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1 Introduction

The (linear) Schr̈odinger wave equation, first formulated by Erwin Schrödinger in 1925, provides a descrip-
tion of the time evolution of the wavefunction of a nonrelativistic quantum particle; for a free particle of mass
m, it reads
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2m
∆u = 0.

From the outset, mathematicians and physicists have been concerned with the ways in which solutions to
this equation can be associated to classical particle motion, and the ways in which they cannot: the classi-
cal dynamical behavior of particles is intermixed withdispersive spreadingand interference phenomena in
quantum theory.

More recently,nonlinearSchr̈odinger equations have come to play an essential role in the study of many
physical problems. Nearly monochromatic waves with slowly varying amplitude occur frequently in sci-
ence and technology. Second order expansions of physical models of wave phenomena around such waves
lead naturally to the cubic nonlinear Schrödinger equation. Thus, the nonlinear Schrödinger equation is a
canonical wave modelsince it emerges ubiquitously in the study of waves. Nonlinear Schrödinger (NLS)
equations appear in such diverse fields as nonlinear optics, superconductivity, oceanography, and quantum
field theory. The main themes of research discussed at this workshop concern the Cauchy or initial value
problem for Schr̈odinger equations. Theoretical and applied aspects of nonlinear Schrödinger equations are
nicely surveyed in the textbooks [4], [17].

Nonlinear Schr̈odinger evolutions involve a dynamical balance betweenlinear dispersive spreadingof
the wave andnonlinear self-interactionof the wave. Generalizations of the physically relevant equations
with nonlinear and dispersive parameters have been introduced to probe the interplay between these effects.
For example, the semilinear initial value problem{

i∂tu + ∆u = ±|u|p−1u
u(0, x) = u0(x), x ∈ Rd,

(1)

may be viewed as a nonlinear generalization of the cubic problem onRd corresponding top = 3. The
Laplacian term∆u generates the dispersion in this evolution equation. The cubic nonlinearity represents
self-interaction of the wave. The choice of sign corresponds to (-)focusinganddefocusing(+) nonlinearities.
Some overlapping themes of the research discussed at the workshop may be outlined in the setting of (1):

• Optimal Well-posedness
What are the minimal regularity assumptions on the initial datau0 for which the initial value problem
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(1) may be solved locally in time? What happens to rougher initial data? Are the local-in-time solutions
in fact global-in-time? Spaces with norms which are invariant under the scaling symmetry of solutions
play a crucial role in anwers to these questions.

• Nonlinear dispersive systems
Are the recent methods for solving (1) robust enough to also apply to systems of equations? Non-
linear dispersive systems, such as the Zakharov system and the Maxwell-Schrödinger system, more
accurately model physical phemomena than the closely related cubic nonlinear Schrödinger equation.
In certain regimes of physical parameters, some nonlinear dispersive systems are expected to be well-
approximated by simpler problems. How do solutions of nonlinear dispersive systems behave as phys-
ical parameters are pushed toward extreme values?

• Long-time behavior
What happens? This is the main question to be addressed when considering an initial value problem.
Fantastic progress over the past two decades has led to a nearly complete well-posedness theory for the
equations in (1). Beyond existence and uniqueness, the issue is to provide qualitative descriptions of
the evolution. For defocusing problems onRd, the expected behavior is similar to that expressed by
the linear evolution. On compact domains, persisting nonlinear interactions are expected to generate
oscillations on smaller and smaller scales. For focusing problems, the expected behavior includes the
emergence of nonlinear coherent structures such as solitons and finite time explosions.

• Linear equations
Among the essential tools for recent progress into nonlinear Schrödinger evolutions are the Strichartz
and dispersive smoothing estimates for linear Schrödinger equation. These and related estimates have
thus been subjects of geat interest both on their own and for the light they shed on nonlinear phenomena.
Under what conditions do the fundamental linear Schrödinger estimates extend to the setting of variable
coefficients?

Talks at the workshop described significant progress in each of these four directions.

2 Optimal Well-posedness

When considering an initial value problem, such as (1), some basic questions arise: Does a solution exist?
For which initial data does a solution exist? If a solution exists, is it unique? For how long does the solution
last? How does the solution depend upon the initial data? Do smoothness properties of the intial data persist
during the evolution? Answers to these and related questions are provided by the well-posedness theory
for the initial value problem. For certain classes of initial value problems, such as (1), striking progress
over the past two decades has culminated into a satisfactory local-in-time well-posedness theory. Over the
past decade, methods for showing ill-posedness have emerged which have revealed the optimality of various
known local-in-time well-posedness results and new ideas for establishing global-in-time well-posedness
have been developed. Some of the talks at the workshop contributed in these directions.

Burq described a simplified proof, obtained in joint work with Gerard and Ibrahim, of ill-posedness results
due to Lebeau [13] and Christ-Colliander-Tao [3]. An anisotropic scaling of a rather explicit solution provides
a clear view into one low regularity mechanism causing havoc for the Cauchy problem. For cubic problems,
Carles described an inspired geometrical optics based approach to proving similar results.

Gérard spoke about the cubic NLS in four dimensions, in various settings. See also the survey [9]. OnS4,
together with Burq and Tzvetkov, he has obtained rather complete results on well-posedness: the equation
is well-posed onHs for s > 1, ill-posed fors < 1, and ill-posed inH1, with the flow map failing to be
continuous, even on small data. By contrast, in more recent work with Pierfelice, Gérard has shown that in
theH1 case, slightly relaxing the nonlinearity results in a qualitative change: if we replace|u|2u by certain
homogeneous quadratic polynomialsq(u, u), then there is global well-posedness inH1 provided that the
ODE i∂tu = q(u) does not blow up.

When the conserved quantities imply an aprioriH1 upper bound, standard local well-posedness results
for H1-subcritical initial value problems may be iterated to obtain global well-posedness forH1 initial data.
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Whether initial data of lower regularity for which local-in-time well-posedness holds evolves globally in time
has been a topic of intense study over the past eight years.

In the case of the initial value problem for theL2-critical equation

iut + ∆u− |u|4/du = 0,

one can hope for global well-posedness and scattering all the way down toL2. Staffilani announced joint
work [16] with De-Silva, Pavlovic, and Tzirakis, in which the periodic initial value problem is studied in
one dimension with data inHs, and global well-posedness is shown fors > 4/9. This talk led to a very
interactive question period, with discussion among Staffilani, Planchon, Burq, and Gérard on the relationship
between bilinear estimates and local well-posedness.

For the defocusingL2-critical NLS in four dimensions with radial data,

iut + ∆u = |u|u,

Visan announced a breakthrough proof, obtained in joint with with Tao, that demonstrates global well-
posedness and scattering. While the local theory dates back to the work of Cazenave-Weissler, the global
theory is not yet well understood. Visan also described and compared this work with results she, her collab-
orators and others have recently obtained (see [21] and references therein) in theḢ1-critical case,

iut + ∆u = |u|
4

d−2 u

in dimensiond ≥ 3, for arbitrary data. The key ingredients here are an induction on energy strategy due
to Bourgain [2] and a new interaction Morawetz inequality [5], [6]. The developments announced by Visan
forecast profound improvements in our understanding of theL2-critical nonlinear Schr̈odinger equations.

3 Nonlinear dispersive systems

The methods developed for scalar Cauchy problems like (1) have also been applied to more complicated,
and more physically accurate, nonlinear dispersive systems. Dispersive systems lack certain simplifying
features, such as scaling invariance, enjoyed by (1). Adaptations and innovations of the scalar techniques
have recently been under investigation. Progress in this direction has demonstrated that the key insights are
robust and extend to the setting of nonlinear dispersive systems.

Bejenaru recently proved [1] a global well-posedness result for the Schrödinger map problem posed on
Rd, d ≥ 3, for small initial data in a scaling invariant Besov norm. A similar result has recently been ob-
tained by Ionescu-Kenig. The proof relies upon structural properties of the nonlinearity and delicate bilinear
estimates in (Besov variants of)Xs,b spaces. This result is the Schrödinger analog of a celebrated result [19]
of Tataru on wave maps.

Grillakis’ talk discussed the evolution of a curve by binormal curvature flow and its relationship, under the
Hasimoto transformation, to the cubic nonlinear Schrödinger equation onR. He then derived a generalization
to a curvature driven surface evolution. Establishing well-posedness for the surface evolution problem appears
to be a difficult problem.

Ibrahim discussed recent work with Biryuk and Craig towards establishing that various approximation
schemes converge to weak solutions of the Navier-Stokes system. A lively discussion following the talk
hinted at the possibility that a decay property required for improvements to the convergence results is linked
with spectral cluster estimates like those discussed by Smith.

In a rather different setting, Koch discussed joint work with Saut concerning the local smoothing and
Strichartz estimates for a very wide class of third order dispersive equations in two dimensions (which include
the linear parts of several equations describing surface gravity waves at various approximations). He obtains
local smoothing and Strichartz estimates with a derivative gain, for the generic cases of these third order
equations. This work demonstrates that the well-posedness theory based on dispersive estimates is robust and
applies to a wide variety of model equations appearing the the applied mathematics and physics literature.

Nakamura described joint work [14] with Wada which established a low regularity local well-posedness
result for the Maxwell-Schr̈odinger system in the Coulomb gauge. The result is based on ideas stemming
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from work of Koch and Tzvetkov. Estimates of energy type were also discussed which imply that the local
solutions in fact extend globally in time.

Nakanishi’s talk described joint work with Masmoudi which established that finite energy solutions of the
Zakharov system converge to solutions of the focusing cubic nonlinear Schrödinger equation in the subsonic
limit. Earlier work on this limit required regularity assumptions beyond finite energy. The Zakharov system
models plasma in certain physical regimes. A sound speed parameter in the system moves toward infinity as
the mass of the ions converges to the mass of the electrons. This result about the subsonic limit opens up the
possibility that fine blowup properties of NLS and the Zakharov system can now be compared in the setting
of finite energy solutons.

Tzirakis described a new method, developed with Colliander and Holmer [20], for globalizing certain
nonlinear dispersive systems. The method exploitsL2 conservation on one of the system components and an
almost conservation property for the other component. The method has been applied to the Zakharov system
onR and to the Klein-Gordon-Schrödinger system onR3 to prove that the best known local-in-time solutions
extend globally in time.

4 Long-time behavior

Aspects of the maximal-in-time behavior of solutions of nonlinear Schrödinger evolution equations were
reported upon at the workshop. Besides the scattering and long-time existence results described previously,
new results concerning the asymptotic behavior of soliton solutions and periodic-in-space solutions were
discussed.

Holmer described work [12], with Marzuola and Zworski, which explains the behavior of fast solitons in
the one dimensional cubic nonlinear Schrödinger equation interacting with a repulsive Dirac-mass singularity.
Slow solitons will spend more time in the interaction region than fast solitons when passing through the Dirac
singularity. Intuitively, slow solitons will have more back-reflected mass than fast solitons. Also, extremely
fast solitons should have barely any back-reflected mass. The result described validates this intuition by
showing that, in the high speed limit, the bulk of the soliton mass moves past the potential. However, the
upper bound on the size of the back-reflected mass is larger than conjectured in the high speed limit.

In the other direction, Zhou’s talk considered the behavior of a soliton trapped by a potential. Zhou
discussed recent work [23] with Sigal which establishes asymptotic stability results for soliton solutions of
NLS in the presence of an external potential. Under certain assumptions, their result shows that trapped
solitons oscillate in a potential well and slowly shed excess energy to spatial infinity, eventually relaxing to
an asymptotic equilibrium inside the well. The proof involves a clever application of normal forms reduction
to rigorize intuition related to the Fermi golden rule.

Another new result giving insight into the qualitative behavior of global-in-time solutions was discussed
by Tao. In joint work, Colliander-Keel-Staffilani-Takaoka-Tao have obtained results on cubic defocusing
NLS on the two-torus which are a step toward the “weak turbulence conjecture,” describing the movement of
energy from low to high Fourier modes. In particular, this group has shown that for alls > 0, ε > 0, M � 1
there isu0 ∈ C∞(S1 × S1) andT > 0 such that‖u0‖s ≤ ε and‖u(T )‖s ≥ M, whereu is the solution
with initial datau0. The idea is to convert to an immense system of ODE by expanding onto resonant Fourier
modes, and then to make a rather delicate combinatorial construction.

5 Linear equations

A major recent thrust of work on linear Schrödinger equations has been to understand precisely the regu-
larity of solutions and to obtain associated estimates, usually dispersive smoothing estimates and Strichartz
estimates, that are of use in tackling nonlinear problems. For instance, it has been known since the work1 of
Constantin and Saut, Sjölin and Vega, that ifu(t) is a solution to the linear Schrödinger equation onRn, we
have the “(local) dispersive smoothing estimate”∫ ∫

|x|<R

|∆1/4
x u(t, x)|2 dx dt ≤ CR‖u0‖2L2 . (2)

1The background results briefly described here are surveyed more completely in the textbook [4] of Cazenave.
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In other words, we locally find thatu is half a derivative smoother than its initial data, when averaged in time.
Further refinements of this estimate are possible that are global in space (with a weight) and global in time.
A microlocal version of it was first given, for variable coefficient equations, by Craig-Kappeler-Strauss[7].

Perhaps the key estimate on the linear equation for proving well-posedness is theStrichartzestimate.
Again for the linear equation onRn, Strichartz deduced estimates of the form

‖u‖Lq
t Lq

x([0,1]×M) ≤ C‖u(0)‖L2(M),

for an appropriate exponentq. Later, these estimates were extended to include norms of mixed Lebesgue
exponent of the form

‖u‖Lq
t Lr

x([0,1]×M) ≤ C‖u(0)‖L2(M),

for appropriate exponentsq, r.
Much recent work has gone into generalizing the dispersive smoothing and Strichartz estimates to apply

to variable coefficient operators, involving (possibly singular) potentials, and non-Euclidean metrics. One
major tool for obtaining such results iscommutator estimates, perhaps best considered as microlocal energy
estimates, i.e., energy estimates localized in phase space. Another tack is to try to find a parametrix for the
Schr̈odinger propagatore−itH directly, and then obtain the estimates from its explicit form.

Tataru [18] presented new results on Strichartz estimates mostly following the latter approach. These
estimates, generalizing the local in time variable coefficient estimates on asymptotically conic spaces obtained
by Robbiano-Zuily [15] and Hassell-Tao-Wunsch [11], are global in time, and require only extremely weak
estimates on the metric, much weaker than the usual “short-range” assumption. They also require very little
differentiability. It should be noted that all of these constructions (and indeed, the validity of the usual
Strichartz and dispersive smoothing estimates) rest on a crucial geometric assumption: the metric must be
non-trapping, i.e. geodesics must approach spatial infinity as time goes to infinity.

One upshot of the parametrix construction of Hassell-Wunsch [10], described in its latest refinement in
Hassell’s talk, is a propagation theorem, describing the formation of singularities ofe−itHu0 in terms of
oscillatory behavior ofu0. Nakamura presented a different approach to such propagation results, giving a
characterization of WFu0 in terms ofu0 that rests on scattering-theoretic methods, furthermore yielding a
generalization to long-range metrics. Doi also discussed new propagation theorems, yielding a very precise
description of WFe−itHu0 in the caseH = (1/2)∆ + V + W with V a harmonic oscillator potential and
W a perturbation term. There are three different regimes, depending on the size ofW : if W is of order|x|ρ,
andρ < 1, then the perturbation is irrelevant to the formation of wavefront set. Ifρ = 1 then there is a
finite-speed correction to the propagation of singularities for the harmonic oscillator (see [8]). If1 < ρ < 2
then there is an infinite-speed correction. This generalizes a classic result of Zelditch [22], who tookρ = 0.

Robbiano reported on results generalizing the weighted, global in space dispersive smoothing estimates
to a very broad class of operators, which most notably allows for potentials of any order (provided that the
resulting operator has a self-adjoint extension).

6 New research directions

This workshop revealed new insights into the dynamical balance between nonlinear self-interaction and dis-
persive spreading of waves. It is of course impossible to predict precisely future research developments.
However, recent significant developments and transparent gaps in the theory suggest two emergent research
themes.

1. Scattering at critical regularity. Bourgain’s induction on energy strategy [2] and subsequent develop-
ments [6], [21] in the energy critical semilinear Schrödinger problem forecast profound developments
for the global-in-time theory of the defocusing problem (1) in the energy subcritical case. An optimal
(at least inL2-based Sobolev spaces) local well-posedness theory for (1) is now in place. The ex-
tant global well-posedness theory has relied upon a priori estimates inferred from energy conservation.
Global results based on energy conservation (or almost conservation) have required regularity assump-
tions beyond what is necessary for local well-posedness. The talk by Visan hints that the induction
strategy and virial or Morawetz-type estimates may perhaps be adapted to prove scattering and global
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well-posedness results for the defocusingL2-critical version of (1) (withp− 1 = 4
d ). Speculating fur-

ther leads to the prospect that further development of these ideas may establish that optimalHsc(Rd)
initial data for the defocusing version of (1), with0 ≤ sc = d

2 −
2

p−1 ≤ 1, evolves globally in time and
scatters. Another outstanding open problem is to establish global well-posedness and scattering in the
energy supercritical setting wheresc > 1.

2. Variable coefficient nonlinear problems. Strichartz and other dispersive linear estimates were first
established in the constant coefficient setting. Bilinear and multilinear versions of the linear constant
coefficient estimates underpin much of the recent progress on well-posedness and qualitative behavior.
A thrust of recent work described at the workshop demonstrates that linear dispersive estimates are
robust and extend to the variable coefficient setting. Further development of analogous bilinear and
multilinear estimates will open up the study of many new problems in wave phenomena, and strengthen
links with geometry, science and engineering.

If the recent past is a reasonable guide into the near future, there will be a continued rapid development
of this field of research. The workshop at BIRS provided a splendid forum for the exchange of ideas and
questions and contributed toward an improved understanding of Schrödinger evolution equations.
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