Constrained	black-box	optimization	Fixed	b
00000			000	

arrier

The IPM method

Convergence analysis

Numerical results

A new derivative-free interior point method for constrained black-box optimization

A. Brilli, G. Liuzzi, S. Lucidi

17-22 July 2022

Derivative-Free Optimization: Linking Algorithms and Applications University of British Columbia Okanagan (UBCO), Canada

Constrained black-box optimization

Fixed barrier

The IPM method

Convergence analysis

Numerical results

Outline of the talk

- problem statement
- Motivations
- Literature review
- introduction

Fixed barrier

- the algorithm
- the expansion step

The IPM method

- parameter update
- the algorithm

Convergence analysis

- preliminaries
- main convergence

Numerical results

- test problems
- results
- Conclusions

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
0000	000	0000	00	0000000000000

Derivative-free & black-box optimization

We consider

$$\min_{x \in \mathbb{R}^n} f(x) \ s.t. g_i(x) \ge 0, \quad i \in \mathcal{I} = \{1, \dots, m\}$$

where evaluations of f and g_i are the results of (possibly) complex computer simulations

$$x \in \mathbb{R}^n \longrightarrow f(x), g(x)$$

- calls to the simulator are expensive
- f is not defined when $g_i(x) < 0$
- derivatives are not available (or untrustworthy, or difficult to obtain)

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Motivations				

- In many real-world problems objective and constraint function values are the result of complex computer simulation codes
- First (and higher order) derivatives are unavailable or impractical to obtain or untrustworthy
- Objective function could be undefined outside the feasible region

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Other approaches				

- [Alarie,Audet,Jacquot,Le Digabel, ORL 2022] Hierarchically constrained problems
- [Le Digabel, ACM 2011], [Audet et al., arXiv 2021] NOMAD Extreme and progressive barrier, smooth and nonsmooth, hidden constraints
- [Cristofari, Rinaldi, SIOPT 2021] ORD Structured constrained problems, smooth
- [Audet, Tribes, COAP 2018] Mesh-based Nelder-Meade
- [Audet,Conn,Le Digabel,Peyrega, COAP 2018] Progressive barrier trust-region
- [Audet, Hare, 2017] Derivative-Free and Blackbox Optimization
- [Reggis,Wild, OMS 2017] use of RBF in trust-region for constrained probs
- [Diouane,Gratton,Vicente, COAP 2015] Use of barrier functions within evolution strategies
- [Fasano,L.,Lucidi,Rinaldi, SIOPT 2014] DFN Exterior exact penalty, nonsmooth
- [L.,Lucidi,Sciandrone, SIOPT 2010] PENSEQ Exterior sequential penalty, smooth
- [Conn,Scheinberg,Vicente 2009] Introduction to Derivative-Free Optimization
- [Audet, Dennis Jr, SIOPT 2009] Progressive barrier for constrained DF
- [L.,Lucidi, SIOPT 2009] Exterior exact ℓ_∞ penalty, smooth

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	00	000000000000

Introduction

Given problem

$$\begin{array}{l} \min \ f(x) \\ s.t. \ x \in \mathcal{S} = \{x \in \mathbb{R}^n : \ g_i(x) \ge 0, i \in \mathcal{I} \} \\ \mathcal{I} = \{1, 2, \dots, m\} \end{array}$$

assume

- f and $g_i, i \in \mathcal{I}$ black-box type functions
- f and $g_i, i \in \mathcal{I}$ continuously differentiable
- $g_i \ge 0, i \in \mathcal{I}$ not relaxable constraints
- S is compact
- $\overset{\circ}{\mathcal{S}} \neq \emptyset$ and a strictly feasible $x_0 \in \overset{\circ}{\mathcal{S}}$ is known

The Lagrangian function and its gradient (w.r.t. x) are

$$L(x,\lambda) = f(x) - \lambda^{\top}g(x)$$
$$\nabla_{x}L(x,\lambda) = \nabla f(x) - \nabla g(x)\lambda$$

Definition [KKT point]

 $\bar{x} \in S$ is a KKT point if $\bar{\lambda}_i$, $i \in \mathcal{I}$, exist such that

 $abla_{\times} L(ar{x},ar{\lambda}) = 0, \ ar{\lambda} \ge 0, \ ar{\lambda} \perp g(ar{x})$

Constrained black-box optimizationFixed barrierThe IPM methodConvergence analysis000000000000000

Log-barrier penalty function

We introduce

$$P(x; \mu) = f(x) - \mu \sum_{i \in \mathcal{I}} \log(g_i(x))$$
$$\nabla P(x; \mu) = \nabla f(x) - \sum_{i \in \mathcal{I}} \frac{\mu}{g_i(x)} \nabla g_i(x)$$

Numerical results

and consider, for $\mu > 0$, the penalized problem

min
$$P(x; \mu)$$

s.t. $x \in \overset{\circ}{S}$

• When μ is fixed:

- problem is "essentially" unconstrained
- it can be solved by easily adapting a LS derivative-free method
- μ must be driven to zero to solve the original problem

Constrained black-box optimization ••••
Fixed barrier
The IPM method
o
Convergence analysis
o
Numerical results
o
·••

The algorithm when μ is fixed

Algorithm 1: DF Linesearch DFL

Data:
$$x_0 \in \overset{\circ}{S}$$
, $\mu > 0$, $d_0^i = e^i$, $\tilde{\alpha}_0^i > 0$, $i = 1, ..., n$
for $k = 0, 1, 2, ...$ do
Set $y_k^1 = x_k$
for $i = 1, 2, ..., n$ do
if $y_k^i + \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{S}$ and $P(y_k^i; \mu)$ can be suff. reduced along d_k^i then
 $|$ compute α_k^i and set $\tilde{\alpha}_{k+1}^i = \alpha_k^i$, $d_{k+1}^i = d_k^i$ (LS along d_k^i)

The algorithm when μ is fixed

Algorithm 2: DF Linesearch DFL

The algorithm when μ is fixed

Algorithm 3: DF Linesearch DFL

 $\begin{array}{c|c} \textbf{Data:} \ x_0 \in \overset{\circ}{\mathcal{S}}, \ \mu > 0, \ d_0^i = e^i, \ \tilde{\alpha}_0^i > 0, \ i = 1, \dots, n \\ \textbf{for} \ k = 0, 1, 2, \dots, \textbf{do} \\ \hline \textbf{Set} \ y_k^1 = x_k \\ \textbf{for} \ i = 1, 2, \dots, n \ \textbf{do} \\ \hline \textbf{if} \ y_k^i + \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{\mathcal{S}} \ and \ P(y_k^i; \mu) \ can \ be \ suff. \ reduced \ along \ d_k^i \ \textbf{then} \\ \hline \ compute \ \alpha_k^i \ and \ set \ \tilde{\alpha}_{k+1}^i = \alpha_k^i, \ d_{k+1}^i = d_k^i \ (LS \ along \ d_k^i) \\ \hline \textbf{else} \ \textbf{if} \ y_k^i - \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{\mathcal{S}} \ and \ P(y_k^i; \mu) \ can \ be \ suff. \ reduced \ along \ -d_k^i \ \textbf{then} \\ \hline \ \ compute \ \alpha_k^i \ and \ set \ \tilde{\alpha}_{k+1}^i = \alpha_k^i, \ d_{k+1}^i = -d_k^i \ (LS \ along \ -d_k^i) \\ \hline \ \textbf{else} \\ \hline \ \ \ \textbf{lse} \\ \hline \ \ \textbf{Set} \ \alpha_k^i = 0 \ and \ \tilde{\alpha}_{k+1}^i = \theta \tilde{\alpha}_k^i \ (failure \ step) \\ \hline \ \textbf{end} \end{array}$

The algorithm when μ is fixed

Algorithm 4: DF Linesearch DFL

Data: $x_0 \in \check{S}, \mu > 0, d_0^i = e^i, \tilde{\alpha}_0^i > 0, i = 1, ..., n$ for k = 0, 1, 2, ... do Set $v_{i}^{1} = x_{k}$ for i = 1, 2, ..., n do if $y_{L}^{i} + \tilde{\alpha}_{L}^{i} d_{L}^{i} \in \overset{\circ}{S}$ and $P(y_{L}^{i}; \mu)$ can be suff. reduced along d_{k}^{i} then compute α_k^i and set $\tilde{\alpha}_{k+1}^i = \alpha_k^i$, $d_{k+1}^i = d_k^i$ (LS along d_k^i) else if $y_k^i - \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{S}$ and $P(y_k^i; \mu)$ can be suff. reduced along $-d_k^i$ then compute α_k^i and set $\tilde{\alpha}_{k+1}^i = \alpha_k^i$, $d_{k+1}^i = -d_k^i$ (LS along $-d_k^i$) else Set $\alpha_{k}^{i} = 0$ and $\tilde{\alpha}_{k+1}^{i} = \theta \tilde{\alpha}_{k}^{i}$ (failure step) end Set $y_{k}^{i+1} = y_{k}^{i} + \alpha_{k}^{i} d_{k}^{i}$ end

The algorithm when μ is fixed

Algorithm 5: DF Linesearch DFL

Data: $x_0 \in \check{S}, \mu > 0, d_0^i = e^i, \tilde{\alpha}_0^i > 0, i = 1, ..., n$ for $k = 0, 1, 2, \dots$ do Set $v_{i}^{1} = x_{k}$ for i = 1, 2, ..., n do if $y_{L}^{i} + \tilde{\alpha}_{L}^{i} d_{L}^{i} \in \overset{\circ}{S}$ and $P(y_{L}^{i}; \mu)$ can be suff. reduced along d_{k}^{i} then compute α_k^i and set $\tilde{\alpha}_{k+1}^i = \alpha_k^i$, $d_{k+1}^i = d_k^i$ (LS along d_k^i) else if $y_k^i - \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{S}$ and $P(y_k^i; \mu)$ can be suff. reduced along $-d_k^i$ then compute α_k^i and set $\tilde{\alpha}_{k+1}^i = \alpha_k^i$, $d_{k+1}^i = -d_k^i$ (LS along $-d_k^i$) else Set $\alpha_{k}^{i} = 0$ and $\tilde{\alpha}_{k+1}^{i} = \theta \tilde{\alpha}_{k}^{i}$ (failure step) end Set $y_{\mu}^{i+1} = y_{\mu}^i + \alpha_{\mu}^i d_{\mu}^i$ end Find $x_{k+1} \in \overset{\circ}{S}$ s.t. $P(x_{k+1}; \mu) < P(y_{\mu}^{n+1}; \mu)$ (search step) end

Constrained black-box optimization	Fixed barrier ○●○	The IPM method	Convergence analysis	Numerical results
The expansion ste	р			

Given $\delta \in (0, 1)$, point y_k^i , a tentative step $\tilde{\alpha}_k^i$ and a direction p_k^i $(\pm e^i)$ such that

$$y_k^i \in \overset{\circ}{\mathcal{S}}, \quad y_k^i + \tilde{lpha}_k^i p_k^i \in \overset{\circ}{\mathcal{S}}, \quad P(y_k^i + \tilde{lpha}_k^i p_k^i; \mu) \leq P(y_k^i; \mu) - \gamma(\tilde{lpha}_k^i)^2$$

produce $\alpha_k^i = \tilde{\alpha}_k^i / \delta^h$ with *h* smallest integer in $\{0, 1, ...\}$ s.t.

$$\begin{aligned} y_k^i + \alpha_k^i p_k^i \in \stackrel{\circ}{S}, \quad \text{and} \quad P(y_k^i + \alpha_k^i p_k^i; \mu) &\leq P(y_k^i; \mu) - \gamma(\alpha_k^i)^2 \\ \not \text{ either } y_k^i + \frac{\alpha_k^i}{\delta} p_k^i \in \stackrel{\circ}{S}, \quad \text{and} \quad P\left(y_k^i + \frac{\alpha_k^i}{\delta} p_k^i; \mu\right) &> P(y_k^i; \mu) - \gamma\left(\frac{\alpha_k^i}{\delta}\right)^2 \\ & \quad \text{or} \quad y_k^i + \frac{\alpha_k^i}{\delta} p_k^i \notin \stackrel{\circ}{S} \end{aligned}$$

• α_k^i gives suff. reduction • $\frac{\alpha_k^i}{\delta}$ gives a "failure"

Constrained black-box optimization	Fixed barrier ○○●	The IPM method	Convergence analysis	Numerical results
Convergence result	for DFL			

It is customary to prove the following

Lemma [Expansion is well-defined]

The expansion step is well defined, i.e. for all i and k it always produces a step size α_k^i

Constrained black-box optimization	Fixed barrier ○○●	The IPM method	Convergence analysis	Numerical results
<i>c</i>				

Convergence result for DFL

It is customary to prove the following

Lemma [Expansion is well-defined]

The expansion step is well defined, i.e. for all i and k it always produces a step size α_k^i

Proposition [Stepsizes go to zero]

 $\lim_{k \to \infty} \max_{i=1,...,n} \{ \alpha_k^i, \tilde{\alpha}_k^i \} = 0$

Constrained black-box optimization	Fixed barrier ○○●	The IPM method	Convergence analysis	Numerical results
<i>c</i>				

Convergence result for DFL

It is customary to prove the following

Lemma [Expansion is well-defined]

The expansion step is well defined, i.e. for all i and k it always produces a step size α_k^i

Proposition [Stepsizes go to zero]

$$\lim_{k\to\infty}\max_{i=1,\ldots,n}\{\alpha_k^i,\tilde{\alpha}_k^i\}=0$$

Theorem [Convergence to stationary points]

Every limit point \bar{x} of $\{x_k\}$ is s.t. $\bar{x} \in \overset{\circ}{S}$ and it is stationary for the log-barrier function, i.e.

 $\nabla_x P(\bar{x};\mu) = 0$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Main ingredients				

To define an IP algorithm converging to KKT points we would need

- In the second s
- 2 Barrier parameter μ cannot stay fixed to prove convergence
- **3** Define a rule to produce $\{\mu_k\} \searrow 0$

Constrained black-box optimization	Fixed barrier	The IPM method ○●○○	Convergence analysis	Numerical results
Basic ideas				

The following quantities are at hand

1 max_{i=1,...,n}{ $\alpha_k^i, \tilde{\alpha}_k^i$ } is a rough measure of stationarity for

 $\min_{x\in \overset{\circ}{\mathcal{S}}} P(x;\mu_k)$

μ_k roughly measures the quality of the approximation performed by *P*(*x*; *μ_k*)
 a rough measure of proximity to the boundary of S of iterates

$$\min_{j\in\mathcal{I},i=1,\ldots,n+1}\{g_j(y_k^i)\}=(g_{\min})_k$$

Constrained black-box optimization	Fixed barrier	The IPM method ○○●○	Convergence analysis 00	Numerical results
	1.1	1		

Barrier parameter update rule

We need that the measure of stationarity $\max_{i=1,...,n}\{\alpha_k^i,\tilde{\alpha}_k^i\}$ goes to zero faster than

- μ_k and
- (gmin)k
- i.e. first order information must be recovered faster than
 - **(**) how rapidly precision of the approximation performed by $P(x; \mu_k)$ gets better
 - 2 how rapidly sampled points approach the boundary of ${\mathcal S}$

We propose the following

Constrained black-box optimization	Fixed barrier	The IPM method ○○●○	Convergence analysis	Numerical results
	1.1	1		

Barrier parameter update rule

We need that the measure of stationarity $\max_{i=1,...,n} \{\alpha_k^i, \tilde{\alpha}_k^i\}$ goes to zero faster than

- μ_k and
- (g_{min})_k
- i.e. first order information must be recovered faster than
 - **(**) how rapidly precision of the approximation performed by $P(x; \mu_k)$ gets better
 - 2 how rapidly sampled points approach the boundary of ${\mathcal S}$

We propose the following

Updating rule

 $\mu_{k+1}= heta\mu_k$, $heta\in(0,1)$ when

```
\max\{\alpha_k^i, \tilde{\alpha}_k^i\} \le \min\{\mu_k^2, (g_{\min})_k^2\}
```

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	000●	00	000000000000

The algorithm

Algorithm 6: LOG-DFL

Data:
$$x_0 \in \overset{\circ}{S}$$
, $\mu_0 > 0$, $d_0^i = e^i$, $\tilde{\alpha}_0^i > 0$, $i = 1, ..., n$
for $k = 0, 1, 2, ...$ do
Set $y_k^1 = x_k$
for $i = 1, 2, ..., n$ do
 $\left| \begin{array}{c} \text{if } y_k^i + \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{S} \text{ and } P(y_k^i; \mu_k) \text{ can be suff. reduced along } d_k^i \text{ then } \\ | \text{ compute } \alpha_k^i \text{ and set } \tilde{\alpha}_{k+1}^i = \alpha_k^i, d_{k+1}^i = d_k^i \text{ (LS along } d_k^i) \\ \text{else if } y_k^i - \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{S} \text{ and } P(y_k^i; \mu_k) \text{ can be suff. reduced along } -d_k^i \text{ then } \\ | \text{ compute } \alpha_k^i \text{ and set } \tilde{\alpha}_{k+1}^i = \alpha_k^i, d_{k+1}^i = -d_k^i \text{ (LS along } -d_k^i) \\ \text{else } \\ | \text{ Set } \alpha_k^i = 0 \text{ and } \tilde{\alpha}_{k+1}^i = \theta \tilde{\alpha}_k^i \\ \text{ end } \\ \text{Set } y_k^{i+1} = y_k^i + \alpha_k^i d_k^i \text{ (failure step)} \\ \text{end} \end{array} \right|$

Constrained black-box of	optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000		000	0000	00	000000000000

The algorithm

Algorithm 7: LOG-DFL

```
Data: x_0 \in \mathcal{S}, \mu_0 > 0, d_0^i = e^i, \tilde{\alpha}_0^i > 0, i = 1, ..., n
for k = 0, 1, 2, \dots do
        Set y_k^1 = x_k
       for i = 1, 2, ..., n do
                if y_{\mu}^{i} + \tilde{\alpha}_{\mu}^{i} d_{\mu}^{i} \in \overset{\circ}{S} and P(y_{\mu}^{i}; \mu_{k}) can be suff. reduced along d_{\mu}^{i} then
                        compute \alpha_{k}^{i} and set \tilde{\alpha}_{k+1}^{i} = \alpha_{k}^{i}, d_{k+1}^{i} = d_{k}^{i} (LS along d_{k}^{i})
                else if y_k^i - \tilde{\alpha}_k^i d_k^i \in \overset{\circ}{S} and P(y_k^i; \mu_k) can be suff. reduced along -d_k^i then
                        compute \alpha_k^i and set \tilde{\alpha}_{k+1}^i = \alpha_k^i, d_{k+1}^i = -d_k^i (LS along -d_k^i)
                else
                       Set \alpha_{k}^{i} = 0 and \tilde{\alpha}_{k+1}^{i} = \theta \tilde{\alpha}_{k}^{i}
                end
                Set y_{\mu}^{i+1} = y_{\mu}^{i} + \alpha_{\mu}^{i} d_{\mu}^{i} (failure step)
        end
        if \max_{i=1,\ldots,n} \{\alpha_k^i, \tilde{\alpha}_k^i\} \le \min\{\mu_k^2, (g_{\min})_k^2\} then
                Set \mu_{k+1} = \theta \mu_k, \ \theta \in (0,1) (barrier parameter update)
        else
                Set \mu_{k+1} = \mu_k
        Find x_{k+1} s.t. P(x_{k+1}; \mu_k) \leq P(y_{\mu}^{n+1}; \mu_k) (search step)
end
```

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis ●○	Numerical results
Preliminaries				

Let $\{\mu_k\},$ $\{\tilde{\alpha}^i_k\},$ $\{\alpha^i_k\}$ be sequences produced by LOG-DFL with the updating rule. Then

$$\lim_{k \to \infty} \mu_k = 0 \tag{1}$$

$$\lim_{k \to \infty} \max\{\alpha_k^i, \tilde{\alpha}_k^i\} = 0 \tag{2}$$

Sketch of Proof. First prove (1).

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis ●○	Numerical results
Preliminaries				

Let $\{\mu_k\},$ $\{\tilde{\alpha}^i_k\},$ $\{\alpha^i_k\}$ be sequences produced by LOG-DFL with the updating rule. Then

$$\lim_{k \to \infty} \mu_k = 0 \tag{1}$$

$$\lim_{i \to \infty} \max\{\alpha_k^i, \tilde{\alpha}_k^i\} = 0 \tag{2}$$

Sketch of Proof. First prove (1). Assume $\mu_k = \overline{\mu}$ for k suff. large

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis ●○	Numerical results
Preliminaries				

Let $\{\mu_k\},$ $\{\tilde{\alpha}^i_k\},$ $\{\alpha^i_k\}$ be sequences produced by LOG-DFL with the updating rule. Then

$$\lim_{k \to \infty} \mu_k = 0 \tag{1}$$

$$\lim_{k \to \infty} \max\{\alpha_k^i, \tilde{\alpha}_k^i\} = 0$$
⁽²⁾

Sketch of Proof. First prove (1). Assume $\mu_k = \overline{\mu}$ for k suff. large

• for k suff. large

$$P(x_{k+1};\bar{\mu}) \leq P(x_k;\bar{\mu}) \quad \Rightarrow \quad \lim_{k \to \infty} P(x_k;\bar{\mu}) = \bar{P} < +\infty$$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis ●○	Numerical results
Preliminaries				

Let $\{\mu_k\},$ $\{\tilde{\alpha}^i_k\},$ $\{\alpha^i_k\}$ be sequences produced by LOG-DFL with the updating rule. Then

$$\lim_{k \to \infty} \mu_k = 0 \tag{1}$$

$$\lim_{k \to \infty} \max\{\alpha_k^i, \tilde{\alpha}_k^i\} = 0$$
⁽²⁾

Sketch of Proof. First prove (1). Assume $\mu_k = \overline{\mu}$ for k suff. large

• for k suff. large

$$P(x_{k+1};\bar{\mu}) \leq P(x_k;\bar{\mu}) \quad \Rightarrow \quad \lim_{k \to \infty} P(x_k;\bar{\mu}) = \bar{P} < +\infty$$

• by the updating rule, $(g_{\min})_k \to 0$, hence $x_k \to \bar{x} \in \partial S$. Hence $P(\bar{x}; \bar{\mu}) = +\infty$ Now, proving (2)

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis ●○	Numerical results
Preliminaries				

Let $\{\mu_k\},$ $\{\tilde{\alpha}^i_k\},$ $\{\alpha^i_k\}$ be sequences produced by LOG-DFL with the updating rule. Then

$$\lim_{k \to \infty} \mu_k = 0 \tag{1}$$

$$\lim_{k \to \infty} \max\{\alpha_k^i, \tilde{\alpha}_k^i\} = 0$$
 (2)

Sketch of Proof. First prove (1). Assume $\mu_k = \overline{\mu}$ for k suff. large

• for k suff. large

$$P(x_{k+1};\bar{\mu}) \leq P(x_k;\bar{\mu}) \quad \Rightarrow \quad \lim_{k \to \infty} P(x_k;\bar{\mu}) = \bar{P} < +\infty$$

• by the updating rule, $(g_{\min})_k \to 0$, hence $x_k \to \bar{x} \in \partial S$. Hence $P(\bar{x}; \bar{\mu}) = +\infty$ Now, proving (2) is straightforward considering again the updating rule

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis ○●	Numerical results

Definition (Mangasarian-Fromowitz C.Q.)

 $x \in \mathbb{R}^n$ satisfies the MFCQ if $d \in \mathbb{R}^n$ exists such that

 $abla g_i(x)^{ op} d < 0 \quad \text{for all } i: g_i(x) \leq 0$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	0•	000000000000

Definition (Mangasarian-Fromowitz C.Q.)

 $x \in \mathbb{R}^n$ satisfies the MFCQ if $d \in \mathbb{R}^n$ exists such that

 $abla g_i(x)^{ op} d < 0 \quad \text{for all } i: g_i(x) \leq 0$

Proposition

Let $\{x_k\}$ be the sequence produced by LOG-DFL and assume that every limit point satisfies the MFCQ. Then,

(i)
$$\left\{\lambda_i(x_k;\mu_k) = \frac{\mu_k}{g_i(x_k)}\right\}$$
 for all $i \in \mathcal{I}$ are bounded

(ii) every limit point \bar{x} of $\{x_k\}_K$ ($K = \{k : \mu_{k+1} < \mu_k\}$) is a KKT point.

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	0	000000000000

Definition (Mangasarian-Fromowitz C.Q.)

 $x \in \mathbb{R}^n$ satisfies the MFCQ if $d \in \mathbb{R}^n$ exists such that

 $abla g_i(x)^{ op} d < 0$ for all $i: g_i(x) \leq 0$

Proposition

Let $\{x_k\}$ be the sequence produced by LOG-DFL and assume that every limit point satisfies the MFCQ. Then,

(i)
$$\left\{\lambda_i(x_k;\mu_k) = \frac{\mu_k}{g_i(x_k)},\right\}$$
 for all $i \in \mathcal{I}$ are bounded

(ii) every limit point \bar{x} of $\{x_k\}_K$ ($K = \{k : \mu_{k+1} < \mu_k\}$) is a KKT point.

Sketch of Proof. $\{x_k\}_K$ has limit points. We consider one of them \bar{x}

$$\lim_{k \to \infty, k \in K'} x_k = \bar{x}$$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	0	0000000000000

Definition (Mangasarian-Fromowitz C.Q.)

 $x \in \mathbb{R}^n$ satisfies the MFCQ if $d \in \mathbb{R}^n$ exists such that

$$abla g_i(x)^{ op} d < 0 \quad ext{for all } i: g_i(x) \leq 0$$

Proposition

Let $\{x_k\}$ be the sequence produced by LOG-DFL and assume that every limit point satisfies the MFCQ. Then,

(i)
$$\left\{\lambda_i(x_k;\mu_k) = \frac{\mu_k}{g_i(x_k)},\right\}$$
 for all $i \in \mathcal{I}$ are bounded

(ii) every limit point \bar{x} of $\{x_k\}_K$ ($K = \{k : \mu_{k+1} < \mu_k\}$) is a KKT point.

Sketch of Proof. $\{x_k\}_K$ has limit points. We consider one of them \bar{x} L

$$\lim_{\kappa \to \infty, k \in K'} x_k = \bar{x}$$

To prove (ii), from suff. decrease and M.V. theorem we get

$$abla P(u_k^i; \mu_k)^{ op} d^i \geq -rac{o(\xi_k^i)}{\xi_k^i}$$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	0•	000000000000

Definition (Mangasarian-Fromowitz C.Q.)

 $x \in \mathbb{R}^n$ satisfies the MFCQ if $d \in \mathbb{R}^n$ exists such that

$$abla g_i(x)^{ op} d < 0 \quad ext{for all } i: g_i(x) \leq 0$$

Proposition

Let $\{x_k\}$ be the sequence produced by LOG-DFL and assume that every limit point satisfies the MFCQ. Then,

(i)
$$\left\{\lambda_i(x_k;\mu_k) = \frac{\mu_k}{g_i(x_k)},\right\}$$
 for all $i \in \mathcal{I}$ are bounded

(ii) every limit point \bar{x} of $\{x_k\}_K$ ($K = \{k : \mu_{k+1} < \mu_k\}$) is a KKT point.

Sketch of Proof. $\{x_k\}_K$ has limit points. We consider one of them \bar{x} L

$$\lim_{k \to \infty, k \in K'} x_k = \bar{x}$$

To prove (ii), from suff. decrease and M.V. theorem we get

$$abla P(u_k^i; \mu_k)^{ op} d^i \geq -rac{o(\xi_k^i)}{\xi_k^i}$$

 $u_{\nu}^{i} \rightarrow \bar{x}$. We obtain stationarity by using (i)

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Extensions				

We considered problem

 $\min_{x \in \mathbb{R}^n} f(x) \ s.t. g_i(x) \ge 0, \quad i \in \mathcal{I}$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Extensions				

We considered problem

$$egin{array}{l} \min_{x\in\mathbb{R}^n} \ f(x) \ s.t. \ g_i(x)\geq 0, \quad i\in\mathcal{I} \end{array}$$

but the more general problem can be considered

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t. \ g_i(x) \ge 0, \\ \ell \le x \le u}} f(x) \ge 0, \quad i \in \mathcal{I}$$

using a mixed log-barrier sequential penalty approach preserving the convergence results and explicitly handling the box constraints

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Extensions				

We considered problem

$$egin{array}{l} \min_{x\in\mathbb{R}^n} \ f(x) \ s.t. \ g_i(x)\geq 0, \quad i\in\mathcal{I} \end{array}$$

but the more general problem can be considered

$$\min_{\substack{x \in \mathbb{R}^n \\ s.t. \ g_i(x) \ge 0, \\ \ell \le x \le u}} f(x) \ge 0, \quad i \in \mathcal{I}$$

using a mixed log-barrier sequential penalty approach preserving the convergence results and explicitly handling the box constraints

Note that, g_i , $i \in \mathcal{I}$ s.t. $g_i(x_0) \leq 0$ can be considered

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Problems selection				

Criteria for problems selection

- problems from the CUTEst collection
- with both inequalities and equalities (see previous slide)
- x_0 such that $g_i(x_0) > 0$ for (at least one) $i \in \mathcal{I}$

This gives us N = 99 problems with

- $n \in [2, 41]$ variables
- $m \in [1, 144]$ constraints

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	00	000000000000000000000000000000000000000

Problems selection

Cumulative distribution of the number of variables $D(\alpha) = \frac{1}{N} |\{p : n_p \leq \alpha\}|$

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	00	000000000000000000000000000000000000000

Problems selection

Cumulative distribution of the ratio of constraints strictly satisfied at the initial point $M(\alpha) = \frac{1}{N} \left| \{ p : \frac{\bar{m}_p}{m_p} \leq \alpha \} \right|$

proportion of constraints strictly satisfied by initial point

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Comparison with N	JOMAD			

We run NOMAD $(3.9.1)^1$ [1] using default settings except for constraint type

- EB for g_i such that $g_i(x_0) > 0$,
- PEB otherwise

We use performance and data profiles ([Wild, Moré, SIOPT'09]). Stopping criterion:

$$f_k \leq f_L + \tau(\hat{f}(x_0) - f_L),$$

- τ is a given tolerance
- f_L smallest f.value computed by all the solvers with 20000 fun.evals
- $\hat{f}(x_0)$ obj. value of the worst feasible point found by any solver

[1] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear Optimization with the MADS algorithm. ACM Transactions on Mathematical Software, 37(4):44:1–44:15, 2011.

¹We are aware of the new NOMAD (4.1.0) and we plan to use it

Constrained black-box optimization Fixed barrier The IPM method Convergence analysis Numerical results

(1) Use a further direction d_{μ} defined using two consecutive points where μ updated

- it should be a good descent direction
- it points toward the "central path"

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Heuristics within L	.OG-DFL			

() Use a further direction d_{μ} defined using two consecutive points where μ updated

- it should be a good descent direction
- it points toward the "central path"

2 Mimic the behavior of the PEB constraint type in NOMAD

- initially violated constraints are handled by a sequential exterior approach
- when one of them becomes feasible, we switch to interior penalization

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
00000	000	0000	00	00000000000

Heuristics within LOG-DFL

 Constrained black-box optimization
 Fixed barrier

 00000
 000

The IPM method

Convergence analysis

Numerical results

Comparison with NOMAD

Results on the entire test set of problems

Constrained black-box optimization Fi

Fixed barrier

The IPM method

Convergence analysis

Numerical results

Comparison with NOMAD

Results on problems where both methods find a feasible solution

Constrained black-box optimization

Fixed barrier

The IPM method

Convergence analysis

Numerical results

Comparison with NOMAD w/o models

Results on the entire test set of problems

Constrained black-box optimization

Fixed barrier

The IPM method

Convergence analysis

Numerical results

Comparison with NOMAD w/o models

Results on problems where both methods find a feasible solution

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Conclusions				

We presented LOG-DFL

- a DF method based on a log-barrier penalty function
- convergence to stationary points w/o using dense sets of directions
- good preliminary numerical results and comparison
- LOG-DFL has been coded in Python and is available for free on the Derivative-Free Library (DFL) http://www.iasi.cnr.it/~liuzzi/DFL/

Future work

• extend the approach to nonsmooth problems

Constrained black-box optimization	Fixed barrier	The IPM method	Convergence analysis	Numerical results
Conclusions				

We presented LOG-DFL

- a DF method based on a log-barrier penalty function
- convergence to stationary points w/o using dense sets of directions
- good preliminary numerical results and comparison
- LOG-DFL has been coded in Python and is available for free on the Derivative-Free Library (DFL) http://www.iasi.cnr.it/~liuzzi/DFL/

Future work

• extend the approach to nonsmooth problems

Thank you for your attention!