Derivative-Free Optimization: Linking Algorithms
and Applications

Matt Menickelly (Argonne National Laboratory),
Warren Hare (University of British Columbia),
Charles Audet (Polytechnique Montréal),
Ana Lusa Custdio (Universidade Nova de Lisboa)

July 18 - July 22, 2022

1 Overview of the Field

The following excerpt is taken from the description of the workshop, as was posted on the
BIRS website:

Optimization, the study of minimizing or maximizing a function subject to sat-
isfying constraints, arises in virtually every area of science and engineering.
Modern applications of optimization take many forms, each with their own
unique challenges. One important form is optimization problems where the
objective and/or constraint functions are provided via a "black-box”. Evalua-
tion of the black-box function yields a function value for the specified input at
a given point, but no other information (such as derivative information). This
occurs, for example, whenever the objective function relies on an executable-
only computer simulation. With the rapid increase of computational science
and engineering problems, and associated computer simulations, problems of
this form have become ubiquitous in modern applications.

Derivative-free optimization (DFO) is the design and study of optimization
algorithms that use only function values without derivatives. Such algorithms
provide the perfect tool for optimization of applications based in computer
simulation. DFO has made significant advances over the past decade and
represents one of the most rapidly expanding fields of nonlinear optimization
research. Novel algorithms have expanded the reach of DFO applications. In
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this workshop, we forge new connections between research focused in DFO
algorithm design and novel applications of DFO.

In this initial description, we deliberately used terminology “black-box’ and “derivative-
free optimization”, and felt it necessary to provide definitions. This choice was, in part, be-
cause there is notably not a general consensus on the use of these terms, but people within
this community tend to understand these as nebulous umbrella terms. As a side objective
of this workshop, we attempted to crowdsource guidelines for the appropriate uses of these
words, which we will document in the Side Objectives section below.

However, using the definitions provided in the initial abstract, an overview of the field
of DFO algorithms can be largely characterized by two classes of methods - model-based
methods and direct search methods. Model-based methods aim to construct local surro-
gates of the objective function via some model function (e.g., an interpolated function) and
iteratively optimize these surrogates to obtain candidate points for evaluation by the true
objective function (which could be a black-box). Direct search methods, on the other hand,
do not “in spirit” construct models of the objective function, but rather iteratively generate
batches of trial points around an incumbent point (e.g., by sampling a grid in a calculated
manner) and update incumbents if function decrease is realized at one of the trial points.
As we shall see in the Principal Objective section below, the theoretically-motivated talks
presented in this workshop often cleanly divide into this split, with a few notable excep-
tions.

2 Workshop Principal Objective

In the initial abstract, the workshop’s goals were to: “forge new connections between re-
search focused in DFO algorithm design and novel applications of DFO.”

As a collection of mathematicians in a BIRS-sponsored workshop, we naturally had
no difficulty in finding experts in algorithmic design, which we will outline below in this
section. We were also fortunate to have several talks (e.g., talks by Audet, Lucet, and
Le Digabel) extremely focused on motivating applications for DFO algorithms. However,
given the attendance constraints imposed by the global COVID-19 pandemic, we could not
achieve the broad audience we had desired. As such, there was a slight imbalance between
theory-driven versus application-driven talks. We want to stress that we do not view this
imbalance as a failure. Indeed, many talks discussed specific applications, which we call
out in summaries below. Moreover, as is particularly salient in the field of DFO, most of
the considerations made in algorithmic design are driven by our particularly complicated
setting presented by black-box information. Therefore, when compared with other fields
of applied mathematics, much of the work in DFO algorithms is a crystallization of hard
work and respect for the difficulties presented by real applications. DFO rarely exists in a
“perfect vacuum”. Thus, many of the workshop participants were familiar with the unique
challenges of DFO applications, and were able to participate meaningfully in discussions
of the intersection of theory and application.

In the workshop goals, we do want to stress the word connections. A general sense felt
among the participants was that a workshop with mostly physical (as opposed to virtual)



attendance felt great following two years of virtual conferences and workshops necessi-
tated by the pandemic. Moreover, due to our open workshop schedule — we deliberately
left 15 minute “coffee breaks” between every talk — spontaneous discussion and conversa-
tion was abundant. Such conversations would absolutely not have been reproducible in a
virtual setting. Seeing other researchers in the same field fostered new connections, and
was generally a welcome late-stage-pandemic respite.

2.1 Model-Based DFO Algorithm Presentations

Three talks in particular (Jarry-Bolduc, Menickelly, and Larson) exhibited a common theme
of exploiting additional information about a black-box, when such information is available
in a practical setting. Gabriel Jarry-Bolduc presented a talk on the use of calculus rules —
e.g., product rule, quotient rule, and chain rule — for building models of products, quotients,
and compositions of black-boxes. Matt Menickelly presented on a means of constructing
“stochastic average models”, emulating SAG(A) algorithms, when the black-box is in fact a
sum of black-boxes; this work was motivated by problems in nuclear model calibration. Jeff
Larson presented a model-based “manifold sampling” method for optimizing (nonsmooth)
compositions of analytic functions with black-box functions; this work was motivated by
problems in physical beamline calibration.

Other talks in model-based methods highlighted some of the unique challenges faced in
more general settings of DFO. Ana Custdio presented a model-based trust-region method
for derivative-free multiobjective optimization, a particularly difficult generalization of
derivative-free optimization problems that seeks Pareto front approximations, as opposed
to a single minimizer. Stefan Wild presented a method for iteratively sampling random
subspaces over which to build models of the objective function using only black-box eval-
uations. Stefan’s work also puts a fine point on the particular challenges of DFO, in that
DFO algorithms generally scale poorly with dimension, encouraging the exploration of
down-sampling in dimension.

Whereas the previous five talks on model-based methods were related to local opti-
mization methods, we had several presentations on global model-based optimization. In
particular, Youssef Diouane discussed work in enhancing typical methods of Bayesian op-
timization (known to be costly in high dimensions) with trust-region model-based methods
to enable less-expensive local searches. Juliane Muller discussed the use of global sur-
rogate methods with stochastic black-boxes tailored to hyperparameter optimization for
tuning DL model architectures; this work was particularly motivated by problems in parti-
cle physics. Christine Shoemaker discussed novel global surrogate methods for the difficult
problem of multiobjective optimization. Everton Silva presented scalarization conditions
for global optimality within multiobjective optimization and used these conditions to pro-
pose a (local) scalarized method for multiobjective derivative-free optimization that ought
to exhibit improved global performance. This work was the subject of his Master thesis.

2.2 Direct-Search DFO Algorithm Presentations

As discussed in the overview of the field, direct-search methods generate a set of trial
points, which may become future incumbents. One such commonly employed (and ana-



lyzed set) are positive bases and/or positive spanning sets. Warren Hare gave a theoretically-
minded presentation on positive bases, and algorithms for determining if a given set of vec-
tors specifies a good quality positive basis, as well as desirable structures within positive
bases. Sebastien Kerleau gave a talk on a novel extension of positive spanning sets, called
positive k-spanning sets, which exhibit nice properties that may be exploitable in future
development of direct search algorithms.

Some talks offered extensions of existing direct search methods, notably, mesh-adaptive
direct search (MADS) methods, for specialized challenging settings. Charles Audet dis-
cussed a method for guiding the generation of poll directions in MADS methods, when an
objective monotonic trend is suspected in some variables; this work was heavily influenced
by areal hydroelectric dam optimization problem, where engineers were implicitly consid-
ering the existence of such a trend in making heuristic decisions in operating conditions.
Solene Kojtych discussed DiscoMADS, an extension of MADS designed to identify and
appropriately deal with discontinuities in the black-box epigraph, a known challenge in real
practical settings. Kwassi Joseph Dzahini discussed an extension of a progressive-barrier
variant of MADS to settings where the black-box objective and constraints are stochas-
tic, and probabilistic constraint violation is an appropriate form of constraint-handling.
Ludovic Salomon discussed an extension to multiobjective MADS frameworks to handle
general additional inequality black-box constraints.

2.3 Other DFO Algorithm Presentations

While model-based and direct-search algorithms create a clean split in principle, not all of
development in DFO algorithms can be partitioned so cleanly. Indeed, in this workshop,
some of the discussion centered on algorithms that are either a hybrid of the two classes of
methods, or cannot be cleanly described as either.

Giampaolo Liuzzi presented on extensions of a derivative-free line search method in
the setting of an interior point method designed to handle general black-box constraints.
Derivative-free line search methods cannot be cleanly classified as either a direct search
method or a model-based method - they essentially operate like a derivative-based line
search method using derivative-free directions. Positive spanning sets are a possibility
for it, like was the case of the talk of Liuzzi, but replacing the gradient with a gradient
approximation of dynamically adjusted gradient accuracy can also be considered. One of
such gradient approximations was the subject of a presentation by Yiwen Chen, a recent
undergraduate degree awardee. Yiwen discussed the approximation quality of centered
simplex gradients under the assumption of “misaligned points”, which may prove useful in
settings of expensive black-boxes, where one does not wish to expend additional effort on
computing perfectly centered simplex gradients.

Hybrid methods were also present at this meeting. Dominic Huang, recently awarded
a Masters degree, presented on a hybrid of direct search methods, quadratic model-based
methods, and derivative-free line-search methods, and showed its practical potential in ra-
diation dosimetry problems. In terms of software employing hybrid methods, Margherita
Porcelli discussed BFO 2.0, a Matlab package for black-box optimization that combines
a particular direct search (also compatible with categorical variables) with model-based
search steps. Although not a hybrid method, Francesco Rinaldi discussed both direct-



search and model-based methods when proposing improved means of satisfying probabilis-
tic tail bounds with stochastic black-box oracles in stochastic variants of DFO methods.

2.4 Application Presentations

Two talks were significantly more focused on applications rather than algorithms. Sbastien
Le Digabel discussed a benchmarking tool that he and collaborators have made available
called SOLAR - it is a collection of real black-box optimization problems representing a
wealth of distinct challenges that are derived from a real code for a solar plant simula-
tion. Yves Lucet also presented extensive comparisons and practical experience of apply-
ing various derivative-free multiobjective optimization methods to real problems in road
construction.

3 Workshop Side Objectives

As mentioned in the overview of the field, we wanted to take advantage of the unique
opportunity of having so many experts in the same scientific area, gathered in one place for
a week, with few outside distractions, to discuss larger problems within the field. Towards
this end, we had guided “lunch discussions”. Each day, participants were provide a question
and encouraged to discuss their thoughts over lunch. A Google Doc page was created for
participants to record their opinions and reactions to their conversations. In this section,
we reproduce these questions and provide a summary of responses. Our intention is not
to offer definitive answers to the questions or even to suggest a consenus, but rather to
record a collection of opinions that were gathered. We would also like to remark that we
are particularly grateful for the participation of John Dennis, one of the founding fathers
of the DFO scientific area, who also attended to this workshop — many of his insightful
comments and experiences are woven throughout this summary.

1. DFO (Derivative-free Optimization) vs BBO (Black-box Optimization) vs ZOO
(Zeroth-order Optimization): Are there differences between these terms? What
are those differences?

Consider that linear optimization is the study of optimization problems with linear
objectives and constraints. Similarly, nonlinear optimization is the study of opti-
mization problems with nonlinear objectives or constraints. In this sense, “linear”
and “nonlinear” define properties of a problem rather than properties of an algorithm.
Because we are united under problems defined by a black-box, the optimization we
are performing is black-box optimization (BBO), if we are to continue this analogy.
Derivative-free, on the other hand, is an appropriate descriptor of an algorithm. It
describes what the algorithm is given access to; in this case, the word derivative-free
emphasizes that the algorithm has no access to derivatives. The implied opposite of
the word derivative-free is derivative-based, which would describe virtually every
non-derivative-free algorithm for nonlinear smooth optimization, since their conver-
gence fundamentally relies on Taylor’s theorem. In light of this, it is perhaps appro-



priate to attempt to rebrand DFO as DFA, and refer to the algorithms we produce as
derivative-free algorithms.

This distinction and suggestion was met with some acceptance, with a few caveats.
For instance, it was pointed out that many talks in this workshop were not entirely
black-box, and that the word black-box potentially excludes these gray-box situa-
tions. An additional concern noted that some researchers in nonlinear optimization
consider an oracle capable of returning both function and gradient values as a black-
box oracle (but the mechanism or analytic form that returned those values is un-
known); such a setting is certainly not within the standard scope of what many of us
consider black-box optimization, which implicitly means only zeroth-order informa-
tion is returned.

In terms of ZOO, there seemed to be some consensus that this is a weird term pro-
duced by the computer science community that is redundant with “derivative-free”,
because it is a description of the information available to solve the problem. John
Dennis also commented that in his long view of optimization, referring to the or-
der of a method is a vestige of a simpler time when optimization algorithms were
easily categorized as zeroth, first, or second order methods. However, with the now-
abundance of methods like BFGS (which dynamically generates subspace approxi-
mations of second order information using only first order information), and coordi-
nate descent (which only uses partial derivative information), this classification has
become cumbersome and is perhaps time to retire. This in line with our view that
Z00 is generally an unnecessary term.

. Evolutionary algorithms/metaheuristics : Why don’t our communities align?
Are they aligned? Should we be aligned? What’s the ‘“‘threshold” for inclusion?

Initially, it was the participants’ view that an evolutionary algorithm (EA) or meta-
heuristic is not properly an algorithm, if one believes the definition of algorithm
should include something about returning a certificate of solving a problem within a
finite stopping time. As an example, gradient descent, when applied to a sufficiently
regular smooth function and with appropriate step size selection, is guaranteed to stop
in a quantifiably finite (expressed as a function of € > 0) number of iterations and
return a point with objective gradient e-small. By definition of being heuristics, EAs
and metaheuristics cannot do this. Thus, because we as mathematicians are so keen
on having theoretically obtainable results concerning the performance of algorithms,
it seems that this gap is too wide.

It was pointed out, however, that there have been efforts to force convergence guar-
antees on heuristics by using various safeguards - work in employing heuristics in the
search step of direct search methods comes to mind. To search for deeper connec-
tions between these two communities, it was noted that the majority of EAs are based
on some aspect of nature and attempts to establish some analogy to nature’s ability
to “optimize” (e.g., ant colony optimization attempts to mimic the forging behaviour
of an ant colony). If the real performance benefit of EAs is coming from the inherent



randomization of update rules, this is more a case for the continued and further study
of randomized algorithms rather than a specific aspect of any one metaheuristic.

The desire to reconcile the heuristic and algorithmic communities doesn’t come from
a vacuum. It has been repeatedly documented that heuristics are often remarkably
useful in practical settings. In a cute analogy, John Dennis referred to his former
hobby of maintaining an aquarium. In John’s view, while we all look at the “fancy
fish” (algorithms with many assumptions, like Newton’s method) in the aquarium,
the optimization landscape fundamentally relies on the bottom-feeders (EAs) to keep
the whole ecosystem going. The bottom-feeders are ugly, but when solving a real
problem, they are sometimes necessary to hold things together.

Another observation that was generated as a result of this discussion is that EAs and
metaheuristics tend to come from the computer science community, which (perhaps
surprisingly, to an external viewer) does not frequently intersect with the applied
mathematics community. Indeed, several people noted that the majority of EAs pa-
pers they had read or EAs talks they had attended typically only discussed the im-
plementation of a specific method with a specific parameter tuning applied to their
specific problem, and documented its relative success. This is perhaps bolstered by
the differences in publication style between the two communities. There was some
agreement that mathematicians tend to move slower and target journal publications,
whereas computer scientists tend to target conference proceedings, which histori-
cally have faster turn-around times and publication rates. There was even a sense
that this rush to publish quickly in the computer science community leads to a gen-
eral disinterest among computer scientists to intersect with research trends that are
evolving outside of their own community. Some workshop participants even went so
far as to note a frustration in their own personal endeavors to interact with computer
scientists, but found that computer scientists were frequently too pressed for time to
have meaningful collaborations with mathematicians.

. Finite difference gradients: Recently, there’s been more research employing
finite difference gradients (and other similar gradient approximations) within
gradient-based algorithms. Is this derivative-free research?

Whereas the responses to the previous two questions were a bit more one-sided,
this one did not seem to elicit too many strong opinions. Our initial question was
driven by the observation that one, ostensibly, could propose any inexact gradient
(or higher-derivative) method, spend an entire paper analyzing it, and then in the last
section of a paper claim “These results can be realized, for instance, by finite differ-
encing”. In this sense, these methods have very little to do with the actual black-box
nature of the problem, and thus seem outside the scope of traditional derivative-free
algorithms. As an idealized point, consider the Optimization Toolbox in Matlab - if
one does not supply objective or constraint gradients, then the default nonlinear opti-
mization solvers will simply create a function that returns finite-difference gradients,
and proceeds to treat this created function as a true gradient within the context of the
usual derivative-based algorithms.



However, perhaps this view of derivative-free algorithms is in fact too limited. Im-
plicit in the question that we asked was the assumption that a gradient approximation
was meaningful, which implicitly assumes that the black-box function for which we
are constructing a gradient approximation is smooth. This is in fact one of the ar-
guments for the initial development of direct search methods. A finite difference
gradient method should be expected to struggle in a neighborhood of a point of non-
differentiability, whereas a direct search method may find more success. It is im-
portant to remember that convergence proofs for (not just derivative-free) algorithms
are intended to be proofs of correctness for an algorithm applied to a particular class
of problems; convergence proofs alone do not characterize the practical scope of an
algorithm. With this lens, the difference between what we have traditionally labeled
derivative-free methods and these inexact gradient methods is that the inexact gradi-
ent methods innately mean that the practitioner - as opposed to a mathematician - has
made a smoothness assumption on the black-box. Whereas traditional derivative-free
methods (but especially direct search methods) do not require that assumption on the
part of a practitioner.

. The future of derivative-free algorithms. What are the exciting trends? What
should we be working on that we aren’t?

We should certainly note that in this workshop the amount of work that has been
done recently when assuming stochastic black-boxes and when dealing with multi-
objective optimization. These are important theoretical steps towards capturing the
real complicated structure of black-box optimization problems. John Dennis noted
that it is very important for theoreticians to continue to provide formal justifications
for why and when algorithms ought to work under sets of assumptions, because this
is exactly what helps steer practitioners towards better problem definitions. Several
participants stressed that both the stochastic/noisy and multiobjective settings are ex-
actly the settings that will enable the solution of more real problems.

Another form of structure that tends to be frequently overlooked is optimization with
discrete variables. We know that integer optimization has been accelerated by ad-
vanced decomposition techniques and exploitable parallelism. As BBO is often ap-
plied to hyperparameter optimization in machine learning settings, which naturally
deal with (hierarchical) categorical discrete variables, there is both a need and oppor-
tunity for massive algorithmic development in this field.

Massive parallelism also lends itself to the solution of potentially larger black-box
optimization problems. As noted previously, derivative-free algorithms scale poorly
with problem dimension, but coupled with algorithmic ideas like subspace methods
(Wild’s talk) and problem separability (Porcelli’s talk), increased parallelism will
certainly improve the practical performance of derivative-free methods.

Finally, we identified that not enough research has been performed in “budget-aware”
multi-fidelity optimization. In particular, given the availability of multi-fidelity ob-
jective and constraint functions, and a rough understanding of the time costs and
resource availability of evaluating these functions, how can or should one go about



Figure 1: Workshop participants at the beautiful UBC Okanagan campus.

distributing a budget of core hours towards the solution of an optimization problem
so that the best solution found at the end of the time horizon is taken as the output
of the algorithm? This is an intriguingly difficult problem that generated a lot of
opinions.

4 Outcome of the Meeting

Overall, the workshop was successful in its aims of bringing together an international col-
lection of experts and rising experts (students) in the field of DFO. As documented in
Sections 2 and 3, both the objectives and side-objectives of the meeting were achieved.

We gratefully acknowledge our funding from BIRS, without which this excellent meet-
ing could not have occurred. A second meeting is already planned to take place in 2024, in
Italy.
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Figure 2: A subset of workshop participants at a hiking excursion at Big White.
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Figure 3: Because we deal with black-box optimization, many workshop participants in-
cluded an image of a “black-box” in their talks. We collected these disparate representa-
tions here, and arranged them in an artful manner.



