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Derivative-free & black-box optimization

We consider

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, i ∈ I = {1, . . . ,m}

where evaluations of f and gi are the results of (possibly) complex
computer simulations

x ∈ Rn −→ −→ f (x), g(x)

calls to the simulator are expensive

f is not defined when gi (x) < 0

derivatives are not available (or untrustworthy, or difficult to
obtain)
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Motivations

1 In many real-world problems objective and constraint function
values are the result of complex computer simulation codes

2 First (and higher order) derivatives are unavailable or impractical
to obtain or untrustworthy

3 Objective function could be undefined outside the feasible
region
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Other approaches

[Alarie,Audet,Jacquot,Le Digabel, ORL 2022] Hierarchically constrained
problems

[Le Digabel, ACM 2011], [Audet et al., arXiv 2021] NOMAD
Extreme and progressive barrier, smooth and nonsmooth, hidden constraints

[Cristofari,Rinaldi, SIOPT 2021] ORD Structured constrained problems, smooth

[Audet,Tribes, COAP 2018] Mesh-based Nelder-Meade

[Audet,Conn,Le Digabel,Peyrega, COAP 2018] Progressive barrier trust-region

[Audet,Hare, 2017] Derivative-Free and Blackbox Optimization

[Reggis,Wild, OMS 2017] use of RBF in trust-region for constrained probs

[Diouane,Gratton,Vicente, COAP 2015] Use of barrier functions within evolution
strategies

[Fasano,L.,Lucidi,Rinaldi, SIOPT 2014] DFN Exterior exact penalty, nonsmooth

[L.,Lucidi,Sciandrone, SIOPT 2010] PENSEQ Exterior sequential penalty, smooth

[Conn,Scheinberg,Vicente 2009] Introduction to Derivative-Free Optimization

[Audet,Dennis Jr, SIOPT 2009] Progressive barrier for constrained DF

[L.,Lucidi, SIOPT 2009] Exterior exact `∞ penalty, smooth
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Introduction

Given problem
min f (x)
s.t. x ∈ S = {x ∈ Rn : gi (x) ≥ 0, i ∈ I}
I = {1, 2, . . . ,m}

assume

f and gi , i ∈ I black-box type functions
f and gi , i ∈ I continuously differentiable
gi ≥ 0, i ∈ I not relaxable constraints
S is compact
◦
S6= ∅ and a strictly feasible x0 ∈

◦
S is known

The Lagrangian function and its gradient (w.r.t. x) are

L(x , λ) = f (x)− λ>g(x)

∇xL(x , λ) = ∇f (x)−∇g(x)λ

Definition [KKT point]

x̄ ∈ S is a KKT point if λ̄i , i ∈ I, exist such that

∇xL(x̄ , λ̄) = 0,

λ̄ ≥ 0, λ̄ ⊥ g(x̄)
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Log-barrier penalty function

We introduce

P(x ;µ) = f (x)− µ
∑
i=I

log(gi (x))

∇P(x ;µ) = ∇f (x)−
∑
i∈I

µ

gi (x)
∇gi (x)

and consider, for µ > 0, the penalized problem

min P(x ;µ)

s.t. x ∈
◦
S

When µ is fixed:

problem is “essentially” unconstrained
it can be solved by easily adapting a LS derivative-free method

µ must be driven to zero to solve the original problem
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The algorithm when µ is fixed

Algorithm 1: DF Linesearch DFL

Data: x0 ∈
◦
S, µ > 0, d i

0 = e i , α̃i
0 > 0, i = 1, . . . , n

for k = 0, 1, 2, . . . do
Set y1

k = xk
for i = 1, 2, . . . , n do

if y i
k + α̃i

kd
i
k ∈
◦
S and P(y i

k ;µ) can be suff. reduced along d i
k then

compute αi
k and set α̃i

k+1 = αi
k , d i

k+1 = d i
k (LS along d i

k )

else if y i
k − α̃

i
kd

i
k ∈
◦
S and P(y i

k ;µ) can be suff. reduced along −d i
k then

compute αi
k and set α̃i

k+1 = αi
k , d i

k+1 = −d i
k (LS along −d i

k )

else
Set αi

k = 0 and α̃i
k+1 = θα̃i

k (failure step)

end

Set y i+1
k = y i

k + αi
kd

i
k

end

Find xk+1 ∈
◦
S s.t. P(xk+1;µ) ≤ P(yn+1

k ;µ) (search step)

end
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The algorithm when µ is fixed

Algorithm 4: DF Linesearch DFL
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◦
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else
Set αi

k = 0 and α̃i
k+1 = θα̃i

k (failure step)
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The algorithm when µ is fixed

Algorithm 5: DF Linesearch DFL
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◦
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compute αi
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k+1 = αi
k , d i
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k )
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compute αi
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k
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The expansion step

Given δ ∈ (0, 1), point y i
k , a tentative step α̃i

k and a direction pik (±e i ) such that

y i
k ∈
◦
S, y i

k + α̃i
kp

i
k ∈
◦
S, P(y i

k + α̃i
kp

i
k ;µ) ≤ P(y i

k ;µ)− γ(α̃i
k )

2

produce αi
k = α̃i

k/δ
h with h smallest integer in {0, 1, . . . } s.t.

y i
k + αi

kp
i
k ∈
◦
S, and P(y i

k + αi
kp

i
k ;µ) ≤ P(y i

k ;µ)− γ(αi
k )

2

〈
either y i

k +
αi
k
δ
pik ∈

◦
S, and P

(
y i
k +

αi
k
δ
pik ;µ

)
> P(y i

k ;µ)− γ
(
αi
k
δ

)2

or y i
k +

αi
k
δ
pik 6∈

◦
S

αi
k gives suff. reduction

αi
k
δ

gives a “failure”



Constrained black-box optimization Fixed barrier The IPM method Convergence analysis Numerical results

Convergence result for DFL

It is customary to prove the following

Lemma [Expansion is well-defined]

The expansion step is well defined, i.e. for all i and k it always produces a step size αi
k

Proposition [Stepsizes go to zero]

lim
k→∞

max
i=1,...,n

{αi
k , α̃

i
k} = 0

Theorem [Convergence to stationary points]

Every limit point x̄ of {xk} is s.t. x̄ ∈
◦
S and it is stationary for the log-barrier

function, i.e.
∇xP(x̄ ;µ) = 0
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Main ingredients

To define an IP algorithm converging to KKT points we would need

1 Algorithm DFL, i.e. DF minimization of a smooth function onto an open set
◦
S

2 Barrier parameter µ cannot stay fixed to prove convergence

3 Define a rule to produce {µk} ↘ 0
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Basic ideas

The following quantities are at hand

1 maxi=1,...,n{αi
k , α̃

i
k} is a rough measure of stationarity for

min
x∈
◦
S
P(x ;µk )

2 µk roughly measures the quality of the approximation performed by P(x ;µk )

3 a rough measure of proximity to the boundary of S of iterates

min
j∈I,i=1,...,n+1

{gj (y i
k )} = (gmin)k



Constrained black-box optimization Fixed barrier The IPM method Convergence analysis Numerical results

Barrier parameter update rule

We need that the measure of stationarity maxi=1,...,n{αi
k , α̃

i
k} goes to zero faster than

µk and

(gmin)k

i.e. first order information must be recovered faster than

1 how rapidly precision of the approximation performed by P(x ;µk ) gets better

2 how rapidly sampled points approach the boundary of S

We propose the following

Updating rule

µk+1 = θµk , θ ∈ (0, 1) when

max{αi
k , α̃

i
k} ≤ min{µ2

k , (gmin)2
k}
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The algorithm

Algorithm 6: LOG-DFL

Data: x0 ∈
◦
S, µ0 > 0, d i

0 = e i , α̃i
0 > 0, i = 1, . . . , n

for k = 0, 1, 2, . . . do
Set y1

k = xk
for i = 1, 2, . . . , n do

if y i
k + α̃i

kd
i
k ∈
◦
S and P(y i

k ;µk ) can be suff. reduced along d i
k then

compute αi
k and set α̃i

k+1 = αi
k , d i

k+1 = d i
k (LS along d i

k )

else if y i
k − α̃

i
kd

i
k ∈
◦
S and P(y i

k ;µk ) can be suff. reduced along −d i
k then

compute αi
k and set α̃i

k+1 = αi
k , d i

k+1 = −d i
k (LS along −d i

k )

else
Set αi

k = 0 and α̃i
k+1 = θα̃i

k

end

Set y i+1
k = y i

k + αi
kd

i
k (failure step)

end

if maxi=1,...,n{αi
k , α̃

i
k} ≤ min{µ2

k , (gmin)2
k} then

Set µk+1 = θµk , θ ∈ (0, 1) (barrier parameter update)
else

Set µk+1 = µk
Find xk+1 s.t. P(xk+1;µk ) ≤ P(yn+1

k ;µk ) (search step)

end
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The algorithm

Algorithm 7: LOG-DFL

Data: x0 ∈
◦
S, µ0 > 0, d i

0 = e i , α̃i
0 > 0, i = 1, . . . , n

for k = 0, 1, 2, . . . do
Set y1

k = xk
for i = 1, 2, . . . , n do

if y i
k + α̃i

kd
i
k ∈
◦
S and P(y i

k ;µk ) can be suff. reduced along d i
k then

compute αi
k and set α̃i

k+1 = αi
k , d i

k+1 = d i
k (LS along d i

k )

else if y i
k − α̃

i
kd

i
k ∈
◦
S and P(y i

k ;µk ) can be suff. reduced along −d i
k then

compute αi
k and set α̃i

k+1 = αi
k , d i

k+1 = −d i
k (LS along −d i

k )

else
Set αi

k = 0 and α̃i
k+1 = θα̃i

k

end

Set y i+1
k = y i

k + αi
kd

i
k (failure step)

end

if maxi=1,...,n{αi
k , α̃

i
k} ≤ min{µ2

k , (gmin)2
k} then

Set µk+1 = θµk , θ ∈ (0, 1) (barrier parameter update)
else

Set µk+1 = µk
Find xk+1 s.t. P(xk+1;µk ) ≤ P(yn+1

k ;µk ) (search step)

end
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Preliminaries

Proposition [Covergence to zero]

Let {µk}, {α̃i
k}, {α

i
k} be sequences produced by LOG-DFL with the updating rule.

Then

lim
k→∞

µk = 0 (1)

lim
k→∞

max{αi
k , α̃

i
k} = 0 (2)

Sketch of Proof. First prove (1).

Assume µk = µ̄ for k suff. large

for k suff. large

P(xk+1; µ̄) ≤ P(xk ; µ̄) ⇒ lim
k→∞

P(xk ; µ̄) = P̄ < +∞

by the updating rule, (gmin)k → 0, hence xk → x̄ ∈ ∂S. Hence P(x̄ ; µ̄) = +∞
Now, proving (2) is straightforward considering again the updating rule
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Main theorem

Definition (Mangasarian-Fromowitz C.Q.)

x ∈ Rn satisfies the MFCQ if d ∈ Rn exists such that

∇gi (x)>d < 0 for all i : gi (x) ≤ 0

Proposition

Let {xk} be the sequence produced by LOG-DFL and assume that every limit point
satisfies the MFCQ. Then,

(i)

{
λi (xk ;µk ) =

µk

gi (xk )
,

}
for all i ∈ I are bounded

(ii) every limit point x̄ of {xk}K (K = {k : µk+1 < µk}) is a KKT point.

Sketch of Proof. {xk}K has limit points. We consider one of them x̄

lim
k→∞,k∈K ′

xk = x̄

To prove (ii), from suff. decrease and M.V. theorem we get

∇P(uik ;µk )>d i ≥ −
o(ξik )

ξik

uik → x̄ . We obtain stationarity by using (i)
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satisfies the MFCQ. Then,

(i)

{
λi (xk ;µk ) =

µk

gi (xk )
,

}
for all i ∈ I are bounded

(ii) every limit point x̄ of {xk}K (K = {k : µk+1 < µk}) is a KKT point.

Sketch of Proof. {xk}K has limit points. We consider one of them x̄

lim
k→∞,k∈K ′

xk = x̄

To prove (ii), from suff. decrease and M.V. theorem we get

∇P(uik ;µk )>d i ≥ −
o(ξik )

ξik

uik → x̄ . We obtain stationarity by using (i)
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Extensions

We considered problem

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, i ∈ I

but the more general problem can be considered

min
x∈Rn

f (x)

s.t. gi (x) ≥ 0, i ∈ I
gi (x) = 0, i ∈ E
` ≤ x ≤ u

using a mixed log-barrier sequential penalty approach preserving the
convergence results and explicitly handling the box constraints

Note that, gi , i ∈ I s.t. gi (x0) ≤ 0 can be considered
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Problems selection

Criteria for problems selection

problems from the CUTEst collection

with both inequalities and equalities (see previous slide)

x0 such that gi (x0) > 0 for (at least one) i ∈ I

This gives us N = 99 problems with

n ∈ [2, 41] variables

m ∈ [1, 144] constraints



Constrained black-box optimization Fixed barrier The IPM method Convergence analysis Numerical results

Problems selection

Cumulative distribution of the number of variables D(α) = 1
N
|{p : np ≤ α}|
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Problems selection

Cumulative distribution of the ratio of constraints strictly satisfied at the initial point

M(α) = 1
N

∣∣∣{p :
m̄p

mp
≤ α}

∣∣∣
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Comparison with NOMAD

We run NOMAD (3.9.1)1 [1] using default settings except for constraint type

EB for gi such that gi (x0) > 0,

PEB otherwise

We use performance and data profiles ([Wild, Moré, SIOPT’09]). Stopping criterion:

fk ≤ fL + τ(f̂ (x0)− fL),

τ is a given tolerance

fL smallest f.value computed by all the solvers with 20000 fun.evals

f̂ (x0) obj. value of the worst feasible point found by any solver

[1] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear Optimization with the MADS
algorithm. ACM Transactions on Mathematical Software, 37(4):44:1–44:15, 2011.

1We are aware of the new NOMAD (4.1.0) and we plan to use it
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Heuristics within LOG-DFL

1 Use a further direction dµ defined using two consecutive points where µ updated

it should be a good descent direction
it points toward the “central path”

2 Mimic the behavior of the PEB constraint type in NOMAD

initially violated constraints are handled by a sequential exterior approach
when one of them becomes feasible, we switch to interior penalization
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Heuristics within LOG-DFL
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Comparison with NOMAD

Results on the entire test set of problems
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Conclusions

We presented LOG-DFL

a DF method based on a log-barrier penalty function

convergence to stationary points w/o using dense sets of directions

good preliminary numerical results and comparison

LOG-DFL has been coded in Python and is available for free on the
Derivative-Free Library (DFL)

http://www.iasi.cnr.it/∼liuzzi/DFL/

Future work

extend the approach to nonsmooth problems

Thank you for your attention!

http://www.iasi.cnr.it/~liuzzi/DFL/
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