
Mathematical Models for Biological Invasions

Mark Kot (University of Washington),
Mark Lewis (University of Alberta),

Pauline van den Driessche (University of Victoria)

November 27–December 2, 2004

1 Background

The spread of introduced species is one of the most important applied problems in ecology. In North
America, invasive exotic species are widespread, ranging from zebra mussels to Africanized honey
bees to weedy plants. Although some invaders are thought of as beneficial, many become pests, and
the associated costs are immense, exceeding $100 billion US per year.

Early models for invasive species were nonlinear reaction-diffusion equations such as Fisher’s
equation [8], which describes quadratic growth coupled to Brownian motion. Here the analysis of
traveling waves and of the convergence of initial data to wave solutions has been a fruitful area of
classical mathematical research [9]. The traveling wave speed, interpreted biologically as the rate
of spread of the introduced population, has successfully predicted spread rates of many introduced
species, but has failed dramatically with others.

¿From a scientific perspective, the field of invasion biology has matured greatly in the last few
years as ecologists have tried to come to grips with the risks, damages, and spatial spread of in-
troduced species. This is evidenced by new journals (eg, ‘Biological Invasions’), large sections of
meetings devoted to the subject of biological invasions (eg, Ecological Society of America annual
meeting), and many new books and new text books on the subject. At the same time, quantitative
biologists and mathematical modelers have become increasingly aware of the limitations inherent in
the early quantitative models.

Ingredients missing in early models include: rare, long-distance dispersal events which cannot
be described by classical diffusion, age- and stage-structured population dynamics, interspecific
interactions and nonlinear stochastic effects. It is possible to include such ingredients in systems of
coupled nonlinear reaction-diffusion equations, systems of integral-based equations, such as integro-
difference (discrete-time, continuous space) equations, or as stochastic, interacting particle models.

Analysis of the resulting mathematical systems is a daunting task, and provides a modern-day
challenge for applied mathematicians. Some progress has been made on such analysis of these
systems, although, to date, results have not always been communicated widely. Moreover, a broad
scientific impact requires a multidisciplinary effort which includes mathematicians, biologists and
modelers.

The purpose of this meeting was to bring together a group of expert mathematicians and quan-
titative biologists with the following goals: (i) communicate recent advances in the mathematical
analysis of invasion problems, and advances in the application of these results to real ecosystems
(ii) propose future directions for research in the mathematics of biological invasions with a view to
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developing areas where the interaction between models and science is strong. Because the field of
biological invasions is immense, we focused of four subareas where the interaction between models
and science is already promising.

1. How do invader life-history details affect spread, and are there particular stages that are most
sensitive to control measures?

2. How do secondary ecological interactions with other species impact spread, and what is the
impact of the invader on these other species?

3. How can model inputs (such as dispersal kernels) be measured under practical field conditions,
and how can model predictions (such as spreading speeds) be tested against field data?

4. What is the impact of rare, long-distance dispersal events on the rate of spread, and the
precision of spread rate estimates?

Some results of these efforts give us a detailed understanding of biological invasions, including the
spatial spread of disease, new methods to predict the response of vegetation to climate change, the
spread of weed species through ecosystems, and new methods for spatial biocontrol of pest species.

Our workshop was roughly focused around the above four themes, and involved a range of
participants, ranging from mathematicians to quantitative biologists. The synergistic interaction
between mathematics and biology lead to advances in both fields.

2 Mathematical Theory

Several large classes of models for the growth and spread of multiple species can be unified into a
simple recursion model of the form un+1 = Q[un]. Here the operator Q takes the set of densities
of the species at an initial time into the values at time later. This provides a generalization of the
early partial differential equation (PDE) models of Fisher [8] , Skellam [21] and others, to include
the possibility of non-Gaussian dispersal and discrete-time dynamics.

Hans Weinberger presented a survey of the qualitative spreading properties of solutions of such
models in which all the species cooperate [11, 23]. The main results are that there are, in general, a
slowest spreading speed such that no species spreads at a speed less than this number and at least
one species spreads no faster, and a fastest spreading speed such that no species spreads more quickly
and at least one species spreads no more slowly. These results were illustrated with some simple
invasion models, one of which showed the development of ‘stacked waves’ of mutualistic species,
moving at different speeds, and another that treated two-species competition models. More recent
work on the existence of traveling wave solutions was discussed. Here the existence of a family of
traveling wave solutions was shown, with the spreading speed characterized as the slowest speed of
the family of traveling waves [1]. This recent work builds on the earlier theory developed by Roger
Lui for recursion models [13, 14].

The effects of quiescent states on ecological systems were discussed by Karl Hadeler. Quiescent
states, with random switching in and out of these states, damp oscillations locally and can suppress
periodic orbits. This was illustrated by the introduction of a quiescent state for the prey into the
MacArthur-Rosenzweig model. Coupled reaction-diffusion equations with a quiescent state [6] can
be analyzed by the methods in [11, 23] to yield spread rates and traveling fronts. Here the impact of
the quiescent states can be dramatic on spreading speeds, often reducing the speed to a fraction of
what it would be without the quiescent state. The mathematical methods in Hadeler’s research [6]
have been recently applied to model the spread of West Nile Virus across North America [10]

Xiao-Qiang Zhao gave a historical survey of results on traveling waves and spread speeds for
different population models. He summarized studies of monostable and bistable waves for a variety of
different formulations (reaction-diffusion equations, integro-differential equations, etc.) and unified
these with an integral equation approach. He gave rigorous results on the asymptotic spread speed
and traveling wave speed for symmetric kernels [22]. This general method was illustrated by examples
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from the literature in which the spread speed and minimum wave speed were equal, and this value
was estimated. Numerical simulations [24] of spreading speeds were presented.

Invasions of diseases into new territory is a worldwide problem, which traditionally has been
modeled with reaction-diffusion equations. If dispersal is nonlocal, these equations can greatly
underestimate speeds of invasion. Integro-differential models can incorporate nonlocal dispersal. Jan
Medlock showed how to use knowledge about the dispersal of either disease propagules (distributed
contacts) or infected hosts (distributed infectives) to model disease spread with integro-differential
equations [16]. Both models have traveling wave solutions and the wave speed can be computed
in terms of the moment generating function of the contact distribution or dispersal kernel. The
magnitude of the force of infection determines which dispersal mechanism gives rise to faster wave
speeds. A perturbation scheme can be used to approximate the wave shape. Integro-differential
equations seem more flexible than reaction-diffusion equations for continuous time scenarios; they
will clearly be the focus of much future work.

3 Development of the interface between model and data

The theoretical work of Lui [13, 14], cited above, was popularized and applied in an ecological
context to stage-structured (matrix) models with dispersal by Neubert and Caswell [17]. Here the
combination of stage-specific information on demography and dispersal makes it possible to predict
invasion wave speeds. However, such predictions are not the only, or even the most interesting, results
of the model. For example, analysis of sensitivity and elasticity of the speed to model parameters
makes it possible for managers to determine where invasive species are most susceptible to control
measures. These issues were discussed in detail by Mike Neubert and Hal Caswell. They also
presented a large number of examples of successful application of the theory to biological invasions
across biological taxa. Some of the work they presented was the output of a US NSF-funded
“National Center for Ecological Analysis and Synthesis” working group.

Beneficial ‘invasions’ may be the goal when managing endangered species. Variation in the rate
of spread of a population is of fundamental importance for managing the species of conservation
concern, for which spatial spread is beneficial [20]. James Bullock presented case studies in which
this approach was used to model and understand constraints on spread for a range of conservation
questions: how we facilitate habitat restoration; how we speed up species re-introduction; what
role do mutualisms have in population persistence and spread; and how do we predict risks from
Genetically Modified Organisms? The methods used for the analysis in these studies was based on
the Neubert and Caswell modelling approach given above [17].

When rare, long-distance dispersal events occur, spread rates of populations are very sensitive
to the so-called ‘tails’ of the dispersal kernels (probability density functions for dispersal distance).
Here, the rare, long-distance dispersal events are the ones that cause rapid spread of an invading
population. At the same time, the spreading speed becomes highly variable, as it is uncertain pre-
cisely when the rare, long-distance dispersal will occur [3]. In this context fecundity (number of
viable offspring produced) makes a strong contribution to invasion speed [4]. The importance of
fecundity has been largely overlooked, because traditional models of diffusion are weakly influenced
by net reproductive rate (R0) and, thus, seed production. By contrast, fat-tailed dispersal kernels
effectively translate small differences in fecundity over large distances [2]. Among the challenges
for predicting invasion speed is the estimation of fecundity and of recruitment success in new land-
scapes. Together, these components of population success far from the resident population control
the capacity to spread. Jim Clark discussed the components of R0 that must be inferred or predicted
in order to anticipate invasion speed, and provided perspectives on those components we can expect
to predict well and those that will remain uncertain for the foreseeable future [5].

Although recent studies have highlighted the importance of detailed dispersal data for the accu-
rate prediction of spread rates, there are few, if any, standardized methods for the measurement of
dispersal. Katriona Shea reported on recent efforts to standardize dispersal study designs. These
include simulation models to investigate the efficiency of different trap layouts; to assess the impor-
tance of trap areas, source strengths, and dispersal geometry; and to compare the effectiveness of



4 DEVELOPMENT OF NEW MODELS AND THEIR ANALYSIS 4

trapping (Eulerian) and tracking (Lagrangian) approaches. For thin-tailed dispersal data, transects
were especially effective, but for fat-tailed data sector sampling was more effective. Under constant
environmental conditions tracking of seeds often required smaller sample sizes than trapping for
reasonable goodness of fit. At the same time, tracking data, which is often of limited duration,
is more susceptible to error from autocorrelation in the environment. Dispersal models based on
limited samples should be used with caution in population dynamics.

Mountain pine beetle attacks on lodgepole pine are a major problem for forests in the western
United States and, more recently, in Alberta and British Columbia. James Powell began by de-
scribing the ecology and phenology of pine beetles [12]. The development of mountain pine beetles
is under direct thermal control, and success of attack depends upon the beetles’ ability to emerge
simultaneously at an appropriate time of year [19]. Before 1995, data on outbreaks in Sawtooth Val-
ley in Idaho showed a declining period-two oscillation, but since 1995 data show exponential growth
in the area of infestation. To describe these outbreaks, Powell developed a discrete-time model, the
Red-Top Model, in which the pines are divided into three age classes. Two key parameters were
estimated from the data. The presence of an Allee effect makes the calculation of the invasion speed
difficult, even with good dispersal data. Predicted spread speeds match data for Sawtooth Valley,
but are too low for current British Columbia outbreaks. Other factors such as wind dispersal and
global warming may account for this discrepancy.

The most common method of harvesting forests is clearcutting, which presents a challenge to
species that live in the forest, for example, tree squirrels in the dry interior forests of British
Columbia. Rebecca Tyson presented a model for recolonization that includes a habitat quality
depending on time since clearcutting. The model includes migration between patches and a patch
selection function. Tyson applied the model to tree squirrels in both a two-patch system (mature
and second growth forest) and a four-patch model that includes edge effects. In the latter case
recolonization can take more than twice as long as forest regeneration. If the recutting schedule
in based only on forest regeneration, then it is quite possible that even small mammal populations
living in the forest are still a long way from recolonization.

4 Development of new models and their analysis

Are generalist predators effective biological control agents for invasive species? Chris Cosner de-
scribed a model for an invasive leaf miner and a generalist parasitoid that attacks the leaf miner
but that can survive without the leaf miner. Each species has its own carrying capacity, but there
is a Holling type-II predator-prey term that links the dynamics of the two species. In addition,
both species diffuse. The resulting reaction-diffusion model predicts a number of possible outcomes,
depending on the parameters of the model. In some cases, there are pulled waves of leaf miner
invasion. For other parameters, the predator induces an Allee effect in the prey and the leaf miner
invades by means of pushed waves. Finally, the predator may prevent invasion by the leaf miner
altogether. Cosner used this model to focus attention on the factors that lead to effective biological
control by generalist predators.

William Fagan continued the theme of predator-prey interactions in ecological invasions by sum-
marizing recent experimental and theoretical work on native herbivorous insects that attack invasive
lupine plants at Mount St. Helens, Washington, USA [7]. Detailed data on the life history and inter-
action of the lupine and its herbivores have been used to parameterize a system of stage-structured
integrodifference equations for the recolonization of the volcano’s primary successional landscape.
A key ingredient of these models is the presence of inverse density-dependent herbivory: herbivores
that attack high-density patches of lupine encounter low nutrient quality and high toxicity. A pre-
liminary analysis of this model suggests that Allee effects in the predator play a pivotal role and
that too much plant “invasion momentum” prevents the herbivore from reversing the plant invasion.
Fagan described the implications of this work for successional dynamics and the biological control
of invasive species.

Species persistence in river ecosystems is a subject of ongoing concern, especially as these
ecosystems are affected by human disturbance. Individuals in rivers and streams are subject to
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downstream-advection in their environment. The somewhat surprising observation that species can
persist in such environments even though the individuals cannot actively move against the advection
has been termed the ”drift paradox” in the ecological literature. Mathematical models for popula-
tions in environments with unidirectional flow, such as rivers and streams, can be used to analyze
conditions under which species can persist. In particular the models allow us to analyze the con-
sequences of movement behavior of individuals with respect to invasion speed and critical domain
size. As shown by Lutscher and coworkers in a series of papers [15, 18], it turns out that these
two ecological quantities are related as follows: If the advection speed is so large that the critical
domain size approaches infinity, then the population cannot invade upstream, and vice versa. As
shown by Lutscher, it is possible to extend one simple model to include spatial heterogeneity, given
by a ”pool-and-riffle” environment in a river, and study the model with respect to persistence and
traveling periodic waves.

5 Collaborative Research, Interchange and Open Questions

The workshop was the ideal venue for discussion and collaborative interactions. For every 50 minutes
of lecture there was at least 30 minutes of formal discussion time. This was supplemented by more
informal discussion in the afternoons. The afternoons were also used for informal “breakout sessions”
in which groups discussed subjects such as: how to estimate observed population spread rates from
data, and the formulation and analysis of stochastic models for population spread.

Collaborative research groups tackled specific applied problems where biological questions and
mathematical theory came together. For example, two separate groups started work on deriving a
simplified model for plant-insect recolonization interactions on the Pumice Plains region of Mt. St.
Helens. The ideas for these groups followed on from the ideas presented in the talks of Bill Fagan
and Steve Cantrell (above).

The organizers asked that workshop participants submit informal “open problems” as a basis for
the final discussion for the workshop. The list appended shows the breadth and depth of the issues
addressed at the meeting.
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