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Abstract

This five-day multidisciplinary workshop focussed on the mathematics of free-surface fluid flow.

Building on theoretical and experimental developments of the last few years, the workshop

brought together mathematicians and physicists at the forefront of research in experiments,

analysis, computation, and modelling. The workshop yielded a rich exchange of ideas in the

areas of thin liquid films, dynamic contact lines, slender jets, Hele-Shaw flow, and fluid interfaces.

1 Overview

The mathematics of thin liquid films and fluid interfaces has developed substantially in the last ten
years, and is now being pursued by different groups of mathematicians, physicists, and engineers
across Canada, Europe, and the United States. The workshop brought together experimentalists,
analysts, modelers, and computational fluid dynamics experts for a meeting that yielded a vigorous
assessment of the field from many different points of view.

The clear air and an early winter snow blanketing the spectacular surrounding mountains, coupled
with the superb facilities of the Banff Institute, provided an ideal setting for the workshop. The
meeting was notable for the many informal discussions, lively interaction during talks and generally
friendly and cooperative atmosphere. While many of the participants have met before, there were
also many new contacts established, and lots of resolve to continue to provide forums for continued
dialogue between groups separated by large distances.

The mechanics of fluids with free surfaces or interfaces rests on the largely unexplored area
of nonlinear fourth-order partial differential equations. Fourth-order derivatives arise from surface
tension, which appears in the equations as gradients of the curvature of the free surface. Fourth-
order equations have applications to several active fields of scientific research, including materials
science, nanotechnology, and biology. The interaction of physicists and engineers with applied math-
ematicians and analysts has provided tremendous motivation for the mathematics; the mathematics
in turn has contributed substantially to understanding of the wide variety of interesting physical
phenomena in this area.

The workshop was linked to and partially supported by an NSF Focused Research Group (FRG)
Grant (NSF-DMS #0073841/0074049) on the dynamics of thin films. This grant is directed by four
of the workshop organizers: Behringer, Bertozzi, Shearer, and Witelski.
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We encourage interested readers to do a literature search on speakers of interest and look at their
articles for references. A conference proceedings is planned, to appear as a special volume of the
journal Physica D.

2 Free-surface flows: Modelling and Dimensional Reductions

Free-surface flows are a challenging area of research in the physical sciences [1–3]. They are im-
portant for industrial and technological processes such as coating flows, film drainage, fluid jetting
and droplet formation. Physical experiments with novel and intricate dynamics have pushed clas-
sic engineering models to their physical limits. The mathematical modelling and analysis of such
dynamics has produced new generations of problems and results in free boundary problems for
nonlinear partial differential equations [4, 5].

The mathematical description of a physical free-surface flow is composed of a number of elements.
Assume the fluid is located in a time-dependent region Dt ⊂ R

3. Initial conditions for D0 and the
velocity ~u0(~x) for all points in the domain are required. Each fluid particle ~x in this region moves
with a velocity ~u(~x, t) determined by dynamical conservation laws for the conservation of mass and
momentum. For example, if the fluid is an incompressible Newtonian liquid, the governing equations
are the Navier-Stokes equations. The system has boundary conditions at ∂Dt. The conditions on ∂Dt

can be mixed if portions of the boundary are liquid/gas, liquid/liquid, or liquid/solid interfaces with
physical models dictating different conditions on each type of interface. Finally, there is a kinematic
boundary condition at ∂Dt which determines the velocity ~u(~x, t) for points on the boundary. The
subsequent evolution of the flow will be influenced by any forces that may be acting on the interior
or the surface of the domain.

Direct numerical simulation or analysis of the full system of equations is intractable in most
cases. And even when possible, large-scale numerical simulations do not necessarily provide insight
into the fundamental physical mechanisms at work. Valuable understanding has been gained from
studies of asymptotic models that are applicable in limiting cases. These models take more tractable
forms, yet retain much of the rich dynamics of the experiments; their study spurs advances in
analysis and computation. The use of such models was a major theme of the workshop, with many
striking results of analysis and numerical simulation coupled to beautiful and instructive physical
experimental findings.

In deriving an asymptotic model, one often makes an approximation of the region Dt, an ap-
proximation of the velocity ~u(~x, t), and approximations of the boundary conditions. This leads to
an “asymptotic model” of the full flow. Asymptotic models of free-surface flows yield systems of
lower dimension and simpler structure. Lubrication models give a single partial differential equation
for the motion of the fluid interface, while long wave models give coupled evolution equations for the
dynamics of the fluid interface and average flow velocity. These modelling techniques have produced
striking advances in several areas:

• Thin viscous films on solid surfaces: Lubrication models for low Reynolds number flow of a
thin viscous film on a solid surface take the form of a nonlinear fourth-order degenerate PDE
for the height of the film’s free surface, h(x, y, t),

∂h

∂t
+ ∇ ·

(

M(h)∇
[

∇2h + P (h)
]

+ F (h)~e1

)

= R(h). (1)

Here the liquid/solid interface is assumed to be at z = 0 and the air/liquid interface at
time t is located at z = h(x, y, t) and so Dt is approximated by R

2 × [0, h(x, y, t)]. The
full velocity ~u(~x, t) is approximated by a laminar velocity (v1(x, y, t), v2(x, y, t), 0) which is
fully determined in terms of h(x, y, t). Various physical effects including system geometry,
gravity, surface tension, thermodynamic effects, chemical kinetics, materials properties and
constitutive equations of state are all incorporated into the functions for F (h), M(h), P (h),
and R(h). Under different conditions, complicated dynamics including rupture singularities
and non-classical shocks occur in this model.
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• The Hele-Shaw cell: In a Hele-Shaw cell, a fluid is placed between two closely-spaced parallel
plates. The fluid moves in response to pressure gradients arising from surface tension and
externally imposed forces. The equations describing this problem are the same as those that
describe dendritic solidification in an important limiting case, and are also very similar to
those describing flow through a porous medium. In the absence of externally imposed forces,
the asymptotic model is











∆p = 0 in Ωt

p = τκ on ∂Ωt

~v = −∇p on ∂Ωt.

(2)

If the parallel plates are a distance 2δ apart, the fluid is in the region Ωt × [−δ, δ] at time t.
The region Ωt is the fluid region that one would observe by viewing the Hele-Shaw cell from
above (if the two glass plates were on a flat table). The fluid in Ωt moves with a velocity that is
proportional to the gradient of the pressure p. (That is, the full three dimensional domain Dt

has been approximated by Ωt × [−δ, δ] and the full velocity ~u(~x, t) has been approximated by
a two-dimensional velocity (−px(x, y, t),−py(x, y, t), 0).) The pressure jump at a point on the
air/liquid interface ∂Ωt is proportional to the curvature of the interface at that point times the
surface tension parameter. The system (2) is elliptic: the velocity at a point x ∈ Ωt is influenced
by the entire domain. If the region Ωt has a thin neck (if Ωt were shaped like a barbell, for
example, with a neck located at (x,±h(x, t)) for x ∈ [−x0, x0]) a further dimensional reduction
reduces the nonlocal system (2) to a fourth-order PDE,

ht + (hhxxx)x = 0, (3)

that holds for x ∈ [−x0, x0]. This PDE has interesting dynamics and remarkably complex
singularity behavior [6].

• Instabilities of slender laminar jets of fluid. Consider a dripping faucet. As a pendant drop
begins to form, there is a strand of fluid that connects the drop to the faucet’s mouth. This
strand of fluid is an example of a jet; it begins to develop instabilities and ultimately breaks
and the drop falls. If the full three-dimensional domain Dt is approximately axisymmetric
and with the jet’s air/liquid interface located at (h(z, t) cos(θ), h(z, t) sin(θ), z) with gravity
is acting in the −z direction, the long-wave model for this system yields a system of partial
differential equations for the evolution of the jet radius and of the radially averaged velocity















vt = −vvz −
pz

ρ
+ 3ν

(h2vz)z

h2 − g

ht = −vhz − 1
2vzh

p = γ
[

1
h(1+h2

z)1/2
− hzz

h(1+h2
z)3/2

]

.

(4)

Here the full velocity ~u(~x, t) has been approximated by an axial velocity (0, 0, v(z, t)), p is
the pressure, ν is the kinematic viscosity, ρ is the density, γ is the surface tension, and g is
the gravitational constant. These equations capture the interaction of viscosity, inertia, and
surface tension [1].

Experiments show that surface tension has important, yet often subtle, effects on interface dy-
namics. In the modelling equations, surface tension effects are produced by the curvature of the
fluid interface, and by gradients of related properties on the interface. Consequently all of these
physical problems are modelled by strongly nonlinear, sometimes nonlocal, higher-order nonlinear
partial differential equations. These models have provided fundamental and important mathemat-
ical challenges. Interesting free boundary problems arise and much is being learned about their
solutions.

Important changes in the qualitative structure of the physical systems generally appear as finite-
time singularities in the corresponding simplified model: formation of dry spots in a thin film,
pinch-off of a thin neck in a Hele-Shaw cell, or pinch-off of a thin jet as in a dripping faucet. A
great deal is now known computationally, mathematically and experimentally about the structure
of singularities in the model systems. This knowledge is providing insight into the behavior of the
full systems.
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3 Analysis of thin film equations

One of the fundamental mathematical challenges involved in the study of equation (1) is that the
the mobility coefficient, M(h), vanishes at h = 0: M(h) = O(hn), n > 0. Assume that the mass is
conserved (R(h) = 0) and there is no external driving (F (h) = 0). Further, consider the case of a
film which is uniform in one direction. Equation (1) can then be written as

ht + (hU)x = 0 (5)

where U(x, t) is the average velocity across the cross-section of height h(x, t) located at x at time t.
It follows that in order for the thin film to form a dry spot in finite time,

hmin(t) := h(xmin(t), t) → 0 (6)

as t → T , there must be a divergence of Ux(xmin(t), t) as t → T . This loss of regularity prevents
nonnegative h from going negative at a point (and becoming “unphysical”). Also, if there is a
contact line at x = a(t) (i.e. h(x, t) > 0 for x . a(t) and limx→a(t) h(x, t) = 0) then this contact line
cannot move unless limx→a(t) U(x, t) = ±∞.

These are heuristic explanations for how the interplay between the mobility M(h) and the reg-
ularity of the solution h is crucial for the model to reflect the correct physics: the film thickness
should be nonnegative at all times and the contact line should move with finite speed. Proving such
behaviors analytically is nontrivial because equation (1) is fourth-order and the comparison-method-
based techniques used for second-order degenerate equations do not hold. The development of new
analytical techniques is an active area of research; six of the speakers presented analytical work on
such thin film equations.

The study of exact solutions such as steady states, travelling waves, and self-similar solutions
has proven to be very helpful in understanding general solution properties. In this direction, Mark
Bowen presented a collection of exact solutions to the thin film equation

ht + (hnhxxx)x = 0. (7)

These included “dam break” self-similar solutions, separable solutions, and self-similar solutions that
had a combination of fixed and free boundary conditions. His studies included how the value of n

affected the solutions and their properties [7–9].
Continuing in the theme of this particular equation, Lorenzo Giacomelli presented work in which

he rigorously derived the lubrication equation [10]

ht + (hhxxx)x = 0 (8)

directly from the related Hele-Shaw problem. The derivation was done by finding the limiting
behavior of solutions of the Hele-Shaw problem and the equation they obey, rather than performing
asymptotics on the evolution equation. This work is especially exciting because it provides a new
bridge between PDE analysts and experts in asymptotics.

Günther Grün presented new interpolation inequalities for

ht + ∇ · (hn∇∆h) = 0 (9)

and its analogues. He considered a higher-dimensional case than Bowen and Giacomelli: ~x ∈ R
d

with d ≥ 2. The interpolation inequalities allow him to prove the existence of weak nonnegative
solutions, finite speed of propagation for compactly supported weak solutions, as well as waiting time
results [11, 12]. And as a bonus, he presented numerical simulations of complex structures being
formed in thin films on silicon wafers that are being driven by molecular forces at the liquid/solid
interface [13].

Continuing in the direction of liquid film equations with non-advective instabilities, Mary Pugh
presented results concerning a critical-exponent long-wave unstable thin film equation [14],

ht + (hnhxxx)x + (hn+2hx)x = 0. (10)
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This included self-similar solutions that that blow up in finite time in a focussing manner and a
study of how these solutions are related to the steady states of the evolution. Dejan Slepcev studied
a special case of this critical-exponent equation (n = 1) and presented linear stability results for
steady droplets, self-similar source-type solutions, and self-similar blow-up solutions [15].

Another system in which there can be surprising instabilities was studied by Sandra Wieland. She
presented her thesis work on thin liquid films which have surfactants on the air/liquid surface. This
leads to a coupled system involving a lubrication equation for the film thickness and an advection
diffusion equation for the surfactant concentration. The system has hyperbolic aspects to it and
its analysis is nontrivial and illuminating. A related talk by Barry Edmonstone focussed on new
phenomena and their realization in numerical experiments.

4 Filament Instabilities and Moving Contact Lines

Physical experiments are uncovering a broad array of dynamics in thin liquid films and fluid inter-
faces. The connections to industrial processes, such as spin coating in the manufacture of micro-
processors, are also at an early stage of development. Some examples of recent progress in this area
include scaling laws for jets and drops, a problem of relevance to inkjet printers, to electrospinning
of fibers, and to nanotechnology printing devices.

Two of the speakers presented research on filaments and jets:
Linda Smolka presented her work on liquid filaments in extensional flows [16]. She considered

exact, cylindrical solutions in which the radius is time-dependent and used these in a study of
various viscoelastic constitutive models. This work is of definite industrial and scientific interest as
it suggests ways to use extensional flows to measure rheological properties of nonstandard materials.

Marco Fontelos also considered axisymmetric structures in non-Newtonian flows, specifically in
a model where the rheology’s constitutive law is Oldroyd-B. He used asymptotics and numerics in
an elegant study of the dynamics of droplets in a “beads on a string” configuration in which one has
a collection of droplets connected by thin filaments; the filaments allow the droplets to interact and
fuse [17].

Another area of intense experimental activity is that of moving contact lines, specifically how
the microscopic physics at the contact line can influence large-scale properties of the flow. To date,
most of the analysis of driven films has addressed the question of linear instability and wavelength
selection. Understanding nonlinear dynamics requires cooperation between the experimentalists,
modelers, and analysts in the following ways; (i) from experiments we need to understand basic
nonlinear structures that emerge in this problem, including fingers, teeth-like patterns, and capillary
ridge instabilities, (ii) once these patterns are well identified, modelers should work to isolate the
essential physical mechanisms present and provide simplified models that are tractable for analysts,
(iii) a combination of analysis and computation of the models will lead to a general understanding
of the problem that can then be compared with experiments and guide further experiments. Ten
of the speakers contributed to this program by reporting on their studies involving driven films and
contact line instabilities of various types:

Stephen Wilson presented his work on steady rivulet flows down inclined planes. This is an
extensive combination of analytical and computational work that considers both constant and
temperature-dependent surface tension [18, 19].

Michael Schatz presented his experimental work in which he optically heats regions near the
contact line, inducing a surface-tension driven flow [20]. This allowed a direct study of transient
amplification near the contact line.

Roman Grigoriev presented careful computational studies of the transient amplification observed
by Schatz and others, with the goal of understanding the widely differing predictions made by
theorists. In addition, he presented striking experiments in which he used optical heating in a
feedback control system to suppress contact line instabilities [20, 21].

Len Schwartz presented a collection of numerical studies of thin film flows with different types
of driving forces and substrate geometries [22]. His studies included models with effects such as
drying, the effects of surfactants, and the response to local contaminants on the air/liquid surface.
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At the end of his talk, he engaged the audience in a lively discussion of the “correct” boundary
condition to place at the free boundary represented by the triple junction of fluid, surface and air,
when the contact line is moving. His point of view is that a disjoining pressure should be introduced
to avoid the contact line and thus avoid the well-known stress singularity that seemingly prevents
the contact line from moving if the usual no-slip boundary condition is assumed between fluid and
solid substrate [23]. This intriguing issue is a famous outstanding problem in the field of dynamic
contact lines; it was alluded to repeatedly during lectures and in discussion.

Barbara Wagner presented her work on dewetting films. Here, one has a thin film which is
rupturing in regions. In near a rupture region, the bulk of the film is receding from an area where
the film has either ruptured or become very thin. Experiments show intricate transient dynamics and
long-time patterns. Wagner presented numerical studies in which she finds that the receding front
has a ridge that is linearly unstable in the spanwise direction, thus allowing additional structures to
form.

Lou Kondic presented computational studies of gravitationally driven thin films on heterogeneous
surfaces [24–26]. His studies focussed especially on the dynamics of the contact line and how it
responds to nearby perturbations. Of particular interest was the influence of the spatial structure
of the perturbations.

Javier Diez presented experiments studying thin films flowing down a vertical plate. He studied
both the constant volume and the constant flux flows and compared the experimental results to nu-
merical simulations, in a study of how the thickness of the precursor film assumed in the simulations
affects the relevance of the simulations to the experiments.

Barry Edmonstone presented numerical simulations studying surfactant-ladened thin films flow-
ing down an inclined plane, as modelled by a coupled system for the film thickness and the surfactant
concentration. He considered both fixed volume and fixed flux boundary conditions and studied in-
stabilities at the contact line and within the surfactant monolayer concentration.

Martine Ben Amar presented her work on small droplets sliding down inclined planes [27]. Ex-
periments show that there is a critical angle of inclination (or critical sliding speed) at which the
the shape of the trailing contact line develops a corner. She presented modelling and asymptotics
concerning this phenomenon, which is especially difficult to study because the droplets are fully
three-dimensional.

5 Undercompressive shocks in driven films

The discovery of undercompressive shocks in driven films is an example of the interdisciplinary nature
of studies on thin liquid films. This discovery arose from a three-way confluence of analytical and
computational work on thin liquid films, of analytical studies of hyperbolic PDEs, and of experiments
on thermally driven thin liquid films. Early experiments of Cazabat and Fanton [28] concerning a
thin film that is climbing an inclined plate found that very thin films produced the characteristic
fingering instability, while slightly thicker films showed a strong tendency not to form fingers. The
latter behavior was observed to be associated with a broadening of the capillary ridge behind the
contact line.

The experiments prompted Bertozzi, Münch, and Shearer to work on a mathematical model
for this problem [29, 30]. The relevant form of equation (1) for the experiment has M(h) = h3

and P (h) = R(h) = 0. What was unusual about the experiment is that the thermal gradient acts
against the pull of gravity, producing a non-convex flux of the form F (h) = h2 − h3. In this case,
equation (1) is a hyperbolic conservation law with degenerate fourth-order diffusion. Travelling
wave solutions, correspond to either classical shocks, satisfying the well-known entropy condition,
in which characteristics enter the shock from both sides, or to undercompressive shocks for which
characteristics pass through. The undercompressive shocks help to explain the lack of fingering in
thicker films, and the associated broadening of the capillary ridge. This comparison between theory
and experiment is the first clear evidence of the existence of scalar law undercompressive shocks in
a physical experiment. Further work on this problem has drawn on different branches of applied
mathematics. For example, dynamical systems methods and Lyapunov functions were used to prove
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existence of undercompressive waves; Evans functions methods resulted in a connection between the
topology of the travelling wave phase space and the stability of the waves.

Bob Behringer presented recent experimental and computational results of Jeanman Sur in this
context [31]. The film climbs the plate driven by a temperature gradient that induces variation in the
surface tension. Using a version of dip coating, undercompressive shocks were induced at the trailing
edge of the film, in contrast to the original experiments in which the undercompressive wave appears
at the leading edge. In addition, lasers are used to perturb the film at a chosen wavelength, thus
experimentally studying the linear stability of the system. Andreas Münch presented simulations
of these so-called reverse undercompressive fronts in thin film flow, including numerical stability
studies [32].

Michael Shearer presented his work on Lax shocks and undercompressive shocks in the context of
driven thin liquid films [33,34]. He demonstrated how the structure of waves observed in experiments
and numerical simulations can be explained using only the hyperbolic conservation law, together with
an appropriate kinetic relation (that selects the undercompressive shocks) and nucleation criterion
(that distinguishes between classical and nonclassical wave structures).

Peter Howard presented his work on nonlinear stability for viscous shock waves arising in con-
servation laws with high order viscosity [35–37]. He presented an overview of the pointwise Green’s
function approach for analyzing stability and discussed what this approach can and cannot do in
the case of high order viscosity.

Burt Tilley presented modelling and computational work in which he studied flow of two in-
compressible immiscible viscous fluids in an inclined channel [38, 39]. In this system, he studied
Lax shocks, undercompressive shocks, and rarefaction waves. Numerical simulations help identify
parameter regimes for the different phenomena.

6 General problems on interface motion

Alexander Golovin studied the self-organization of quantum dots in thin solid films [40]. This
included a weakly nonlinear stability analysis of spatially regular patterns in the presence of both
epitaxial stress and anisotropic surface tension.

Amy Novick-Cohen studied a problem in solid materials in which a grain boundary that couples
an exterior surface which is evolving under the influence of surface diffusion to an interior material
which is antiphase. The problem is fully nonlinear and no assumption has been made about the
interface’s being the graph of a function. She presented a family of exact travelling wave solutions
for the problem.

John Bush performed aquabatics. He presented experiments in which a jet of water impacts on
a flat surface, or two jets impact on each other. Both situations produced structures with surprising
symmetries and great temporal stability [41]. Analysis of the flows help to explain the observed
structures. In addition, he discussed various types of insects that walk on water, including a robotic
insect that his research group had built out of a soda can [42]. John’s presentation was further
distinguished by his use of artistic graphics and colourful photos of experiments.

Dan Lathrop presented experiments involving topological changes of Newtonian thin jets as well
as experiments in turbulence and possible connections to singularities in inviscid flow. He presented
an impressive collection of power-law behaviors in real fluids, as well as a novel way to “measure”
turbulence [43, 44].

John King presented his studies of a thin fluid film in which the air/liquid free interface has been
replaced with a rubber sheet, resulting in a sixth–order modelling equation:

ht = (hnhxxxxx)x. (11)

He demonstrated the power of local asymptotics, finding a large collection of special solutions and
studying their dependence on the exponent n [45].

Linda Cummings presented thin film models for nematic liquid crystals, including different types
of anchoring for the rods at one or both of the surfaces (air/liquid and liquid/solid). Lubrication
models were found for the film thickness, allowing for stability studies [46].
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Andy Bernoff presented experiments and modelling for polymer monolayers resting on the flat
air/liquid interface of a sub fluid, like an oil slick on water. Experiments show a different dynamic
than that of oil on water — when mixed, the droplets of polymer do not break apart, instead they
return to their droplet shape however extremely they have been sheared. Bernoff proposed a clever
model that blends two and three dimensional behavior; he compared his model to the classical (two
dimensional) Hele Shaw problem.

Mike Miksis presented extensive level set simulations of air bubbles rising in inclined channels as
part of his continuing studies of air bubbles in blood vessels [47, 48]. Varying the Reynolds number
and the inclination angle of the channel, he observed steady bubbles, time-periodic bubbles, and
bubbles that rupture onto the wall of the channel.

Brian Wetton presented a new numerical method for elliptic problems in which the domain is
separated into two regions by a free boundary, on which mixed linear Dirichlet-Neumann conditions
are specified. He presented an iterative approach in which a “generalised Stefan velocity” is computed
and used to decrease the residual.

7 Speakers

Analysis: Lorenzo Giacomelli University of Rome
Günther Grün University of Bonn
Peter Howard Texas A & M
Amy Novick-Cohen Technion
Mary Pugh University of Toronto
Michael Shearer North Carolina State University
Dejan Slepcev University of Toronto
Sandra Wieland University of Bonn

Modeling: Martine Ben Amar Ecole Normale Superieure
Andrew Bernoff Harvey Mudd College
Mark Bowen University of Nottingham
Linda Cummings University of Nottingham
Alexander A. Golovin Northwestern University
Roman Grigoriev Georgia Tech.
John R. King University of Nottingham
Andreas Münch Humboldt-Universität Berlin
Leonard W. Schwartz University of Delaware
Linda B. Smolka Duke University
Burt S. Tilley Franklin W. Olin College of Engineering
Barbara Wagner Weierstrass Institute
Stephen K. Wilson University of Strathclyde
Thomas Witelski Duke University

Computation: Barry D. Edmonstone Imperial College London
Marco Fontelos Universidad Rey Juan Carlos
Lou Kondic New Jersey Institute of Technology
Michael Miksis Northwestern University
Brian Wetton University of British Columbia

Experiments: Robert Behringer Duke University
John Bush MIT
Javier Diez Universidad Nacional de Buenos Aires
Daniel Lathrop University of Maryland
Michael Schatz Georgia Tech
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