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Recently discovered examples of Lorentz manifolds have renewed interest in the field among
group theorists, differential geometers, topologists and dynamicists. The purpose of the November
6 BIRS workshop was to assemble specialists in these fields to discuss these new discoveries.

A Lorentz manifold is a manifold with an indefinite metric of index 1. Such structures arise
naturally in relativity theory and, more recently, string theory.

Unlike the considerably more familiar Riemannian manifolds (with metric tensors of index 0),
Lorentzian manifolds are poorly understood. Basic global questions remain unanswered, even for
Lorentzian manifolds of constant curvature.

The simplest example is Minkowski space R
n
1 , a real affine space of dimension n, with a non-

degenerate inner product of index 1. Although its compact quotients have been classified [17], its
noncompact quotients, and more generally manifolds locally isometric or conformal to it are still
mysterious. Closely related are the model constant curvature Lorentz manifolds, namely de Sitter
space S

n
1 and anti-de Sitter space AS

n
1 . Constant curvature Riemannian manifolds are also Lorentz

manifolds.
Some of the topics discussed during the workshop included:

• Foliations of Lorentz manifolds and globally hyperbolic spacetimes;

• Global hyperbolicity in constant curvature manifolds;

• Conformal Lorentzian dynamics;

• Fundamental domains in anti-de Sitter space;

• Spinors on Lorentz manifolds;

• Topology of the future causal boundary of a spacetime.

We expand here on topics that generated discussion in the “open problems” session, and possible
new research directions. The workshop facilitated many discussions which led to several new results.

1 Affine spaces; Margulis spacetimes

In 1977 Milnor [23] asked whether a nonabelian free group acts properly by affine transformations of
R

n. He suggested taking a discrete free subgroup Γ0 of SO(2, 1) (for example a Schottky group) and
“adding translational components” (that is, an affine deformation) to make the group act properly.
In 1983 Fried-Goldman [15] reduced the classification of complete affine 3-manifolds to Milnor’s
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Figure 1: A crooked plane

question. Also in 1983 Margulis [20] constructed proper free actions of nonabelian free groups,
answering Milnor’s question. Margulis’s examples were startling and unexpected.

In his 1990 doctoral thesis, Drumm [11] gave examples by constructing fundamental domains for
such actions, using polyhedra called crooked planes. A crooked plane is depicted in Figure 1 and the
intersections of a tiling of R

2
1 by crooked planes by a horizontal plane are depicted in Figures 2 and

3.
Hence the interest in flat Lorentz 3-dimensional space forms, or Margulis spacetimes. Margulis

found a criterion for a group Γ to not act properly. The Margulis invariant of an affine hyperbolic
transformation measures signed Lorentzian displacement along an invariant spacelike line. When Γ
acts properly and contains no parabolics, the quotient spacetime M = R

2,1/Γ enjoys the property
that every essential loop is freely homotopic to a unique closed geodesic (necessarily spacelike). The
absolute value of the Margulis invariant is the signed Lorentzian length spectrum of M .

Margulis showed that in order for Γ to act properly, the sign of the Margulis invariant must be
constant over the group. It was conjectured that this is a sufficient condition; it was even hoped
that we could find some sort of condition involving only a finite set of elements of Γ.

In the case where Γ is a free group on two generators, this conjecture has already led to surprising
findings. If Γ is the holonomy of a three-holed sphere, it does act properly if and only if the values of
the Margulis invariants for a certain “generating triple” (see below) all carry the same sign [19]. This
is equivalent, via a beautiful interpretation of the signed Lorentzian length, to a result by Thurston:
all closed geodesics of a hyperbolic three-holed sphere are shortened (resp., lengthened) if the three
bounding closed geodesics are shortened (resp., lengthened) [33].

In the case of the punctured torus, the conjecture was answered in the negative by showing that
there is no hope to ensure properness of an action by a ”same sign” condition on a finite number of
elements of the group [6].

In each case, Γ is a free rank two subgroup. Thus the moduli space of affine deformations depends
on three parameters, namely, the values of the Margulis invariant for a pair of generators and their
product – call these a generating triple. In fact, since an affine deformation may be considered
up to rescaling without loss of generality (this corresponds to rescaling Minkowski space), the real
projective plane is the moduli space of affine deformations of Γ, and by Margulis’ result, the proper
deformations are bounded by the triangle with homogeneous coordinates (1,0,0), (0,1,0) and (0,0,1).

The contrast between the two cases is evident in Figures 4 and 5. Each line corresponds to a word
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Figure 2: Cross-section of a crooked tiling

Figure 3: Proper affine deformation of the modular group
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in the abstract group associated to Γ: it is the space of deformations whose Margulis invariant for
that word is zero. In the case of the three-holed sphere (Figure 4), the triangle of positive values for
the generating triple appears to be contained in the intersection of the positive half-planes. However,
in the case of the punctured torus, there are subsets for which every element of the generating triple
admits a positive Margulis invariant, but some word in the group does not.

Crooked planes were discussed in Drumm’s talk. He described the conjectural relationship be-
tween crooked planes and the Margulis invariant. The finite determination of the Margulis invariant
was discussed in Charette’s lecture [8].

As for the original conjecture, it is now believed to be false and that instead, one must consider
an extension of the Margulis invariant, which we outline here.

Set E to be the affine space modeled on R
3
1 and let Γ be a free rank two group of isometries of

E, such that its linear part Γ̇ is a convex cocompact subgroup of SO(2, 1) – thus Γ̇ is discrete and
finitely generated, and Σ = H2/Γ̇ has no cusps.

Consider the flat Minkowski bundle Ẽ → UΣ. The affine deformation Γ corresponds to a cocycle
class in H1(Γ̇, E), which in the de Rham interpretation corresponds to a class ω ∈ H1(Ẽ). The
bundle Ẽ → UΣ admits a preferred spacelike section ν, that is an extension of eγ , the preferred unit-
spacelike eigenvector of γ which appears in the definition of the Margulis invariant. The following
function is not uniquely defined:

f : UΣ −→ R

(x, u) 7−→ 〈ω(X), ν〉,

where X is the generator of the geodesic flow. However, given a probability measure invariant by
the geodesic flow, λ, the following only depends on the cohomology class of ω:

µ(λ) =

∫
UΣ

f dλ.

Goldman, Labourie and Margulis have shown that Γ acts properly on E if and only if the sign of
µ(λ) is constant over all λ [16]. Here are some open problems remaining around this question. (See
also Section 6.)

• Is the Goldman-Labourie-Margulis theorem the sharpest possible? It is believed to be so, that
is, that Γ may not act properly on E, even though the sign of the Margulis invariant is constant
over the group.

• Extend the result to the case when Σ has cusps, i.e. when Γ admits parabolic elements.

Margulis’s original definition of the signed Lorentzian length was extended to include parabolic
elements by Charette and Drumm [9].

2 Surfaces in Lorentz space-forms

This was the subject of Schlenker’s talk, as well as Pratoussevitch’s talk. While Schlenker discussed
the extension of Aleksandrov’s theorem to Minkowski space, Pratoussevitch described a surprising
construction of fundamental polyhedra for AS

3
1-structures on Seifert 3-manifolds.

A theorem of Aleksandrov states that any metric on the two-sphere S2 with curvature K > −1
is induced on a unique convex surface in H3, three-dimensional hyperbolic space. Schlenker and
Labourie have worked on the analogous problem in de Sitter space S3

1 . In particular, the same result
holds in S3

1 , except that the curvature is now bounded above by one and the closed geodesics must
have length greater than 2π. Let Σ ⊂ H3 be a smooth, strictly convex surface; denote by I the
induced metric. We define the third fundamental form on Σ to be:

III(X, Y ) = I(∇XN,∇Y N),

where N is the unit normal vector. Then there is a dual statement to Aleksandrov’s theorem: any
metric h on S2 with curvature less than one and whose closed geodesics have length greater than
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Figure 4: The moduli space of proper affine deformations of a hyperbolic 3-holed sphere

Figure 5: The moduli space of proper affine deformations of a hyperbolic 1-holed torus
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2π is the third fundamental form of a unique convex surface in H3. This follows from the duality
between surfaces in H3 and surfaces in S3

1 , which we will outline here.
Let Σ ⊂ H3; for p ∈ Σ, the tangent space at p corresponds to a plane in H3, which in turn

admits a polar point p∗ ∈ S3
1 . The induced metric I∗ on the polar surface turns out to be III .

Thus any statement concerning convex surfaces in H3 translates to a dual statement in S3
1 .

Let us define a Fuchsian equivariant embedding of a surface. Given a surface Σ of genus g ≥ 2,
an equivariant embedding of Σ in H3 (resp. S3

1 , H3
1 ) is a pair (φ, ρ), where:

• φ is an embedding of Σ̃ into H3 (resp. S3
1 , H3

1 );

• ρ is a monomorphism of π1(Σ) into the isometry group of H3 (resp. S3
1 , H3

1 ) such that, for
every x ∈ Σ and γ ∈ π1(Σ),

φ(γx) = ρ(γ)φ(x).

An equivariant embedding (φ, ρ) is Fuchsian if it fixes a totally geodesic plane in H3 (resp. a point
in S3

1 , H3
1 ).

In this context, Aleksandrov’s theorem is stated as follows: a convex surface Σ with curvature
K > −1 admits a unique Fuchsian equivariant embedding into H3, such that I = h. Dually, if
K < 1 and every closed geodesic has length greater than 2π, Σ admits a unique Fuchsian equivariant
embedding into H3 such that III = h.

In the anti-de Sitter world, analogous statements hold. Namely, a surface Σ with metric h, whose
curvature is bounded above by -1, admits a unique equivariant embedding into H3

1 such that I = h.
Dually, the same result holds with h = III instead of I .

Now, Aleksandrov’s theorem is a special case of a statement about hyperbolic three-manifolds
with convex boundary. Let h± be metrics on a convex surface Σ with curvature K > −1. Then there
exists a unique hyperbolic metric g on Σ× [−1, 1] such that the induced metric on each component
of the boundary is given by h+, h−, respectively. Dually, the same statement holds for K < 1, as
long as the lengths of the closed geodesics are greater than 2π, substituting the third fundamental
form for I .

In the anti-de Sitter world, all evidence points to the existence of an analogous statement; but
this remains conjectural.

3 Causality

Perhaps the most salient feature of a Lorentzian structure is its underlying causality structure.
Unlike Riemannian manifolds, geodesics (and more generally, smooth curves) come in several flavors,
depending on the restriction of the metric tensor to these curves. Steve Harris described the notion
of the ideal causal boundary on Lorentz manifolds [18].

In a sequence of talks, Thierry Barbot and François Begun described their joint work [3] with
Zeghib, on foliating globally hyperbolic 3-dimensional spacetimes by constant mean curvature sur-
faces. The principal result is that every maximal such spatially compact Lorentzian manifold admits
a time function, that is, a function which increases along future-directed timelike curves.

4 Lorentzian Foliations and Group Actions

The subject of Riemannian foliations (that is, foliations whose holonomy groupoid preserves a trans-
verse Riemannian metric) was developed in the 1970’s and 1980’s. Pierre Mounoud presented his
recent work [24, 25, 26] on Lorentzian foliations at the workshop.

Frances’s lecture dealt with the extension of Obata’s theorem to Lorentz manifolds. Obata proved
that the only Riemannian manifolds which admit noncompact conformal automorphism groups are
Euclidean space R

n and the Euclidean sphere S
n−1. Frances gave surprising examples of compact

conformally flat Lorentz manifolds whose automorphism groups are noncompact. Furthermore he
discussed which 3-manifolds support such essential flat Lorentzian conformal structures. This was
the topic of his recent doctoral thesis [12, 13, 14].
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In a different direction, Karin Melnick discussed her recent results, concerning which groups can
act by Lorentzian isometries on compact manifolds. Building on earlier work of Zeghib [34, 35] and
Adams-Stuck [2], she showed that the possible connected isometry groups of a compact connected
Lorentz manifold have the form K × Rm × S, where K is compact and S is locally isomorphic to
one of the following:

• PSL2(R);

• a Heisenberg group Hn;

• one of a countable family of solvable extensions isomorphic to S1
nH , where H is a Heisenberg

group.

She went on to describe which manifolds admit an action of the Heisenberg group, particularly one
of codimension one–where the dimension of the Heisenberg group is one less than the dimension
of the manifold. This work, recently posted to the archives [21], may be part of her forthcoming
doctoral thesis.

Closely related to Killing vector fields are Killing spinor fields which generalize to conformal

Killing fields. In her talk, Helga Baum showed how conformal Killing spinor fields lead to new
examples of manifolds with essential Lorentzian conformal structures. In particular if the associated
vector field is lightlike, then the manifold is one of a few special types (for example, a strictly
pseudoconvex boundary of a domain (a Fefferman space, or a circle bundle over a Kähler manifold).
The proof [4] involves a careful analysis of the zero-set of a conformal Killing spinor field.

5 Low-dimensional Topology and other topics

The workshop benefited from several lectures which were not exactly on the topic of the conference,
but nonetheless closely related. Suhyoung Choi presented his solution [10] of Marden’s Tameness
Conjecture for hyperbolic 3-manifolds (proved independently by Agol and Calegari-Gabai).

Dave Morris lectured on which arithmetic groups can act on the line.
Kevin Scannell discussed deformations of hyperbolic 3-manifolds, which through work begun in

his thesis [30, 31, 32], closely relate to R
3
1-manifolds.

6 Problem session

The items outlined above represent just a sample of the topics discussed at the workshop. On the
last day a problem session was held. Here is a list of some of the problems which were suggested:

1. (Labourie) Mess shows that compact oriented orthochronous 2 + 1 AdS spacetime with non-
empty spacelike boundary S is a product S × [0, 1] and embeds in a domain of dependence. Is
it possible to construct a singular AdS manifold with more than two ends, say by branching
on a spacelike geodesic in a domain of dependence?

2. (Scannell) Generalize the “no topology change” theorem of Mess noted above to all constant
curvature 3 + 1 spacetimes. Or (even better) characterize when a constant curvature 3 + 1
maximal domain of dependence embeds in a larger constant curvature spacetime.

3. (Schlenker) Let M be a compact AdS cone manifold with m singular curves. Given real
numbers α̇1, . . . ˙αm, is there a first order deformation of the AdS structure inducing these
derivatives of the cone angles? This is related to the following problem, posed by Mess.

4. (Mess) Let ρ = (ρL, ρR) be the representation of the fundamental group of a closed surface
into PSL(2, R)× PSL(2, R) corresponding to an AdS domain of dependence.

(a) Is ρ determined by the two measured laminations on the boundary of the “convex hull”?
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(b) Is ρ determined by the hyperbolic structure on the future boundary of the convex hull
together with the measured lamination on the past boundary?

(c) Is ρ determined by ρL together with the hyperbolic structure on one of the boundary
components of the convex hull?

These are analogous to well-known questions about the parameterization of quasi-Fuchsian
space by the pair of conformal structures at infinity, and how these relate to the bending
laminations and hyperbolic structures on the convex hull boundary.

5. (Barbot) Let M0 be a globally hyperbolic static AdS spacetime with closed spacelike slices and
consider v0 = vol(M0). Is the volume of a non-static AdS spacetime of the same topological
type less than or equal to v0?

6. (Schlenker) Is the volume of the convex core of a 2 + 1 AdS domain of dependence strictly
concave as the bending lamination varies? This question, and Barbot’s question above, can be
thought of as refinements of the following question posed by Mess in his preprint:

7. (Mess) For a 2+1 AdS domain of dependence, the volume of the maximal domain of dependence
and of the convex core are invariants on Teich×Teich. How do they behave? Are they related,
perhaps asymptotically, to invariants of quasi-Fuchsian space, such as the volume of the convex
core and the Hausdorff dimension of the limit set?

8. (Harris) A static complete spacetime is conformal to (L1 × M)/G = U with G ⊂ Isom(M)
for a Riemannian manifold M . Here µ : G → R is a homomorphism and G acts on L

1 ×M by
g(t, x) = (t + µ(g), g · x). Does ∂̂(U) depend on µ?

9. (Goldman) Let M be a complete flat 2 + 1 spacetime.

(a) Does M have a fundamental domain bounded by crooked planes?

(b) Is the interior of M diffeomorphic to a solid handlebody?

(c) Do there exist natural smooth approximations of crooked planes?

(d) (Properness conjecture). It is known that if an affine deformation of a Fuchsian group acts
properly, then the value of the Margulis invariant is everywhere positive or everywhere
negative. Is the converse true?

10. (Goldman) Extend crooked planes to surfaces in AdS space. Are there conformally invariant
surfaces that could be used as boundaries of fundamental domains of AdS spacetimes?

11. (Abels)

(a) Auslander Conjecture: Is every affine crystallographic group (i.e. discrete, cocompact
subgroup of Aff(Rn) acting properly) virtually solvable?

(b) Are there properly discontinuous affine groups (not necessarily cocompact) that are nei-
ther virtually polycyclic nor virtually free?

12. (Scannell) Characterize closed hyperbolic 3-manifolds which admit affine deformations into
Isom(R4). Do they always admit quasi-Fuchsian deformations into Isom(H4)?
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Many of the talks were influenced by Mess’s unpublished preprint [22].
During the problem session it was decided to undertake the project to annotate the preprint (in

order to update the results) and eventually publish it.
The organizers solicited papers based on the workshop, possibly including the updated annotated

version of Mess’s paper. Since one of the organizers of the workshop (Goldman) is editor-in-chief of
the journal Geometriae Dedicata, that journal seems a particularly appropriate for such a volume.

Kevin Scannell’s workshop website http://borel.slu.edu/lorentz/index.html facilitates com-
munication between the participants following the workshop. In particular, the summaries of the
discussions (and soon the papers arising from the workshop) will be posted there.
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