

solar: A solar thermal power plant simulator for blackbox optimization benchmarking

Sébastien Le Digabel

GROUP FOR RESEARCH IN DECISION ANALYSIS

POLYTECHNIQUE Montréal

TECHNOLOGICAL UNIVERSITY

DFOS, 2022-07-18

Introduction	Simulator	Instances	Features	References

Presentation outline

Introduction

The solar simulator

The solar instances

The solar features

References

Introduction •0000	Simulator	Instances	Features	References

Introduction

The solar simulator

The solar instances

The solar features

References

Introduction	Simulator	Instances	Features	References

Contributors

 This work is based on the MSc thesis of Mathieu Lemyre Garneau [Lemyre Garneau, 2015]

The other contributors are

- Charles Audet
- Miguel Diago
- Aimen Gheribi
- Mona Jeunehomme
- Xavier Lebeuf
- Viviane Rochon Montplaisir
- Bastien Talgorn
- Christophe Tribes
- ▶ MLG, MD, and AG, combine several expertises in concentrated solar power (CSP)

Introduction	Simulator	Instances	Features	References

Context: Blackbox Optimization (BBO)

$$\min_{\mathbf{x}\in\mathcal{X}} \quad F(\mathbf{x}) \text{ s.t. } \mathbf{x}\in\Omega = \{\mathbf{x}\in\mathcal{X}: c_j(\mathbf{x})\leq 0, j=1,2,\ldots,m\}$$

 \mathcal{X} is a *n*-dimensional space, *F* can have p = 1 or p = 2 components, and the evaluations of *F* and the c_i 's are provided by a blackbox:

$$\begin{array}{c} \mathbf{x} \in \mathcal{X} \\ \hline \text{if (i!= hat_i) (i = 0, i < nc; ++i)} \\ n \text{ inputs} \\ \hline f(j = hat_i) \\ j = rp.pickup(); \\ j = rp.pickup(); \\ \hline p + m \text{ outputs} \\ \hline p + m \text{ outputs} \end{array}$$

- Each call to the blackbox may be expensive
- The evaluation can fail
- Sometimes $F(\mathbf{x}) \neq F(\mathbf{x})$
- Derivatives are not available and cannot be approximated

Issues with BBO benchmarking

Benchmarking must consider many problems, which is problematic in BBO

- Testing on true applications is difficult because
 - Evaluations are expensive
 - Codes are confidential
 - Codes depend on in-house or expensive libraries
 - Codes are difficult to install
 - The original designers are no longer available
- This results in the use of collections of artificial problems that are based on inexpensive analytical functions
- These collections are necessary, given the lack of true applications, but they are not sufficient: This leads to biased hierarchies of solvers that are useless for practitioners

Objectives of this work

Provide a realistic application for "true" BBO benchmarking, that

- includes numerical simulations
- is easy to install (stand-alone, standard code)
- is multiplatform
- allows to reproduce results
- includes many options that allow to
 - test different aspects of BBO such as
 - expensive evaluations
 - discrete/categorical variables
 - constraints handling
 - noise in the blackbox outputs
 - static surrogates
 - multiobjective optimization
 - define a collection of problems to draw profiles

Introduction	Simulator • 0 0 0 0 0 0 0	Instances	Features	References

Introduction

The solar simulator

The solar instances

The solar features

References

CSP tower plant with molten salt thermal energy storage

- A large number of mirrors (heliostats) reflects solar radiation on a receiver at the top of a tower
- The heat collected from the concentrated solar flux is removed from the receiver by a stream of molten salt
- Hot molten salt is then used to feed thermal power to a conventional power block
- ▶ The photo shows the Thémis CSP power plant [Drouot and Hillairet, 1984], the first built with this design

Introduction	Simulator	Instances	Features	References

Thermal power is extracted by raising the temperature of molten salt pumped through the receiver

Introduction	Simulator	Instances	Features	References

The hot molten salt is directed to a hot storage tank

Introduction	Simulator	Instances 00000000	Features	References

Hot molten salt is pumped though the steam generator

Introduction	Simulator	Instances 000000000	Features	References

Heat is transferred to a current of water on the other side of the steam generator which is transformed to superheated steam

Cold molten salt is recovered in the cold storage tank

- Superheated high-pressure steam drives a turbine coupled to an electrical generator
- ► Low-pressure steam is condensed and pumped back as liquid water

Introduction	Simulator	Instances 000000000	Features	References

Losses due to non-idealities are accounted for in all components except the steam generator

Introduction	Simulator	Instances 000000000	Features	References

Heliostats field (1/2)

- The heliostats are laid on a radially staggered grid that prevents blocking losses between them
- The grid is calculated as a function of individual heliostat dimensions and tower height
- Once the grid layout is determined, each position is rated according to the average optical efficiency
- Shadowing effects are considered when calculating the overall performance
- The actual heliostats field is generated by occupying the first grid positions with the highest average optical efficiency for the given receiver aperture and tower height

Introduction	Simulator	Instances	Features	References

Heliostats field (2/2)

- The images below show how the arrangement of 700 heliostats on the same spatial grid of 1960 points varies with the receiver aperture width (3 meters vs 15 meters)
- As the aperture narrows, the algorithm selects heliostats closer to the North-South axis to minimize spillage
- For wider apertures, the selection is dictated by cosine efficiency and atmospheric attenuation

Main components of the simulator

- Sun radiation model
- Thermal storage model
- Parasitic loads model
- Pumping models
- Shell-and-tubes models with stress models of the tubes in both the receiver and steam generator
- Energy losses model (reflective, emissive, convective, conductive)
- Powerblock model with only one parameter (=optimization categorical variable): the choice of the type of turbine
- Demand model
- Investment cost model

All models have been validated during MLG's masters thesis, using simulations, scenarios, and comparisons with literature results

Introduction	Simulator	Instances 00000000	Features	References

Main numerical methods in the simulator

- Monte Carlo simulation to evaluate the field efficiency
- Newton's method to find roots in thermal equations
- Kernel smoothing to interpolate various discrete data
- Iterative methods to solve Heat Transfer Fluid equations

The solar code is

- a command-line application
- ▶ the "natural heir" of our STYRENE simulator [Audet et al., 2008]
- publicly available at https://github.com/bbopt/solar under the GNU Lesser General Public License
- ▶ a relatively simple code in standard C++ (\simeq 13k lines of codes)
- stand-alone: no external library to install
- multi-platform: C++ compilator is the only requirement

Introduction	Simulator	Instances • 00000000	Features	References

Introduction

The solar simulator

The solar instances

The solar features

References

Ten instances

Instance	#	[⊥] of variables		# of obj.	#	of constraints		# of stoch. outputs	Static
	cont.	discr. (cat.)	n	p	simu.	a priori (lin.)	m	(obj. or constr.)	surrogate
solar1	8	1 (0)	9	1	2	3 (2)	5	1	no
solar2	12	2 (0)	14	1^1	9	4 (2)	13	3	yes
solar3	17	3 (1)	20	1	8	5 (3)	13	5	yes
solar4	22	7 (1)	29	1	9	7 (5)	16	6	yes
solar5	14	6 (1)	20	1	8	4 (3)	12	0	no
solar6	5	0 (0)	5	1	6	0 (0)	6	0	no
solar7	6	1(0)	7	1	4	2 (1)	6	3	yes
solar8	11	2 (0)	13	2	4	5 (3)	9	3	yes
solar9	22	7 (1)	29	2	10	7 (5)	17	6	yes
$solar10^2$	5	0 (0)	5	1	0	0 (0)	0	0	no

¹analytic objective

²available in the next release

Introduction	Simulator	Instances	Features	References

Objectives

solar1 Max. total solar energy concentrated on the receiver aperture through one day (stochastic)

solar2 Min. total heliostats field surface to run a pre-determined powerplant (analytic): $x_3^2(x_9^2 - x_8^2)x_7\frac{\pi}{180}$

solar3 Min. total investment cost

solar4 Min. cost of powerplant to respect a given demand with a limited size of field solar5 Max. compliance to a demand profile

solar6 Min. cost of storage

solar7 Max. receiver efficiency (energy transferred to the molten salt) (stochastic)

solar8 Max. heliostat field performance (absorbed energy) and min. cost of field, tower and receiver

solar9 Max. power and min. losses (stochastic)

solar10 Min. cost of storage

Introduction	Simulator 00000000	Instances ○○○●○○○○○	Features	References
Types of va	ariables			

$$\min_{\mathbf{x}\in\mathcal{X}} \quad F(\mathbf{x}) \text{ s.t. } \mathbf{x}\in\Omega = \{\mathbf{x}\in\mathcal{X}: c_j(\mathbf{x})\leq 0, j=1,2,\ldots,m\}$$

 \blacktriangleright The *n* variables are described by the set \mathcal{X} . They can be continuous or discrete.

- \blacktriangleright The solar6 and solar10 instances have no discrete variables. In these cases $\mathcal{X} \subset \mathbb{R}^5$
- One of the discrete variable (the type of turbine) is categorical. solar considers it as an integer in {1,2,...,8}
- \blacktriangleright \mathcal{X} also includes bounds on most of the variables

The following slides list all 29 possible variables. Each instance considers a subset of these variables. solar4 and solar9 consider all n = 29 variables

All variables: Heliostats field

	Symbol	Quantity	Unit	Tuno	Lower	Upper
#	Symbol	Qualitity	Unit	туре	bound	bound
1	L_{hs}	Heliostats length	m	cont.	1	40
2	W_{hs}	Heliostats width	m	cont.	1	40
3	H_{twr}	Tower height	m	cont	20	250
4	H_r	Receiver aperture height	m	cont.	1	30
5	W_r	Receiver aperture width	m	cont.	1	30
6	N_{hs}	Number of heliostats to fit		discr.	1	$+\infty$
7	$ heta_{hs}$	Field angular width	deg	cont.	1	89
8	R_{hs}^{min}	Min. distance from tower	$\times H_{twr}$	cont.	0	20
9	R_{hs}^{max}	Max. distance from tower	$\times H_{twr}$	cont.	1	20

Introduction	Simulator	Instances 000000000	Features	References

All variables: Heat transfer loop

	Symbol	Quantity	l Init	Tune	Lower	Upper
Ŧ	Symbol	Quantity	Unit	туре	bound	bound
10	T_r^{out}	Receiver outlet temp.	K	cont.	793	995
11	H_{hot}	Hot storage height	m	cont.	1 or 2	30 or 50
12	d_{hot}	Hot storage diameter	m	cont.	1 or 2	30
13	t_{hot}	Hot storage insulation thickness	m	cont.	0.01	2 or 5
14	t_{cold}	Cold storage insulation thickness	m	cont.	0.01	2 or 5
15	T_{cold}^{min}	Min. cold storage temp.	K	cont.	495	650
16	$N_{r,tb}$	Receiver number of tubes		discr.	1	$+\infty$
17	t_r	Receiver insulation thickness	m	cont.	0.01 or 0.1	2 or 5
18	d_r	Receiver tubes inner diameter	m	cont.	0.005	0.1
10	Л	Dessions toles soften disperter		t	0.005 or 0.0055	0.1
19	D_r	Receiver lubes outer diameter	m	cont.	or 0.006	0.1

All variables: Steam generator and powerblock

-44	Symbol	Quantity	Unit	Type	Lower	Upper
#	Symbol	Qualitity	Onit	туре	bound	bound
20	S_t	Tubes spacing	m	cont.	0.006 or 0.007	0.2
21	L_{sg}	Tubes length	m	cont.	0.5	10
22	d_{sg}	Tubes inner diameter	m	cont.	0.005	0.1
23	D_{sg}	Tubes outer diameter	m	cont.	0.006	0.1
24	$H_{sg,baf}$	Baffles cut		cont.	0.15	0.4
25	$N_{sg,baf}$	Number of baffles		discr.	2	$+\infty$
26	$N_{sg,tb}$	Number of tubes		discr.	1	$+\infty$
27	$N_{sg,sh,p}$	Number of shell passes		discr.	1	10
28	$N_{sg,tb,p}$	Number of tube passes		discr.	1	9
29	ST	Type of turbine		cat.	1	8

Introduction	Simulator	Instances	Features	References
Types of co	$\begin{array}{l} \underset{\mathbf{x}\in\mathcal{X}}{\text{min}} F(\mathbf{x}) \text{ s.t. } \mathbf{x} \in \end{array}$	$\Omega = \{ \mathbf{x} \in \mathcal{X} : c_j(\mathbf{x}) \le 0 \}$	$0, j = 1, 2, \ldots, m\}$	
Following t	ne taxonomy of cons	traints [Le Digabel and	l Wild, 2015]:	
$\blacktriangleright \mathcal{X}$ desc	ribes bounds on the	variables and the discr	rete nature of some of t	he
variabl	es. These constraints	s are unrelaxable		
\blacktriangleright The m	constraints in Ω ma	ay be of type a priori or	simulation	
🕨 a prior	constraints are also	considered unrelaxable	e. In case of violation, t	he solar
execut	able returns a flag to	indicate a potential so	olver not to count the e	valuation
Most c	of the a priori constra	aints are linear		
simulat	ion constraints are r	elaxable		

- solar includes hidden constraints
- ► All constraints (except the hidden ones) are quantifiable

The following slide lists all 18 possible constraints. Each instance considers a subset of these constraints, for a maximum of m=17 constraints in solar9

All possible constraints

▶ 7 a priori constraints:

- 1 Tower is at least twice as high as heliostats (linear)
- 2 Min. distance from tower \leq Max. distance from tower (linear)
- 3 Receiver inside diameter \leq outside diameter (linear)
- 4 Steam generator outer tubes diameter \leq tubes spacing (linear)
- 5 Steam generator inside diameter \leq steam generator outside diameter (linear)
- 6 Field surface area
- 7 Number of tubes in receiver fit inside receiver

▶ 11 simulation constraints:

- $1 \quad {\sf Cost \ of \ plant} \le {\sf budget}$
- 2 Check that the heliostats can fit in the field
- 3 Molten salt melting point \leq hot storage lowest temperature
- 4 Molten salt melting point \leq steam generator outlet temperature
- 5 Receiver outlet temperature \geq steam turbine inlet temperature

- 6 Compliance to demand (stochastic)
- 7 Pressure in receiver tubes \leq yield pressure (stochastic)
- 8 Molten salt melting point \leq cold storage lowest temperature (stoch.)
- 9 Check if storage is back to initial conditions (stochastic)
- 10 Parasitics do not exceed a % of energy production (stochastic)
- 11 Minimal acceptable energy production (stochastic)

Introduction	Simulator	Instances	Features • 00000000	References

Introduction

The solar simulator

The solar instances

The solar features

References

Introduction	Simulator	Instances	Features	References

Getting started with solar

- Get the code at https://github.com/bbopt/solar and compile
- Command-line program that takes as arguments
 - ▶ a problem id (or instance number) in $\{1, 2, ..., 10\}$
 - \blacktriangleright the name of a file containing the coefficients of a point ${\bf x}$

and displays the values of $F(\mathbf{x})$ and the $c_j(\mathbf{x})$'s

- Simply executing > solar will guide the user and display the options, including a complete inline help with > solar -help

Check the solar installation

- Solar -Check	>	solar	-check
----------------	---	-------	--------

[sebld@ src]\$/bin/solar -check		
Validation tests (can take several minu	tes):	
Validation tests (can take several minu RNG test (1/ 2) OK RNG test (2/ 2) OK Eval test (1/23) OK Eval test (2/23) OK Eval test (4/23) OK Eval test (4/23) OK Eval test (6/23) OK Eval test (6/23) OK Eval test (10/23) OK Eval test (10/23) OK Eval test (10/23) OK Eval test (11/23) OK Eval test (11/23) OK Eval test (12/23) OK	<pre>tes): Time: CPU=4.7e-05 Time: CPU=6e-06 Time: CPU=0.122048 Time: CPU=2.3741 Time: CPU=2.3741 Time: CPU=2.3741 Time: CPU=2.63594 Time: CPU=2.63594 Time: CPU=2.63594 Time: CPU=2.72315 Time: CPU=2.72315 Time: CPU=3.03911 Time: CPU=3.03911 Time: CPU=3.03911 Time: CPU=3.0487 Time: CPU=37.487 Time: CPU=37.487</pre>	real=0 real=0 real=0 real=14 real=14 real=3 real=3 real=3 real=2 real=2 real=2 real=2 real=4 real=98 real=138
Eval test (15/23) OK Eval test (15/23) OK Eval test (17/23) OK Eval test (18/23) OK Eval test (19/23) OK Eval test (21/23) OK Eval test (21/23) OK Eval test (22/23) OK Eval test (22/23) OK Eval test (22/23) OK Eval test (23/24) OK	Time: CPU=4.1//9/ Time: CPU=126.546 Time: CPU=126.736 Time: CPU=8.03149 Time: CPU=8.64463 Time: CPU=8.64463 Time: CPU=14.7216 Time: CPU=0.014616 Time: CPU=8.17105	real=129 real=127 real=127 real=127 real=9 real=9 real=14 real=0 real=8
Real time: 762s		

Introduction	Simulator	Instances 000000000	Features	References

Typical execution times (for one replication)

	\mathbf{x}_0	\mathbf{x}^{\star}
solar1	0 sec	14 sec
solar2	15 sec	20 sec
solar3	3 sec	3 sec
solar4	3 sec	4 sec
solar5	2 min	2 min
solar6	4 sec	2 min
solar7	5 sec	5 sec
solar8	9 sec	
solar9	4 sec	

We observe an impact of the following factors on the execution time: violation of a priori constraints (instantaneous), violation of simulation constraints, number of heliostats

Introduction	Simulator	Instances	Features	References

Stochasticity

- Stochasticity is due to the Monte Carlo simulation for the heliostats field
- Random seed is set to the same value by default: This corresponds to a deterministic blackbox
- ▶ Use the option -seed to change the random seed
- ▶ The option -seed=diff makes the blackbox stochastic
- ► The option -rep executes several simulations and outputs average values
- A high number of replications will tend to decrease stochasticity but will lead to expensive evaluations (which is great in BBO benchmarking)

Introduction	Simulator	Instances	Features 000000●000	References

Multi-fidelity

- The option -fid changes the fidelity of the simulator
- It has been tuned by changing the stopping criteria and precisions in the different numerical methods in the simulator
- Each different value of this option generates a static surrogate
 - -fid=1 corresponds to the "true" blackbox (called the truth)
- This option allows to consider multi-fidelity metamodels or variable precision static surrogates
- Note that using the <u>-rep</u> option also allows to consider such surrogates when the truth is considered to be obtained with high number of replications

Introduction Simulator Instances Features 00000 00000000 00000000 000000000000000000000000000000000000	References
--	------------

Illustration of the multi-fidelity in solar2 with its (infeasible) x_0

fid.	time reduction	c_2	c_3	c_6	c_7	c_8	c_9	c_{10}	c_{13}
0.95	7 (14 sec.)	6	0	0	0.3	0	0	0	0
0.90	13	7	0	0	1	0	0	0	0
0.85	20	4	0	0	0.4	0	0	0	0
0.80	33	0.3	0	0	0.3	0	0	0	0
0.75	33	1	0	0	1	0	0	0	0
0.70	40	6	0	0	2	0	0.1	0	0
0.65	40	12	0	0	3	0	0.2	0	0
0.60	47	26	0	0	4	0	0.3	0	0
0.55	47	23	0	0	5	0	0.3	0	0
0.50	60	18	0	0	3	0	0.3	0	0
0.45	67	13	0	0	0.2	0	0.3	0	0
0.40	73	15	0	0	1	0	0.3	0	0
0.35	73	35	0	0	7	0	0.5	0	0
0.30	73	53	0	0	4	0	0.6	0	0
0.25	80	79	0	0	6	0	0.7	0	0
0.20	80	89	0	0	8	0	0.8	0	0
0.15	87	100	0	0	14	0	0.8	0	0
0.10	93	100	0	0	52	0	0.9	0	0
0.05	100 (0 sec.)	100	0	0	214	0.07	1	0	0

- Values correspond to relative errors with the truth (in %)
- Obj. and a priori constraints are not shown
- Some constraints can be evaluated at no cost
- Others (c₂ and c₇) need the default precision

Simulator

Instances

Features

References

Biobjective optimization (by L. Salomon)

Pareto front approximations for solar8 (left) and solar9 (right) with different solvers with a budget of 5K evaluations. Taken from [Bigeon et al., 2022]

Instances

Optimizations with NOMAD (by M. Jeunehomme and X. Lebeuf)

Introduction	Simulator	Instances 00000000	Features	References ●○

Introduction

The solar simulator

The solar instances

The solar features

References

Introduction	Simulator	Instances	Features	References

References I

Audet. C., Béchard, V., and Le Digabel, S. (2008). Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search. Journal of Global Optimization, 41(2):299-318. Bigeon, J., Le Digabel, S., and Salomon, L. (2022). Handling of constraints in multiobjective blackbox optimization. Technical Report G-2022-10. Les cahiers du GERAD. Drouot, L. and Hillairet, M. (1984). The Themis program and the 2500-KW Themis solar power station at Targasonne. Journal of Solar Energy Engineering, 106(1):83–89. Le Digabel, S. and Wild, S. (2015). A Taxonomy of Constraints in Simulation-Based Optimization. Technical Report G-2015-57. Les cahiers du GERAD. Lemyre Garneau, M. (2015). Modelling of a solar thermal power plant for benchmarking blackbox optimization solvers.

Master's thesis, Polytechnique Montréal.