{1} : quadratic, f_{2} : quadratic.

Data profiles, $F=f_{1} \cdot f_{2}, f_{1}$ linear, f_{2} linear

Data profiles, $F=f_{1} \cdot f_{2}, f_{1}$ quadratic, f_{2} linear

Data profiles, $F=f_{1} \cdot f_{2}, f_{1}$ quadratic, f_{2} quadratic

Experiment 2: easy quotient

- Second, we investigate the case $F=\frac{f_{1}}{f_{2}}$ for the following 4 situations:
- f_{1} : linear, f_{2} : linear,
- f_{1} : quadratic, f_{2} : linear,
- f_{1} : linear, f_{2} : quadratic,
- f_{1} : quadratic, f_{2} : quadratic.
- f_{2} and the box are built so that there are no roots of f_{2} close to the box.

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ linear, f_{2} linear

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ linear, f_{2} quadratic

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ quadratic, f_{2} linear

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ quadratic, f_{2} quadratic

Experiment 3: hard quotient

- We repeat the experiments for $F=\frac{f_{1}}{f_{2}}$, but this time, we let a root of f_{2} be near the box constraint.

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ linear, f_{2} linear

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ linear, f_{2} quadratic

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ quadratic, f_{2} linear

Data profiles, $F=\frac{f_{1}}{f_{2}}, f_{1}$ quadratic, f_{2} quadratic

Analyzing the results

- The calculus approach is as good or better than the non-calculus approach on all experiments.
- The calculus approach is significantly better when $F=\frac{f_{1}}{f_{2}}$ and f_{2} has a root near the box constraint.

Conclusion

- A calculus approach seems to improve the efficiency and robustness of our derivative-free trust-region algorithm.

Conclusion

- A calculus approach seems to improve the efficiency and robustness of our derivative-free trust-region algorithm.
- A calculus approach is not more difficult to implement than a non-calculus approach.

Conclusion

- A calculus approach seems to improve the efficiency and robustness of our derivative-free trust-region algorithm.
- A calculus approach is not more difficult to implement than a non-calculus approach.
- Another advantage of a calculus approach is that it allows to use different approximation techniques depending on the sub-function and/or different sample points.

Future research directions

- Consider other test sets.
- Integrate techniques to reuse sampling points.
- Find and solve a real-world problem that has this structure (product of two blackboxes or quotient of two blackboxes).

Papers related to this talk

[CHJ21] Y. Chen, W. Hare, and G. Jarry-Bolduc. "Error Analysis of Surrogate Models Constructed through Operations on Sub-models". In: arXiv preprint arXiv:2112.08411 (2021).
[HJP20] W. Hare, G. Jarry-Bolduc, and C. Planiden. "Hessian approximations". In: arXiv preprint arXiv:2011.02584 (2020).

Thank you!

Details on the sampling radius

- Each time a model m^{k} is built, it is fully linear on the trust region ball $B\left(x^{k} ; \Delta_{t}^{k}\right)$ since the sampling radius to build g^{k} and H^{k} is set to

$$
\Delta_{s}^{k} \leftarrow \min \left\{\Delta_{s}^{k}, \Delta_{t}^{k}\right\}
$$

- To ensure that the sampling radius is not too big, we then set

$$
\Delta_{s}^{k} \leftarrow \min \left\{\Delta_{s}^{k}, \Delta_{s \max }\right\} .
$$

- To decrease the risk of numerical errors, we finally set

$$
\Delta_{s}^{k} \leftarrow \max \left\{\Delta_{s}^{k}, \Delta_{\mathrm{s} \min }\right\} .
$$

