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1 Introduction
The purpose of this workshop was to study physical supersymmetry (SUSY), i.e., representations of the super
Poincaré group and algebra. In particular, we are working towards a classification of off-shell supersymmetry,
representations of supersymmetry on unconstrained spaces of fields. Supersymmetry is well understood on-
shell, in terms of fields dynamically constrained to satisfy equations of motion determined by a Lagrangian.
In contrast, off-shell supersymmetry is understood only up through spacetime dimension 6, which falls short
of the 10 or 11 dimensions required for string theory or M-theory. Indeed, navigating the passage from
on-shell to off-shell supersymmetry is called by Gates as “The Fundamental Supersymmetry Challenge” [6].

Traditionally, off-shell fields have been constructed by considering superfields on superspace, a supersym-
metric extension of spacetime. Our approach is different, instead studying the reductions of supersymmetric
theories to one time dimension, in terms of mechanics. Our primary tools are Adinkras, graph-theoretic di-
agrams which encapsulate the combinatorial data required to classify the one-dimensional supersymmetric
theories. In this workshop, we use Adinkras to classify known theories and generate new ones, in an attempt
to understand the deeper meanings of Adinkras and test their limits.

2 Formal Morning Sessions
Each morning of the workshop, one of the participants led a formal session lasting approximately three
hours. These sessions were not conventional talks, but rather directed discussions, meant to advertise a
particular problem in the field and provide all of the necessary background for the group to work on it during
the remainder of the workshop. On the first day of the workshop, organizer Charles Doran welcomed the
participants and led an introductory discussion. The other formal morning sessions were as follows:

2.1 Mike Faux: Physics issues in 4D SUSY
Mike Faux described the physics context and motivations for many of the mathematical problems in our re-
search program. He gave an overview of the important known representations of supersymmetry in spacetime
dimensions ranging from one to eleven dimensions, elucidating which subset of these were known off-shell
and which subset were known only on-shell. He also explained some of the remarkable features which ap-
pear in quantum field theory when supersymmetry is included, among these the Green-Schwarz anomaly
cancellation mechanism which appears in 10D N = 1 supersymmetry reflecting the magic of string theory.

Faux then explained several puzzles associated with the case of 4D N = 2 supersymmetry. These fell into
two categories. First were puzzles associated with understanding duality relationships among the minimal
multiplets in this class and second were puzzles associated with understanding the natural embedding of
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the 4D N = 2 multiplets into representations of garden algebras in 1D N = 8 supersymmetry when these
theories are dimensionally reduced to one dimension. Resolving these puzzles is an important preliminary
for understanding the yet-mysterious off-shell structure associated with 4D N = 4 super Yang-Mills theory.

2.2 Greg Landweber: Filtered Clifford supermodules
Greg Landweber began by reviewing our joint paper [1], which gives a one-to-one correspondence between
integrally graded representations of off-shell supersymmetry and filtrations on representations of Clifford
algebras. This transforms our infinite dimensional problem of classifying off-shell supersymmetry into the
finite dimensional problem of classifying filtrations of Clifford algebra representations. This point of view
also allows us to extract numerical invariants from our representations, such as the list dimensions of the
filtration levels or associated graded degrees, or the numbers and heights of the sources and sinks in the
corresponding Adinkra.

Landweber also showed explicit examples of N = 5 supersymmetry, developed jointly with Charles Do-
ran. This is the simplest case which demonstrates the following two new phenomena: First, we demonstrated
that supersymmetry representations are not completely by the dimensions of associated graded degrees, as is
asserted in [7]. Rather, we constructed two distinct representations, both of dimensions(2, 8, 6), as given by
the following topologically different Adinkras:

(These representations can indeed be distinguished by counting their sources.) Second, we showed that there
exists a one parameter family of N = 5 supersymmetry representations which do not admit an Adinkra at all,
which Tristan Hübsch pointed out correspond to superpositions of these two distinct N = 5 Adinkras.

Finally, Landweber concluded with an algebro-geometric discussion of the moduli space of off-shell su-
persymmetric theories, or equivalently filtered Clifford supermodules, up to equivalence. While the group has
considered such a moduli space for several months, this was the first time we formalized the concept, giving
a precise definition of equivalence of representations. With this formal definition, Landweber conjectured
that this moduli space admits a smooth stratification, with strata indexed by the possible Adinkras, and each
stratum consists of precisely those representations which are smooth deformations of the given Adinkra.

2.3 Kevin Iga: Are Adinkras Enough?
Kevin Iga began by introducing the active vs. passive conceptualization of symmetries used by physicists,
and motivated considering the set of field variables (formally) with their derivatives to all orders. He then
introduced to the physicists the mathematical notion of a module over a ring, and discussed modules over
R[∂τ ]. The vector space of formal field variables with derivatives forms a module over this ring. Free
modules over this ring correspond to off-shell d = 1 fields, and the Q1, . . . , QN are linear transformations,
and hence, can be represented by matrices.

Matrices also occur when describing basis changes, which are relevant for the following reason: Formally,
replacing ∂τ with 1 turns a SUSY multiplet into a Clifford algebra representation. Such representations can
be described using Adinkras, as we show in our paper [2]. Taking the basis in which the Clifford algebra
representation is Cliffordinkraic, we get a possible basis for the SUSY multiplet, and there is a method
analogous to Gauss-Jordan elimination that determines whether or not this is a basis.

Using these ideas, Iga showed how to prove that in certain cases, we can prove Adinkraizability, and how
to prove that in other cases, we do not have Adinkraizability.
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2.4 Tristan Hübsch: Enough is Enough. Getting SUSY to Behave
In the process of studying the action of the supersymmetry generators on the component fields of a supermul-
tiplet, we have discovered that the kind found in the physics literature forms a rather special subset, which
we call “adinkraic” as these can be described using Adinkras [4]. Tristan Hübsch discussed the so-called
“demi-adinkraic” supersymmetry actions, of which the adinkraic ones are a special case, and outlined an
iterative method of decomposing such demi-adinkraic supersymmetry actions into combinations of adinkraic
ones. The precise conditions which guarantee the eventual termination of this procedure are under study.

The possible need for such decompositions is in stark contrast with the comparatively simpler situation
with classical Lie algebras and their representation, the computational ease and rigor of which we should like
to develop for off-shell representations of supersymmetry. Hübsch briefly reviewed the main features of the
“roots and weights” framework, and indicated where this approach is obstructed in supersymmetry.

In every field theory, the space of states is typically constructed as a “Fock space”, and in supersymmetric
theories this must begin with the so-called supersymmetric vacuum states. Hübsch described the construction
of the induced supersymmetry generators, which act upon the field space as differential operators, and give
rise to the system of partial differential equations that defines the supersymmetric vacuum states. This then
provides a natural extension to realm of applications supersymmetric structures we have been studying.

Finally, Hübsch described an exhaustive method of constructing all the “superspace pseudo-projectors”,
for all N . The square of these operators is a (∂τ )k-multiple of themselves, with k an appropriate positive
integer, and a complete set of such operators adds up to (∂τ )k. Besides providing an alternative way of
constructing supermultiplets whose Adinkra has the topology that is a quotient of the N -cube, the pseudo-
projectors are indispensable in constructing manifestly supersymmetric Lagrangians for such supermultiplets.

3 Informal Afternoon Sessions
The afternoons were reserved for informal group discussions, often continuing ideas presented that morning.
This was our opportunity for experimentation and new approaches. Some of the topics we discussed include:

3.1 Complex Structures
In order to obtain a complete classification of supersymmetric theories in a four dimensional spacetime, we
realized that it is necessary to consider not only the real structure of the representation, but also its various
complex structures. By introducing new edges into Adinkras encoding multiplication by i, we were able to
explore the consequences of imposing a complex structure on a real Adinkra. With such complex structures
propagated through the Adinkra via the supersymmetry action, we were able to successfully distinguish the
four dimensional chiral and anti-chiral super multiplets. Taking into account these complex structures, we
found twelves distinct complex Adinkras for one-dimensional N = 4 supersymmetry.

3.2 “Garden” Algebras
After discussing complex structures for representations of supersymmetry, we revisited the paper [5], with
its “Garden” Algebras. The group developed a dictionary for translating between the concepts presented in
this paper and various mathematical concepts related to Clifford algebras. In addition, we examined closely
its treatment of real, complex, and quaternion structures on supersymmetry representations. In particular, the
quaternion structure in the N = 4 case is essential to showing that the N = 4 moduli space of off-shell
representations is discrete.

3.3 The Borel-Weil Theorem
Via the Borel-Weil theorem, the irreducible representations of compact Lie groups can be constructed as
spaces of holomorphic sections of line bundles over homogeneous spaces. Greg Landweber is convinced
that there should be an analogous correspondence between representations of supersymmetry and topological
spaces, for which Adinkras describe only the 1-skeleton. Evidence for this comes from the fact that the
assignment of signs to the edges of an Adinkra is the same data as is needed to determine a spin structure on
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a Riemann surface. This suggests that instad of considering holomorphic sections of a complex line bundle,
we must consider a Dirac operator and its corresponding harmonic sections.

Landweber gave an overview of the standard Borel-Weil theorem for the group, and the group then dis-
cussed several possible approaches for extending this to our case, including: (1) Extending the supersym-
metry algebra with additional generators, correpsonding to grading or dilations operators, central extensions,
and multiplication operators.(2) Constructing the representation as holomorphic sections on a supermanifold.
This works for complex representations and even N , but the generalization to the odd N case and more im-
portantly the real case does is not apparent. However, it does appear closely related to the physics technique
of extracting irreducible representations of symmetry by imposing superdifferential constraints on super-
fields. (3) Constructing Clifford algebra representations as spaces of harmonic sections for a twisted Dirac
operator on spheres. While this does not give any new information about Clifford algebra representations,
this approach may shed light on how to extend them to representations of supersymmetry. (4) Constructing
a complex, analogous to the Dolbeault complex, for describing a free resolution of representations of super-
symmetry. This imposes all superdifferential constraints simultaneously, while also allowing for irreducible
representations extracted by applying gauge transformations to superfields.

4 Outcomes of the Meeting
• Hübsch and Iga made significant progress on [2], which is nearing submission to the arXiv.

• Faux and Gates worked on a paper using complex structures in the classification of 4d supersymmetry.

• Landweber and Doran have embarked on a paper to explicitly classify all representations of supersym-
metry up to N = 8, and they also plan to explore the moduli space of supersymmetry representations.

• Based on our group discussions, Faux and Hübsch proved that under the appropriate circumstances, the
supersymmetry generators must act by first order differential operators. After the workshop, Landwe-
ber refined these arguments to prove this result in greater generality. This lemma vital to showing how
one-dimensional supersymmetry representations can be “oxidized” to higher dimensions, as in [3].

• In order to generate our Adinkra diagrams more efficiently, Greg Landweber wrote a computer program
to manipulate these diagrams. This can also be used as a computational tool to explore Adinkras too
large to be drawn by hand. Using this technology, Landweber recently discovered supersymmetric
representations with N ≥ 13 which admit (at least) two topologically distinct Adinkras.
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