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1 Objectives

The main objective of this workshop is to bring together two groups of researchers, those working in topo-
logical graph theory and graph minors, and those working with crossing numbers. Both areas have developed
methods, mathematical tools and powerful results that have great potential for being used in the other area.
For instance, the most basic open problem about crossing numbers is the Turan’s Brickyard problem. Would
it be possible to use results about the genus of graphs and graph minors to get some new insight into this
problem? On the other hand the study of crossing numbers of graphs on nonsimply connected surfaces may
yield new results of interest for the topological graph theory.

We plan to organize some survey lectures where best mathematicians from both areas will present the
current state of the art of the theory. Additionally, there will be corresponding problem sessions with intention
to motivate the participants to apply their knowledge towards problems in the other area.

2 Overview of the Field

Roots of the Topological Graph Theory lie in the Heawood problem, one of very early discovered generaliza-
tions of the Four Color Problem. Heawood [4] proved in 1890 that every graph embedded in a closed surface
of Euler characteristic c �= 2 can be colored with H(c) = � 7+

√
49−24c
2 � colors. However, it was left open

for another 78 years if that many colors are really needed. G.A. Dirac proved in the 1950’s that the answer
to this question is equivalent to the fact that the genus (and the nonorientable genus) of the complete graph
of order n is equal to � 1

12 (n − 3)(n − 4)� (and � 1
6 (n − 3)(n − 4)�, respectively). Ringel and Youngs solved

this problem completely in 1968, cf. [6]. Their solution and related works by other authors motivated further
extensive research on embeddings of graphs in surfaces. The books by White [13] and later by Gross and
Tucker [3] show the state of the art of the theory at the end of the 1980’s.

In the late 1980’s, two new directions of research brought additional insight and boosted the topological
graph theory into even higher levels. The most important results came from Robertson and Seymour’s theory
of graph minors. Very influential was also Thomassen’s work in which he first presented stimulating new
proofs of the fundamentals of the theory, and later produced a number of deep results, most notably related
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to colorings of graphs on surfaces. These new developments are now accessible in a monograph by Mohar
and Thomassen [5].

Today, topological graph theory and the related theory of graph minors are battling its way into the area
of computer science. Applications have been discovered in areas like computational complexity, theory of
algorithms, graph drawing, computer graphics, computer vision, etc. This is the direction for which we
believe that important advances will be made in the future.

One particular branch of topological graph theory, the crossing number problems, has received particular
attention in the last decade. Discoveries of F.T. Leighton in the early 1980’s made this area of high importance
in the theoretical computer science. Stunning discoveries made by Pach, Szekely, and many others in the
1990’s have advanced the theory of crossing numbers into an independent subject with many applications in
discrete geometry, combinatorics and computer science.

This workshop has brought together mathematicians working in these two areas with intention to meet
together, exchange ideas, and use recent advances in both subjects to create new results on the extended
grounds.
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Yerger, Carl, Georgia Institute of Technology

4 Scientific program

The program has been composed of long lectures (mostly surveys), short lectures (important new results),
open problems sessions, and five-minute lectures. Each participant (except some of those giving another talk)
have been asked to present a short summary of their work of no more than five minutes in duration. Although
this is hard to obey, the time limit was strictly enforced (with relatively good success). The purpose was to
get to know each other’s research programs and interests so that like-minded individuals can pursue informal
interactions. This applied to all participants from senior researchers to graduate students.

Saturday, October 21, 2006

17:30–19:30 Dinner
19:30–24:00 Informal gathering in Corbett Hall lounge

Sunday, October 22, 2006

09:00–09:15 Introduction and Welcome by the BIRS Station Manager
09:15–10:00 Carsten Thomassen, Planar representations of finite and infinite graphs
10:00–10:30 Coffee
10:30–12:15 Five-minute lectures
12:15–14:00 Lunch
14:00–14:40 Gelasio Salazar, A biased survey on crossing numbers, plus two doable important open prob-
lems
14:40–14:45 Short break
14:45–15:30 Five-minute lectures
15:30–16:00 Coffee
16:00–17:30 Five-minute lectures
17:30–19:30 Dinner
19:30–24:00 Informal gathering in Corbett Hall lounge

Monday, October 23, 2006

09:00–10:00 MohammadTaghi Hajiaghayi, Algorithmic graph minor theory
10:00–10:30 Coffee
10:30–11:30 Kenichi Kawarabayashi, Linear-time algorithm for computing crossing number
11:30–11:40 Short break
11:40–12:00 Matt DeVos, Describing Fullerenes
12:00–14:00 Lunch
14:00–17:30 Free
17:30–19:30 Dinner
19:30–24:00 Informal gathering in Corbett Hall lounge

Tuesday, October 24, 2006

09:00–10:00 Janos Pach, Extremal Graph Theory and Geometric Graphs
10:00–10:30 Coffee
10:30–11:15 Marcus Schaefer, Graphs with rotation
11:20–11:40 Laszlo Szekely, On lower bounds for the minor crossing number
11:45–12:05 Michael Albertson, Distinguishing labelings of geometric graphs
12:00–14:00 Lunch
14:00–15:00 Gabor Tardos, Extremal Theory of Topological Graphs



4

15:00–15:30 Coffee
15:30–16:15 Jacob Fox, Ramsey-type results for intersection graphs
16:20–16:40 Petr Hlineny, Crossing number of almost planar graphs
16:50–17:10 Drago Bokal, Crossing-critical graphs with presecribed average degree and crossing number
17:30–19:30 Dinner
19:30–24:00 Informal gathering in Corbett Hall lounge

Wednesday, October 25, 2006

09:00–09:45 Neil Robertson, My favorite open problems in Topological Graph theory
09:50–10:20 Henning Bruhn, MacLane’s criterion for higher surfaces
10:20–10:50 Coffee
10:50–11:10 Bruce Richter, Cycle spaces of infinite graphs
11:15–11:35 Mark Ellingham, The orientable genus of some joins of complete graphs with large edgeless
graphs
Afternoon: Work in groups

Thursday, October 26, 2006

No scheduled talks.

5 Abstracts of talks

On the Crossing Number of Almost Planar Graphs

Petr Hlineny and Gelasio Salazar

Crossing minimization is one of the most challenging algorithmic problems in topological graph theory,
with strong ties to graph drawing applications. Despite a long history of intensive research, no practical
good algorithm for crossing minimization is known (that is hardly surprising, since the problem itself is NP-
complete). Even more surprising is how little we know about a seemingly simple particular problem: to
minimize the number of crossings in an almost planar graph, that is, a graph with an edge whose removal
leaves a planar graph. This problem is in turn a building block in an “edge insertion” heuristic for crossing
minimization. In this paper we prove a constant factor approximation algorithm for the crossing number of
almost planar graphs with bounded degree. On the other hand, we demonstrate nontriviality of the crossing
minimization problem on almost planar graphs by exhibiting several examples, among them new families of
crossing critical graphs which are almost planar and projective.

MacLane’s criterion for higher surfaces

Henning Bruhn and Reinhard Diestel

MacLane’s planarity criterion can be seen as listing a number of properties of the facial cycles of a plane
graph which, together, are strong enough to imply the following: that whenever we have any collection of
cycles with these properties and attach a 2-cell to each of them, the 2-complex obtained is homeomorphic to
the sphere. We shall provide such a list for higher surfaces. The difficulty here does not lie in the proof but
rather in finding properties that are as simple and natural as possible.

Ramsey-type results for intersection graphs

Jacob Fox
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The intersection graph of a collection C of sets has vertex set C and two elements of C are adjacent if
and only if they have nonempty intersection. J. Pach, Cs. Toth, and I recently proved several Ramsey-type
results for intersection graphs of geometric objects that are outlined below.

(1) There is a positive constant c such that for every intersection graph G of n > 1 convex bodies in the
plane, G or its complement contains a complete bipartite graph with at least cn vertices in each of its vertex
classes.

(2) An arrangement of pseudosegments is a collection of continuous arcs in the plane such that no pair
cross more than once. There is a positive constant c such that the intersection graph of any arrangement of n
pseudosegments in the plane contains a clique or independent of size at least n c.

(3) An x-monotone curve is a continuous arc in the plane such that no vertical line intersects it in more
than one point. There is a positive constant c such that for every intersection graph G of n > 1 x-monotone
curves in the plane, G contains a complete bipartite graph on at least cn/ log n vertices in each of its vertex
classes or the complement of G contains a complete bipartite graph with at least cn vertices in each of its
vertex classes. In the other direction, Pach and G. Tóth showed that for each ε > 0 and n sufficiently large,
there is an intersection graph G of a collection of n x-monotone curves in the plane that does not contain
a complete bipartite graph with at least 14n

ε log n vertices in each of its vertex classes and every vertex of G is
adjacent to all but at most nε other vertices.

(4) For each positive integer k, there is a positive constant ck such that for every intersection graph G of
n > 1 x-monotone curves in the plane with no pair intersecting in more than k points, G or its complement
contains a complete bipartite graph with at least ckn vertices in each of its vertex classes.

The above results are proved using structural theorems that demonstrate close relationships between cer-
tain families of intersection graphs of geometric objects and cocomparability graphs.

Turán-Type Results for Arrangements of Curves

J. Pach and M. Sharir

Let C be a family of n compact connected sets in the plane, whose intersection graph G(C) has no
complete bipartite subgraph with k vertices in each of its classes. Then G(C) has at most n times a polylog-
arithmic number of edges, where the exponent of the logarithmic factor depends on k. In the case where C
consists of convex sets, we improve this bound to O(n log n). If in addition k = 2, the bound can be further
improved to O(n).

Linear time algorithm for computing crossing number

Ken-ichi Kawarabayashi and Bruce Reed

We show that for every fixed k, there is a linear time algorithm that decides whether or not a given graph
has crossing number at most k, and if this is the case, then the algorithm computes a drawing of the graph into
the plane with at most k crossings. This answers the question posed by Grohe (STOC01 and JCSS 2004).
Our algorithm can be viewed as a generalization of the seminal result by Hopcroft and Tarjan, which says
that planarity of graphs can be decided in linear time. Our algorithm can also be compared with the algorithm
by Mohar (STOC96 and Siam J. Disrete Math 2001), which says that there is a linear time algorithm for
a given graph G to give either an embedding of G into a fixed surface S, i.e, Euler genus k for fixed k, or
a minimal forbidden subgraph for embeddability in S. Our algorithm has several appealing features. First,
unlike the algorithm by Grohe, our algorithm does not involve any huge hidden constant. In fact, the time
complexity can be written as O(2O(k4)n). This is because our proof does not depend on the excluded grid
minors theorem, which is the case in Grohe. Second, our algorithm consists of several interesting ingredients.
It uses a deep result of Mohar. It also uses techique by Reed, Robertson, Schrijver and Seymour, which
improves the time complexity of the seminal result of Robertson and Seymour for planar graphs and graph
on a fixed graph. The algorithm also needs a deep result in discrete geometry. Finally, it uses the algorithm
by Bodlaender which shows how to give linear time algorithms for many NP-hard problems in graphs of
bounded tree-width. Third, we can apply our algorithm to other problem. For instance, given a graph G
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and fixed k. Can we make G planar after deleting at most k edges? Our algorithm does give a linear time
algorithm for this problem.

Describing Fullerenes

Matt DeVos and Bojan Mohar

With a notion of a polyhedral surface, one can use a fundamental result of Alexandrov to represent various
families of planar graphs in a particularly simple geometric way. In particular, we show how this can be done
for all triangulations of the sphere with maximum vertex degree 6. Dually, this applies to cubic planar graphs
of maximum face size 6. In particular, this representation can be used for the class of fullerenes, cubic planar
graphs whose face sizes are only 5 or 6.

An independent discovery of essentially the same result was obtained earlier by Thurston.

My interests in Topological graph theory

Serguei Norine

I am interested in topological description of Pfaffian and k-Pfaffian graphs along the lines of the following
conjecture of mine. Conjecture 1. For a graph G and a non-negative integer g the following are equivalent

(1) There exists a drawing of G on an orientable surface of genus g such that the number of pairwise
crossings of edges of M is even for every perfect matching M of G.

(2) G is 4g-Pfaffian.
(3) G is (4g + 1 − 1)-Pfaffian.
I have been able to prove that the above conjecture holds for g = 0, that (1) implies (2) in general, and

that (1) and (2) are equivalent for g = 1. However, for other implications the method I used breaks down for
g > 1 and new ideas are required to settle the conjecture.

I am also interested in applying methods used in proofs of the subcases of the above conjecture to the
theory of crossing numbers and in unifying various existing approaches to studying the parity of crossing
numbers. In particular, I want to study the hypergraph problem described below, which is related to Turans
brickyard problem.

Cycle spaces of infinite graphs

Bruce Richter

Recent work by several authors have developed the theory of cycle spaces of infinite graphs to usefully
allow infinite circuits. A single locally finite graph can have many different compactifications. Each of these
has its own, typically different, cycle space. If compactification C1 is the continuous image of compactifica-
tion of C2, preserving the graph itself, then the C2-cycle space contains the C1-cycle space. What is a basis
for the quotient space? There are many other questions one could ask.

2-crossing-critical graphs

Bruce Richter

Bogdan Oporowski has made substantial progress on trying to determine all 2-crossing-critical graphs.
I have gotten sucked into this project. But I am also interested in determining all large 3-crossing-critical
graphs. (A graph is k-crossing-critical if its crossing number is at least k and all proper subgraphs have
crossing number ¡ k. The graph C3 × C3 has crossing number 3, but all its proper subgraphs have crossing
number at most 1, so it is both 2-crossing-critical and 3-crossing-critical.)

Some recent work on Topological Graph Theory



7

Robin Thomas

With M. DeVos, R. Hegde, K. Kawarabayashi, S. Norine and P. Wollan we have shown:
THEOREM. There exists an integer N such that every 6-connected graph G with no K 6 minor has a

vertex v such that G − v is planar.
Jorgensen conjectured that the above statement holds for all 6-connected graphs regardless of size. That

remains open. The theorem suggests the following conjecture.
CONJECTURE. For every integer t there exists an integer N such that every t-connected graph G with

no Kt minor has a set X of at most t − 5 vertices such that G − X is planar.
Here the assumption that G be big is necessary. Notice that if G has a set X as above, then it has no K t

minor. The excluded clique theorem of Robertson and Seymour gives structural information about graphs
with no Kt minor, but not enough to easily deduce the above conjecture.

With Daniel Kral we have obtained a polynomial-time algorithm to compute the chromatic number of
a graph G embedded on a fixed surface S with all faces even. This is a warm-up for the more general and
still open problem whether the same can be done for triangle-free graphs, regardless of face sizes. An exact
statement of our theorem requires a number of definitions, and so let me state it informally. We need a
definition and an observation. Let C be a cycle with vertex-set {v1, . . . , vk} in order, let v0 = vk, and let
c : V (C) → {1, 2, 3} be a (proper) 3-coloring of C. We define w(C), the winding number of C, as the
number of indices i ∈ {1, . . . , k} such that c(vi) = 1 and c(vi−1) = 2 minus the number of indices i such
that c(vi) = 2 and c(vi−1) = 1. Now let G be a graph embedded in an orientable surface S, let C 1, . . . , Ck be
facial cycles, and assume that every other face is bounded by a cycle of length four. Then if c is a 3-coloring
of G, then

∑k
i=1 w(Ci) = 0. In other words, if some faces are precolored and all other faces are bounded by

cycles of length four, then a necessary condition for the precoloring to extend to a 3-coloring of G is that the
sum of the winding numbers of the precolored faces be zero. We will call this the winding number condition.
Our theorem says that for every surface S (orientable or not) there exists an integer N such that for every
graph G embedded in S with all faces even there exists a subgraph H of G on at most N vertices such that for
every face f of H:

(i) if f includes a face of G with boundary length exceeding four, then every 3-coloring of the boundary
of f extends to a 3-coloring of the subgraph G f of G contained in f , and

(ii) otherwise a 3-coloring of the boundary of f extends to a 3-coloring of G f if and only if it satisfies the
winding number condition.

A 3-coloring algorithm follows: for every 3-coloring of H test if it extends into every face of H.

Summary of my recent research activities related to the topic of the workshop

Daniel Kral’

I am working in the area of graph colorings and I have recently started being interested a lot in colorings
of graphs embedded in surfaces. As examples of my recent work, let me name the following results:

Theorem 1 (K., Mohar, Nakamoto, Pangrac, Suzuki) An Eulerian triangulation of the Klein bottle is
5-colorable unless it contains a complete graph of order six as a subgraph.

Theorem 2 (K., Stehlik) Every triangle-free graph on the double-torus is 4-colorable.
Theorem 3 (K., Thomas) A triangle-free quadrangulation of the torus is 3-colorable if and only if it does

not contain a Cayley graph for the group Z13 with generators 1 and 5 as a subgraph.
Theorem 4 (K., Thomas) For every fixed g ≥ 0, the chromatic number of an even-faced graph embedded

in the orientable surface of genus g can be determined in polynomial time.

Planar representations of finite and infinite graphs

Carsten Thomassen

Results on representations of finite planar graphs may be non-trivial to extend to the infinite case. We
have recently found an extension method which applies to rectangular representations, bar representations
and visibility graphs.
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A biased survey on crossing numbers, plus two doable important open problems

Gelasio Salazar

We will try to cover most of the mainstream avenues of research in Crossing Numbers, including the work
that has steadily led to the study of crossing numbers in nonplanar surfaces.

Regarding open problems, I’ll take Donald Knuth’s position when a Computer Science student asked him,
during a lecture at Munchen: What are the 5 most important open problems in Computer Science? Knuth
replied: “I don’t like this ”top ten” business. It’s the bottom ten that I like. You’ve got to go for the little
things, the stones that make up the wall”. I have two serious candidates for the “bottom ten”.

Graphs with Rotation

Michael Pelsmajer, Marcus Schaefer, Daniel Štefankovič

A rotation system for a graph specifies a clockwise ordering of incident edges at each vertex. Rotation
systems have traditionally been used to describe embeddings of graphs in surfaces. We have recently applied
them in various graph drawing problems concerned with imbeddings of graphs: odd crossing number, minor-
monotone crossing number, the Hanani-Tutte theorem, and generalized thrackles.

The crossing number, cr(G), of a graph G is the smallest number of crossings in any drawing of the
graph.1 The odd crossing number, crodd(G), is the smallest number of pairs of edges that cross an odd
number of times in any drawing. Obviously, crodd(G) ≤ cr(G). We were able to show that for every ε > 0,
there is a graph G such that crodd(G) < (

√
3/2 + ε)cr(G) (2005).

The proof uses a multigraph on two vertices with rotation. Combining contractions with rotations, we can
also show that

cr(G) ≤ crodd(G)
(

n + 4
4

)
/5

for a multigraph on n vertices.

Call an edge in a drawing even if it intersects every other edge an even number of times.

Theorem 1 (Hanani-Tutte) If a non-planar graph is drawn in the plane, then the drawing contains two
non-adjacent edges that intersect an odd number of times.

We give a new and direct geometric proof of this result which, in turn, is based on a strengthening of a
result by Pach and Tóth:

Theorem 2 (Pelsmajer, Schaefer, Štefankovič) If D is a drawing of G in the plane, and E0 is the set of
even edges in D, then G can be drawn in the plane so that no edge in E 0 is involved in an intersection and
there are no new pairs of edges that intersect an odd number of times.

The proof of this result relies on a geometric redrawing idea, using rotations in an essential way. This
result leads to an easy proof of another result of Pach and Tóth: cr(G) ≤ 2cr odd(G)2. It also allows us to
prove that odd crossing number and crossing number are the same for small values: cr(G) = cr odd(G) for
crodd(G) ≤ 3. The case analysis in the proof again uses rotation systems.

A graph is a thrackle if it can be drawn such that any pair of edges intersects exactly once, where a
common endpoint of two edges counts as an intersection of these two edges. A generalized thrackle is
a graph that can be drawn such that any pair of edges intersects an odd number of times (again counting
endpoints).

As it turns out, our proof techniques allow us another simple proof of the following well-known result.

Theorem 3 (Cairns, Nikolayevsky (2000)) If G is a bipartite, generalized thrackle on a surface of genus g,
then G can be embedded on that surface.

1No more than two edges are allowed to cross in a point, and edges cannot pass through vertices.
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The special case g = 0 of the theorem was first proved by Lovász, Pach, and Szegedy, 1997: if a bipartite
graph is a generalized thrackle, then it is planar.

We can naturally ask about the complexity of problems—such as the crossing number—for graphs with
rotation system. We can show that computing the crossing number (or odd-crossing number or pair-crossing
number) of a graph with rotation system is NP-hard. As a corollary we obtain Hliněný’s result (2004)
that computing the crossing number of a cubic graph (without rotation system) and computing the minor-
monotone crossing number is NP-complete.

If we restrict the number of vertices to 1 or 2, the crossing number problem (with rotation) lies in P. The
case of three vertices is open. For pair crossing number even the case k = 2 is open.

Crossing-critical graphs with prescribed average degree and crossing number

Drago Bokal

Crossing-critical graphs were introduced by Širáň, who proved existence of infinite families of 3-connected
k-crossing-critical graphs for every k ≥ 3. Kochol proved existence of infinite families of simple 3-connected
k-crossing-critical graphs, k ≥ 2. Richter and Thomassen started the research on degrees in crossing-critical
graphs by proving that there are only finitely many simple k-crossing-critical graphs with minimum degree r
for every two integers r ≥ 6 and k ≥ 1. Salazar observed that their argument implies the same conclusion
for every rational r > 6, integer k ≥ 1, and simple k-crossing-critical graphs with average degree r. For
every rational r ∈ [4, 6) he proved existence of an infinite sequence {k r,i}∞i=0 such that for every i ∈ N there
exists an infinite family of simple 4-connected kr,i-crossing-critical graphs with average degree r and asked
about existence of such families for rational r ∈ (3, 4). The question was partially resolved by Pinontoan and
Richter, who answered it positively for r ∈ (3 1

2 , 4).
In the talk, we extend the theory of tiles, developed by Pinontoan and Richter, to encompass a generaliza-

tion of the crossing-critical graphs constructed by Kochol. Combining tiles with a new graph operation, the
zip product, which preserves the crossing number of the involved graphs, we settle the question of Salazar
and combine the answer with the results of Širáň and Kochol into the following theorem: there exists a con-
vex continuous function f : (3, 6) → R

+, such that, for every rational number r ∈ (3, 6) and every integer
k ≥ f(r), there exists an infinite family of simple 3-connected crossing-critical graphs with average degree
r and crossing number k.

Recent and current work on geometric and topological graphs

Michael O. Albertson

My most recent work (with Debra Boutin) concerns distinguishing labelings of geometric graphs. A
labeling of a graph f : V (G) → {1, 2, . . . , d} is said to be d-distinguishing if no nontrivial automorphism of
G preserves the labels. The distinguishing number of a graph G, denoted by Dist(G), is the minimum d such
that G has a d-distinguishing labeling.

An automorphism of a geometric graph that preserves both crossings and noncrossings of edges is called
a geometric automorphism. We prove two theorems constraining the action of a geometric automorphism
on the boundary of the convex hull of a geometric clique. First, any geometric automorphism that fixes the
boundary of the convex hull fixes the entire clique. Second, if the boundary of the convex hull contains at
least four vertices, then it is invariant under every geometric automorphism.

We use the above results, and the theory of determining sets, to prove that certain geometric cliques are
2-distinguishable. A subset of vertices is a determining set for a graph if every automorphism is uniquely
determined by its action on this subset. The main theorem connecting these concepts says that a graph is
d-distinguishable if and only if it has a determining set that can be (d− 1)-distinguished. These ideas readily
extend to geometric graphs. Using these results, we prove that if (n ≥ 7) and K n is a geometric clique in
which the boundary of the convex hull contains at least 4 vertices, then Dist(K n) ≤ 2. In prior work we had
shown that for n ≥ 6 there does exist a rigid K n. We have conjectured that Dist(Kn) ≤ 2 when n ≥ 7 and
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the boundary of the convex hull of K n is a triangle. We know from prior work that Dist(K n) ≤ 3 in these
circumstances.

Current projects include

1. Geometric automorphisms of other families of geometric graphs;

2. Graphs (geometric graphs) with large distinguishing number;

3. Edge coloring embedded graphs; and

4. Induced acyclic subgraphs of embedded graphs.

Distances in embedded graphs

Sergio Cabello (joint work with Erin W. Chambers)

We give an O(g2n log n) algorithm to represent the shortest path tree from all the vertices on a single
specified face f in a genus g graph. From this representation, any query distance from a vertex in f can be
obtained in O(log n) time. This generalizes a result of Klein (SODA’05) for plane graphs. We also show how
to use these shortest path trees to find a shortest non-contractible cycle and a shortest non-separating cycle in
a graph embedded in an orientable surface in O(g 3n log n) time.

The orientable genus of some joins of complete graphs with large edgeless graphs

Mark Ellingham and Chris Stephens

In an earlier paper the authors showed that with one exception the nonorientable genus of the graph
Km + Kn with m ≥ n−1, the join of a complete graph with a large edgeless graph, is the same as the nonori-
entable genus of the spanning subgraph Km + Kn = Km,n. The orientable genus problem for Km + Kn

with m ≥ n− 1 seems to be more difficult, but here we find the orientable genus of some of these graphs. In
particular, we determine the genus of Km + Kn when n is even and m ≥ n, the genus of Km + Kn when
n = 2p +2 for p ≥ 3 and m ≥ n−1, and the genus of Km + Kn when n = 2p +1 for p ≥ 3 and m ≥ n+1.
In all of these cases the genus is the same as the genus of Km,n, namely �(m − 2)(n − 2)/4�.

Embedding metrics into constant-dimensional geometric spaces

MohammadTaghi Hajiaghayi

Embedding metrics into constant-dimensional geometric spaces, such as the Euclidean plane, is relatively
poorly understood. Motivated by applications in visualization, ad-hoc networks, and molecular reconstruc-
tion, we consider the natural problem of embedding shortest-path metrics of unweighted planar graphs (planar
graph metrics) into the Euclidean plane. It is known that, in the special case of shortest-path metrics of trees,
embedding into the plane requires T (vn) distortion in the worst case, and surprisingly, this worst-case up-
per bound provides the best known approximation algorithm for minimizing distortion. We answer an open
question posed in this work and highlighted by Matousek by proving that some planar graph metrics require
O(n2/3) distortion in any embedding into the plane, proving the first separation between these two types of
graph metrics. We also prove that some planar graph metrics require O(n) distortion in any crossing-free
straight-line embedding into the plane, suggesting a separation between low-distortion plane embedding and
the well-studied notion of crossing-free straight-line planar drawings. Finally, on the upper-bound side, we
prove that all outerplanar graph metrics can be embedded into the plane with O(vn) distortion, generaliz-
ing the previous results on trees (both the worst-case bound and the approximation algorithm) and building
techniques for handling cycles in plane embeddings of graph metrics.

List-coloring classes of planar graphs when the lists vary in size
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Joan P. Hutchinson

We prove the following theorem. If a graph is a 2-connected outerplanar near-triangulation and a list
assignment L satisfies |L(v)| ≥ min{deg(v), 5} for every vertex v, then the graph is L-list-colorable except
for K3 with three identical 2-lists.

Connectivity cannot be reduced and the result does not hold for 2-connected K 4-minor-free graphs. The
bound of five is best possible due to an example of A. Kostochka.

Another theorem is: If a 2-connected bipartite outerplanar graph has |L(v)| ≥ min{deg(v), 4} for every
vertex v, then the graph is L-list-colorable.

This result does not hold for non-bipartite graphs, for 1-connected graphs, nor for K 4-minor-free graphs,
and the bound of four cannot be decreased to three. We have conjectures about other variations in which this
sort of list-coloring might be possible.

Pivot-vertex-minors of graphs

Sang-il Oum

Our main research interest is on graph structure theory related to pivot-vertex-minors of graphs. Local
complementation at a vertex v of a graph is an operation to replace the subgraph of G induced by neighbor
of v by its complementary graph. A vertex-minor of a graph is a graph obtained by local complementation
and vertex deletion. Pivoting an edge uv is an operation to toggle adjacency of two vertices in different sets
among three sets of vertices defined by adjacency to u and v (common neighbors of u, v, neighbor of u but
nonneighbor of v, or neighbor of v but nonneighbor of u). A pivot-minor is a graph obtained by pivoting and
vertex deletion.

The Kuratowski-Wagner theorem states that a graph is planar if and only if it has no minor isomorphic to
K5 or K3,3. A circle graph is an intersection graph of chords of a circle. Bouchet proved in 1994 that a graph
is a circle graph if and only if it has no “vertex-minor” isomorphic to one of three graphs.

With Jim Geelen, we proved that there are finitely many excluded “pivot-minors” for circle graphs, and
obtained 15 excluded pivot-minors by computer search. In particular, this implies Kuratowski-Wagner theo-
rem.

Circle graphs have a quite topological feature. De Fraysseix (1984) showed that a bipartite graph is a
circle graph if and only if it is a fundamental graph of a cycle matroid of a planar graph. In this sense, planar
graphs are strongly related to circle graphs.

We would be very interested to know any other graph classes that are pivot-minor-closed or vertex-minor-
closed. Are there any examples arising from surfaces other than sphere? I know that bipartite graphs, circle
graphs, distance-hereditary graphs, PU-orientable graphs, graphs of rank-width at most k are closed under
pivot-minors.

On lower bounds for the minor crossing number

Drago Bokal, Éva Czabarka, László A. Székely, and Imrich Vr ťo

The minor crossing number of a graph G is defined as the minimum crossing number of all graphs that
contain G as a minor:

mcr(G) := min{cr(H) : G ≤m H}.
This concept was introduced by D. Bokal, G. Fijavž, and B. Mohar in “The minor crossing number”, to

appear in SIAM J. Discrete Mathematics. The point of this definition is that the family of graphs with minor
crossing number at most k is minor closed, unlike the family of graphs with ordinary crossing number at most
k. Bokal et al. showed for the complete graph (1 + o(1))n2/4 ≤ mcr(Kn) ≤ (1 + o(1))n2/2, and for the
hypercube 4n 1+o(1)

5n2 ≤ mcr(Qn) ≤ 2(1 + o(1)) · 4n−2.

We improve on the bounds for the hypercube by showing 4 n 1+o(1)
3263n ≤ mcr(Qn) ≤ 4n 1+o(1)√

πn
. The key

tool for establishing the lower bound is an adaptation of the bisection width lower bound to the minor crossing
number.
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As the cited result for Kn shows, one cannot expect the Leighton Lemma lower bound for mcr(G), as
mcr(Kn) = O(n2). We present an adaptation of the Leighton Lemma that still might be useful, and also
discuss the adaptation of the embedding method to set lower bound for mcr(G).

Ramsey-Type Results for Arrangements of Curves

Janos Pach (joint with J. Fox and Cs. Tóth)

An arrangement of pseudosegments is a family of continuous curves such that any pair of them cross at
most once. We prove that

1. there is a positive constant c such that the intersection graph of any arrangement of n pseudosegments
contains a clique or independent set of size at least nc.

2. there is a positive constant c such that if G is the intersection graph of n > 1 convex compact sets in
the plane, then G or its complement contains a complete bipartite graph with cn vertices in each of its
vertex classes.

An x-monotone curve is a continuous curve in the plane that is intersected by any vertical line in at
most one point. We prove that there is a positive constant c such that for every intersection graph G of n
x-monotone curves in the plane, G contains a complete bipartite graph with at least cn

log n vertices in each of
its vertex classes or the complement of G contains a complete bipartite graph with at least cn vertices in each
of its vertex classes.

Degenerate Crossing Numbers

J. Pach and G. Tóth

Let G be a graph with n vertices and e ≥ 4n edges, drawn in the plane in such a way that if two or
more edges (arcs) share an interior point p, then they must properly cross one another at p. It is shown that
the number of crossing points, counted without multiplicity, is at least constant times e and that the order of
magnitude of this bound cannot be improved. If, in addition, two edges are allowed to cross only at most
once, then the number of crossing points must exceed constant times (e/n) 4.

6 Carsten Thomassen’s exposition about Planar representations of fi-
nite and infinite graphs

Many results and problems on finite graphs have natural counterparts for infinite graphs. One of the most
useful tools for going from finite graphs to infinite graphs is the following which is called König’s infinity
lemma.

Theorem 4 Let v be a vertex in an infinite connected graph K, and let D 1, D2, . . . be the distance classes
from v. Then K has a one-way infinite path vv1v2 . . . such that vi belongs to D1 for i = 1, 2, . . ..

One of the first applications (if not the first) is the extension of Kuratowski’s theorem which characterizes
the finite planar graphs in terms of forbidden subgraphs. This was generalized to infinite graphs by P. Erdős,
see [2], as follows.

Theorem 5 Let G be a countably infinite graph such that every finite subgraph is planar. Then G can be
drawn in the plane such that no two edges intersect except at a common end.
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To prove this, Erdos constructed an auxiliary graph K as follows. First the vertices of G are enumerated
x1, x2, . . .. Then Gn denotes the subgraph induced by v1, v2, . . . , vn. Two planar embeddings of Gn are said
to be equivalent if there is a homeomorphism of the plane taking one to the other. Then there are only finitely
many non-equivalent embeddings. Each of them will be a vertex in a set D n. The vertex set of the graph K
is the union of all the sets Dn, n = 1, 2, . . .. If we delete xn from an embedding of Gn, then we obtain an
embedding of Gn−1, and we add an edge between these embeddings in K . Then we apply König’s infinity
lemma to K , and we use the resulting path in K to draw successively x1, x2 . . . such that each drawing is
equivalent with the corresponding vertex in the path of K .

Numerous results on finite graphs can be extended to infinite graphs by the same argument. However,
the limitations of the method are perhaps more interesting. For example, it is a well-known result on finite
graphs (also attributed to Erdős) that every finite graph has a so-called unfriendly partition, that is, a vertex
partition such that each vertex has at least as many neighbors in the opposite part as in its own part. Using
König’s infinity lemma, it is easy to prove that the same holds for locally finite graphs. However, it is not
known whether every countable graph has an unfriendly partition.

The notation and terminology below are the same as in [5]. In addition, we say that an infinite graph
is locally finite if every vertex has finite degree. Following [8] we say that an embedding of a graph in
the plane is rectangular if every edge is a vertical or horizontal straight line segment. The planar graphs
having rectangular embeddings have not been characterized, but Ungar [12] proved that every finite planar,
cubic, cyclically 4-edge-connected graph has a rectangular embedding after four edges on the outer cycle are
subdivided. In such an embedding every face is bounded by a rectangle. Over 20 years ago I conjectured
in [9] that Ungar’s theorem extends to infinite graphs. One may try to repeat the above argument by Erdős.
But, the infinite path in the auxiliary graph K cannot always be used to find the embedding because it is not
always possible to extend a rectangular representation to a bigger one even if the homeomorphism properties
are satisfied. In [11] we overcome this obstacle by introducing what we call a grid representation which is
defined as follows.

Let L1, L2, . . . , Lp be a collection of pairwise parallel horizontal lines in the plane, and let Q 1, Q2, . . . , Qq

be a collection of pairwise parallel vertical lines. Let G be a finite graph such that each vertex of G
can be represented by an intersection point of some L i and Qj , and such that each edge of G is con-
tained in one of L1, L2, . . . , Lp, Q1, Q2, . . . , Qq, and such that no two edges cross. If each of the lines
L1, L2, . . . , Lp, Q1, Q2, . . . , Qq contains a vertex of G, then these lines together with the representation of
G is called a grid representation of G. We say that the intersection point of L i and Qj has the coordinates
i, j. Two grid representations of G are equivalent if they have the same number of vertical lines and the same
number of horizontal lines, and if every vertex of G has the same coordinates in the two representations.
Clearly, a finite graph has only finitely many non-equivalent grid representations. The following was proved
in [11].

Theorem 6 Let G be a countably infinite graph. Let E be a collection of edges of G. (E may equal the edge
set of G. E may be empty.) Let E be colored with the two colors 0, 1. Assume that every finite subgraph of
G has a rectangular representation such that each edge of E in the subgraph is vertical if it has color 1 and
horizontal if it has color 0. Then G has a rectangular representation such that each edge of E is vertical if it
has color 1 and horizontal if it has color 0.

The proof ensures that all vertices and edges can be kept inside a prescribed square of the plane if we wish
so. In the proof of the above theorem we get accumulation points. (A vertex accumulation point is a point
each neighborhood of which contains infinitely many vertices of the graph. An edge accumulation point is a
point each neighborhood of which intersects infinitely many edges of the graph.) The representation can be
chosen such that no point on an edge of G is an accumulation point. It is easy to give examples of a cubic
plane graph which has a grid representation and also has a planar drawing without accumulation points but
with the property that every grid representation has accumulation points if we allow E to be the whole edge
set. It is also easy to give such examples where E is empty and G is 4-regular. In fact, the only 4-regular
graph which has a grid representation without accumulation points is the 2-dimensional grid. (For, if some
facial walk is not a 4-cycle, then it is a two-way infinite path forming a spiral, and one of the one-way infinite
subspirals is bounded.)

A cubic graph G is cyclically 4-edge connected if it is 3-connected and any edge-cut of G consists of
the three edges incident with a vertex. Ungar [12] proved that every finite, planar, cubic, cyclically 4-edge-



14

connected graph has a rectangular embedding provided some four edges on the outer cycle are subdivided. It
follows from [9] that any facial cycle can play the role of the outer cycle

One noteworthy feature of Ungar’s theorem is that it emphasizes that the difficulties in the 4-color problem
(and many other problems on planar graphs) are of purely combinatorial nature and not of geometric or
topological nature, as the countries can be chosen to be rectangles.

In [9] it was conjectured that Ungar’s theorem extends to the infinite case. In [11] we prove that conjecture
by combining Ungar’s result with Theorem 6.

Theorem 7 Every infinite, planar, cubic, cyclically 4-edge-connected graph G has a rectangular represen-
tation in the plane.

This proof of this result applies in other contexts as well. A bar representation of a graph G is a repre-
sentation such that the vertices of G are pairwise disjoint horizontal straight line segments and each edge is
a vertical straight line segments joining its two ends and intersecting no other vertex. If all possible edges
between vertices are present, then G is a visibility graph. If G is a graph, then we define the graph G ∗ as
follows: If each component of G is 2-connected, then G∗ = G. If some component of G is not 2-connected,
then G∗ is obtained from G by adding a new vertex and joining it to all cutvertices of G.

Tamassia and Tollis [7] proved that a finite graph G is a visibility graph if and only if G ∗ is planar. In other
words, G is planar and has a plane representation such that all cutvertices are on the outer face boundary. In
particular, every 2-connected finite planar graph is a visibility graph, and every finite planar graph has a bar
representation. In [11] the following infinite counterpart is proved.

Theorem 8 A countably infinite graph has a bar representation if and only if it is planar.

Consider now a countably infinite graph G with the property that each finite subgraph is planar. The
proof of Theorem 8 shows that G can be representated such that every vertex is a rectangle and every edge is
a vertical straight line segment joining its ends and intersecting no other rectangle. (Instead of successively
adding one horizontal line in the proof of Theorem 8 we add two horizontal lines close to one another.) By
representing a vertex by a point inside a rectangle it is now easy to obtain a planar drawing of the graph. This
argument may not be as natural as the one by Erdős but it avoids the geometric details in the transition from
the finite case to the infinite case.

Perhaps the rectangles in the previous paragraph can even be chosen to be squares, see Conjecture 4
below.

Theorem 9 If G is a countably infinite, locally finite graph G such that G ∗ is planar, then G is a visibility
graph. In particular, every countably infinite, locally finite, 2-connected graph is a visibility graph.

The converse of Theorem 9 is not true. To see this, consider any finite or countably infinite visibility
graph. Every edge xy can be represented by two vertical straight line segments which, together with parts of
the line segments representing x, y form a rectangle whose interior intersects no vertex or edge. We divide any
such rectangle into two rectangles by adding a horizontal straight line segment inside the rectangle, and then
we add in each of the two smaller rectangles a one-way infinite path starting at x or y. The resulting graph
is a visibility graph, and every vertex is a cutvertex. More elaborate examples are possible so a complete
characterization of the infinite visibility graphs seems complicated, even in the locally finite case.

An additional complication occurs if we allow vertices of infinite degree. The proof of Theorem 9 shows
that any graph G such that G∗ is planar has a bar representation such that the only edges that can be added to
the representation are some which join two vertices of infinite degree.

All previous results are 2-dimensional. However the method can be extended to higher dimensions al-
though there may not be many examples demonstrating that. We shall here mention one nontrivial example.
A box graph is a graph such that every vertex is a box in 3-space, that is, the cartesian product of three closed
bounded intervals in the real line. No two boxes have an interior point in common. Two vertices are neighbors
if they have a rectangle (with positive area) in common. The box graphs have not been characterized in terms
of forbidden subgraphs. In [10] I proved that every finite, planar graph is a box graph. In [11] this is extended
to the infinite case as follows.
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Theorem 10 A countably infinite graph is a box graph if and only if every finite subgraph is a box graph. In
particular, every countably infinite, planar graph is a box graph.

The proof of Theorem 10 is analogous to that of Theorem 6.
We conclude with some open problems which are related to the results above but seem to require more

elaborate methods.
In [9] I conjectured the following:

Conjecture 1 Every infinite, cubic, cyclically 4-edge-connected graph which has a planar representation
with no vertex-accumulation point and no edge-accumulation point has a rectangular representation in the
plane with no vertex-accumulation point and no edge-accumulation point.

There is an analogous problem for bar representations:

Conjecture 2 Every infinite, locally finite graph which has a planar representation with no vertex-accumula-
tion point and no edge-accumulation point has a bar representation with no vertex-accumulation point and
no edge-accumulation point.

In Theorem 9 the graphs are locally finite. Perhaps this condition can be omitted.

Conjecture 3 Every countably infinite, 2-connected graph is a visibility graph.

Conjecture 4 Every countably infinite, planar graph has a representation such that every vertex is a square
such that no two squares intersect and every edge is a vertical straight line segment joining the squares
representing its ends.

Conjecture 5 Every countably infinite, planar graph has a representation such that every vertex is a closed
disc such that no two discs intersect and every edge is a vertical straight line segment joining the discs
representing its ends.

Note that Conjecture 4 implies Conjecture 5 by taking the largest discs inside the squares. So the remark
following Conjecture 4 shows that Conjecture 5 is true for finite graphs. This also follows from the theorem
of Koebe (see e.g. [5], page 51) that every finite planar graph is a coin graph, that is, a graph whose vertices
are closed discs no two of which have an interior point in common and such that two discs are neighbors if
and only they have a point in common. To obtain Conjecture 5 in the finite case, just shrink the discs a little
(and possibly rotate the collection of discs slightly).

Conjecture 6 Every countably infinite, locally finite, planar graph is a coin graph.

Conjecture 6 cannot be extended to all countable graphs. The graph obtained from a two-way infinite path
by adding two new vertices each of which is joined to all other vertices in the graph is a countable, planar
graph, but it cannot be represented as a coin graph.

7 Some open problems presented at the problem sessions

In problem sessions, many old and new open problems have been presented. Some of them are recorded
below.

Problem 1 Let G be a planar graph and x, y ∈ V (G). How difficult is to compute the crossing number of
G + xy?

Note: Salazar and Hlineny have conjectured that this problem is solvable in polynomial time. On the other
hand, Cabello and Mohar believe that this problem is NP-hard at least when the planar graph has weighted
edges and a crossing of edges with weights a and b counts as ab.

Problem 2 (Bruce Richter) A graph G is said to be k-crossing-critical if cr(G) ≥ k and cr(G − e) < k
for every edge e of G. It is known that 2-crossing-critical graphs have “cyclic” structure apart from a finite
number of sporadic cases. Is there a similar result for large 3-crossing-critical graphs?
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Problem 3 (Petr Hlineny) Is it true that for every positive integer k there exists an integer D such that every
k-crossing-critical graph has maximum degree less than D?

Petr Hlineny thinks that this may not be true.

Problem 4 Is it true that for every positive integer k there exists an integer B such that every k-crossing-
critical graph has bandwidth at most B?

Problem 5 (Robin Thomas) Let I be a lower ideal for minor ordering, i.e., a minor-closed class of graphs
which does not contain all graphs. Is there a polynomial time algorithm which for every G ∈ I computes an
integer k such that |χ(G) − k| ≤ 10?

The constant 10 is fictious. The problem makes sense if it is replaced by any positive integer. Robin
Thomas conjectured that the answer to the above problem is affirmative.

Problem 6 (Drago Bokal) Is there an integer k for which there exist infinitely many k-crossing-critical (sim-
ple) graphs of average degree 6.

It is known that infinitely many k-crossing-critical graphs of average degree d exist if d is any rational
number in the interval (3, 6) and that this is no longer the case if d > 6.

Problem 7 (Sergio Cabello) Find a polynomial fixed-parameter-tractable (FPT) algorithm for deciding iso-
morphism of graphs of genus at most g, i.e.,the time complexity should be O(f(g)p(n), where p is a polyno-
mial and n is the size of the input.

Note: Known algorithms have polynomial complexity O(nO(g)), which is not FPT.

Problem 8 Is there a graph which is a minimal forbidden minor for two distinct surfaces?

If yes, then the two surfaces would both be nonorientable and their nonorientable genera would differ by
one.

Problem 9 (Gelasio Salazar) For a graph G, let crg(G) be the crossing number of G with respect to the
drawings of G in the orientable surface of genus g. Is it possible that a graph satisfies cr0(G) = N ,
cr1(G) = N − 1, and cr2(G) = 0, where N is a very large integer?

This problem has been recently solved by Matt DeVos, Bojan Mohar, and Robert Šamal [1].
Let G and H be geometric graphs, represented by straight-line segments in the plane. We say that G and

H are isomorphic if there is an isomorphism f of (abstract) graphs G and H such that for every pair of edges
ab and cd of G, the line segments corresponding to these two edges intersect if and only if the line segments
of edges f(a)f(b) and f(c)f(d) ∈ E(H) intersect in the representation of H . The isomorphism f is strong
if each line segment representing an edge e of G intersects other edges of G in the same order as the line
segment of f(e) intersects their f -images in the representation of H . The following problem was motivated
by the lecture of Mike Albertson on distinguishing geometric graphs.

Problem 10 (Bojan Mohar) How hard it is to decide if two geometric graphs are (strongly) isomorphic.

Further open problems have been presented by Matt DeVos, Mark Ellingham, Luis Goddyn, and others.

8 Scientific progress and some outcomes of the meeting

Some of the spirit of the workshop can be seen from the exposition of Carsten Thomassen in Section 6. Old
results and open problems presented in a new light, many open problems and conjectures.

The exchange between the various research groups at the workshop proved to be very fruitful. From the
point of view of crossing numbers, there were two main outcomes.

The presentation by Salazar on the problem of determining the crossing number of a graph G such that G
has an edge e so that G − e is planar led to much discussion. The question is:



17

Is there an efficient (that is, polynomial time) algorithm to determine the crossing number of such a
graph G?

This is such a “simple” problem and yet there is no known solution. Examples show that the crossing
number of G can be arbitrarily large. Earlier work by Mutzel et al. showed that there is an efficient algorithm
to find the drawing of G having the fewest crossings subject to the additional requirement that all the crossings
involve e. These are quite natural drawings of such a graph, but Hlineny and Salazar show by example that
they are not necessarily optimal in the sense of giving a drawing of G having fewest crossings. (The same
result was discovered independently by Mutzel et al. and published in the journal version of their original
presentation.) They further show that they can efficiently find a drawing that is within a constant factor of
being optimal.

Petr Hlineny gave a short presentation about the important class of k-crossing-critical graphs. These are
the graphs G having crossing number at least k, but every proper subgraph has crossing number less than k.
There are several standard questions about such graphs. Two standard ones have the same form:

Is there a number f(k) so that any k-crossing-critical graph has maximum degree or bandwidth at most
f(k)?
The best result along these lines is Hlineny’s theorem that they have bounded path-width. The result is
known for k = 2 but open for k ≥ 3. The discussion during the workshop led to further discoveries of
k-crossing-critical graphs with larger maximum degrees than were previously known, but still did not resolve
the question.

The presentation by Richter on a problem, deriving from the Graph Minors Project, concerning how often
a set of disjoint arcs, joining specified pairs of points in the boundary of a bordered surface must meet the
different homeomorphism types of non-separating curves led quite directly to its complete solution shortly
after the conference.

János Pach reported of a new joint paper that he has just finished with Jacob Fox, that grew out of work
started in Banff. This improves on the results of his earlier joint work with Micha Sharir. The paper is entitled
“Separator theorems and Turán-type results for planar intersection graphs” (by Jacob Fox and János Pach)
and its contents can be summarized as follows:

“We establish several geometric extensions of the Lipton-Tarjan separator theorem for planar
graphs. For instance, we show that any collection C of Jordan curves in the plane with a total
of m crossings has a partition into three parts C = S ∪ C1 ∪ C2 such that |S| = O(

√
m),

max{|C1|, |C2|} ≤ 2
3 |C|, and no element of C1 has a point in common with any element of C2.

These results are used to obtain various properties of intersection patterns of geometric objects
in the plane. In particular, we prove that if a graph G can be obtained as the intersection graph of
n convex sets in the plane and it contains no complete bipartite graph K k,k as a subgraph, then
the number of edges of G cannot exceed ckn, for a suitable constant ck.”

Bojan Mohar also reported of a couple of new results about crossing numbers that have resulted from
discussions at this meeting. First, he has extended results related to János Pach’s exposition on Degenerate
Crossing Numbers. He proved that this version of a crossing number is almost equivalent to the notion of
the non-orientable genus of graphs – an unexpected relation whose importance lies in the fact that the non-
orientable genus is monotone under graph minors relation. Another achievement is a recent proof by Matt
DeVos, Bojan Mohar, and Robert Šamal [1] which, in particular, completely solves Problem 9.

Drago Bokal reports on an ongoing research jointly with Éva Czabaraka, Lszl A. Szkely, and Imrich Vr ťo
on General lower bounds for minor crossing number, on which they also made important progress during the
workshop:

“There are three general techniques for bounding crossing numbers of graphs: the Crossing
lemma, the Bisection method, and the Embedding method. Recently we established similar
results in the context of the minor crossing number. As a result, we were able to tighten the
bounds for the minor crossing number of hypercubes. We are looking for further applications of
the new tools.”
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Additionally, Petr Hlineny informed us that he has finished and submitted a paper with a crossing-critical
construction with high even degrees, and he acknowledged great influence of this workshop in obtaining this
result.
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