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Final report

The meeting gathered mathematicians from nine countries: Brazil, Canada,
France, Great Britain, Japan, Korea, New Zealand, Spain, United States. It was
devoted to recent progress and new interactions involving Artin’s braid groups
(see below for a synopsis).

The very intense scientific program comprised thirty-two talks of twenty-five
and forty-five minutes, plus a problem session, and a recollection of the work
and life of X.S.Lin (1957–2007), to whose memory the meeting was dedicated.
In order to take advantage of the connections between talks, the schedule was
organized to provide homogeneous sessions, each devoted to one particular as-
pect.

According to the feedback from most participants, the meeting was a great
success. In particular, the problem session opened promising perspectives for
future developments (see below).

The more detailed report below has four parts.
1. A mathematical synopsis of the scientific theme of the meeting.
2. The schedule of the talks and their abstracts.
3. The list of questions raised in the problem session.
4. The complete list of participants to the meeting.

1 Braid groups: definitions and results

The braid groups Bn were introduced by E. Artin in 1926 [1] (see also [2]).
They have been of importance in many fields – algebra, analysis, cryptography,
dynamics, topology, representation theory, mathematical physics – and many of
these aspects were represented in the BIRS workshop. This workshop involved
not only leading experts in the field, but also, importantly, a number of young
researchers, postdoctoral fellows and several graduate students. This made for
an exciting and informative mix of ideas on the subject. Female mathematicians
were well represented, and were among the leading contributors.

1.1 Many equivalent definitions

The importance of the braid groups is based, in part, on the many ways in which
they can be defined. Below are six different definitions of the braid groups.

Definition 1: Braids as particle dances. Consider n particles located
at distinct points in a plane. To be definite, suppose they begin at the inte-
ger points {1, . . . , n} in the complex plane C. Now let them move around in
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trajectories

β(t) = (β1(t), . . . , βn(t)), βi(t) ∈ C, 0 ≤ t ≤ 1.

A braid is then such a time history with the proviso that the particles are
noncolliding:

βi(t) 6= βj(t) if i 6= j

and end at the spots they began, but possibly permuted:

βi(0) = i, βi(1) ∈ {1, . . . , n}, i = 1, . . . , n.

If one braid can be deformed continuously into another (through the class of
braids), the two are considered equivalent – we will say equal.

Braids α and β can be multiplied: one dance following the other, each at
double speed. The product is associative but not in general commutative. The
identity dance is to stand still, and each dance has an inverse; doing the dance
in reverse time. These (deformation classes of) dances form the group Bn.

A braid β defines a permutation i→ βi(1) which is a well-defined element of
the permutation group Σn. This is a homomorphism with kernel, by definition,
the subgroup Pn of pure braids. Pn is sometimes called the colored braid group,
as the particles can be regarded as having identities, or colors. Pn is of course
normal in Bn, of index n!, and there is an exact sequence

1→ Pn → Bn → Σn → 1.

Definition 2: Braids as strings in 3-D. This is the usual and visually
appealing picture. A braid can be viewed as the graph, or timeline, of a braid
as in the first definition, drawn in real x, y, t-space, monotone in the t direction.
The complex part is described as usual by x + y

√
−1. The product is then a

concatenation of braided strings.
This viewpoint provides the connection with knots. A braid β defines a knot

or link β̂, its closure, by connecting the endpoints in a standard way so that no
new crossings are introduced. J. W. Alexander showed that all knots arise as
the closure of some braid and by a theorem of Markov (see [5] for a discussion
and proof) two braids close to equivalent knots if and only if they are related
by a finite sequence of moves and their inverses: conjugation in the braid group
and a stabilization, which increases the number of strings.

Definition 3: Bn as a fundamental group of a configuration space.
In complex n-space Cn consider the big diagonal

∆ = {(z1, . . . , zn); zi = zj , some i < j} ⊂ Cn.

Using the basepoint (1, 2, . . . , n), we see that

Pn = π1(Cn \∆).

In other words, pure braid groups are fundamental groups of complements of
a special sort of complex hyperplane arrangement, itself a deep and complicated
subject.

2



To get the full braid group we need to take the fundamental group of the
configuration space, of orbits of the obvious action of Σn upon Cn \∆. Thus

Bn = π1((Cn \∆)/Σn).

Notice that since the singularities have been removed, the projection

Cn \∆ −→ (Cn \∆)/Σn

is actually a covering map. As is well-known, covering maps induce injective
homomorphisms at the π1 level, so this is another way to think of the inclusion
Pn ⊂ Bn.

Finally, we note that the space (Cn \∆)/Σn can be identified with the space
of all complex polynomials of degree n which are monic and have n distinct
roots

p(z) = (z − r1) · · · (z − rn).

This is one way in which the braid groups play a role in classical algebraic
geometry, as fundamental group of the space of such polynomials.

Definition 4: The algebraic braid group. Bn can be regarded alge-
braically as the group presented with generators σ1, . . . , σn−1, where σi is the
braid with one crossing, with the string at level i crossing over the one at level
i+ 1 and the other strings going straight across.

These generators are subject to the relations

σiσj = σjσi, |i− j| > 1,

σiσjσi = σjσiσj , |i− j| = 1.

We can take a whole countable set of generators σ1, σ2, . . . subject to the
above relations, to define the infinite braid group B∞. If we consider the (non-
normal) subgroup generated by σ1, . . . , σn−1, these algebraically define Bn. No-
tice that this convention gives “natural” inclusions Bn ⊂ Bn+1 and Pn ⊂ Pn+1.

Definition 5: Bn as a mapping class group. Going back to the first
definition, imagine the particles are in a sort of planar jello and pull their sur-
roundings with them as they dance about. Topologically speaking, the motion
of the particles extends to a continuous family of homeomorphisms of the plane
(or of a disk, fixed on the boundary). This describes an equivalence between
Bn and the mapping class of Dn, the disk D with n punctures (marked points).
That is, Bn can be considered as the group of homeomorphisms of Dn fixing
∂D and permuting the punctures, modulo isotopy fixing ∂D ∪ {1, . . . , n}.

Definition 6: Bn as a group of automorphisms. A mapping class [h],
where h : Dn → Dn, gives rise to an automorphism h∗ : Fn → Fn of free
groups, because Fn is the fundamental group of the punctured disk. Using the
interpretation of braids as mapping classes, this defines a homomorphism

Bn → Aut(Fn),
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which Artin showed to be faithful, i. e. injective.
The generator σi acts as

xi → xixi+1x
−1
i ; xi+1 → xi; xj → xj , j 6= i, i+ 1.

Thus Bn may be considered a group of automorphisms of Aut(Fn) satisfying
a condition made precise by Artin.

1.2 Representations of the braid groups

One of the most active aspects of braid theory is the study of linear represen-
tations. A major breakthrough has been the proof in 2000 by S. Bigelow [4]
and D. Krammer [15] of the long-standing conjecture that Artin’s braid groups
Bn are linear groups. That is, there exists a faithful representation of Bn in
a finite-dimensional linear group. The Lawrence–Krammer representation that
provides a linear representation of Bn has dimension n(n− 1)/2. After the re-
sult was established, considerable efforts have been made to better understand
the algebraic underlying socle on which the representations arise. The general
question is to identify the non-trivial finite-dimensional quotients of the group
algebra CBn, on the shape of the Iwahori–Hecke algebra investigated in the
past decades. The general philosophy is: the bigger the quotient algebra, the
better the results. Until recently, the biggest known algebra was the Birman–
Murakami–Wenzl algebra [7].

I. Marin discussed the image of representations of the braid groups and
certain generalizations in GL(N) and showed that their images are Zariski-
dense. This has important algebraic consequences, discussed in his abstract
listed below.

By way of representations which are not linear, F. Castel reviewed cer-
tain faithful representations of Bn in mapping class groups of surfaces. He
showed that in some sense, these constitute all the possible embeddings, uti-
lizing Nielsen-Thurston theory of surface automorphisms and rigidity of the
embeddings involved.

1.3 Applications to knot theory

The most obvious applications of braid theory are to the study of knots. About
two decades ago, work of V. Jones [14] established a new powerful knot in-
variant via representations of Bn. This work led to exciting and unsuspected
connections with operator theory, statistical mechanics and other aspects of
mathematical physics. It was also generalized to the so-called HOMFLYPT
polynomial, the Kauffman polynomial and a plethora of other knot invariants.

An outstanding open question is whether the Jones polynomial detects the
unknot. In other words, if the Jones polynomial VK(t) of a knot K is trivial,
does it imply that K is unknotted? The corresponding question for links of
two or more components was settled very recently by Eliahou, Kauffman and
Thistlethwaite [10], who displayed infinite families of links with the same Jones
polynomial as the unlink, but which are nontrivially linked.
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It is also well-known that there are many examples of distinct knots with the
same Jones (and HOMFLYPT) polynomial, using various techniques: Conway
mutation, a construction of Kanenobu (producing an infinite family with com-
mon Jones polynomial), etc. H. Morton showed that, in the presence of extra
symmetry, mutant knots have satellites which (unlike knots in general) also can-
not be distinguished by their HOMFLYPT polynomials. Representation theory
provided the tool for Morton’s proof.

J. Birman spoke of the fascinating connection between a certain family of
knots which arise in dynamical systems, called Lorenz knots, and number theory.
These knots were originally studied as closed trajectories of a 3-dimensional
dynamical system defined by the meteorologist E. Lorenz in 1963, contained in
a celebrated “strange attractor.” Work by Etienne Ghys, showing that they
arise in a certain “modular flow” has inspired renewed interest in this family of
knots. A wonderful exposition of this is in [13].

1.4 Knot homology theories

It was shown recently by Khovanov that the Jones polynomial can be consid-
ered as a sort of Euler characteristic of a homology theory related to a given
knot. Several of the talks focussed on Khovanov theory, including a presenta-
tion by L. Watson of knots which cannot be distinguished by their Khovanov
homology and a proof of a functoriality property by S. Morrison. Przytycki
described a relationship between Khovanov homology and the more classical
Hochschild homology theory. Another recent, and very fruitful, development in
low-dimensional topology is Heegaard-Floer homology. Originally defined us-
ing methods of complex analysis, a new combinatorial version of this homology
theory was presented by D. Thurston at the meeting.

1.5 Three-dimensional manifolds and TQFT’s

Topological quantum field theory was codified by Atiyah [3] and Witten [16] in
1988. Witten showed that the Jones polynomial, originally defined using repre-
sentations of the braid groups, could also be expressed as a certain configuration
space integral. One of the most important tools in the study of 3-manifolds is
the Casson invariant λ(M), defined by A. Casson for any integral homology
3-sphere M . The original definition by Casson in 1984 involved counting SU(2)
representations of the fundamental group of M . G. Kuperberg and D. Thurston
showed, in 1999, how to express λ(M) as a configuration space integral. Other
new invariants of manifolds have been devised using TQFT methods, and the
connection between TQFT and braid theory remains an active area of research.
Loop spaces of configuration spaces were shown at the meeting by T. Kohno to
be instrumental in developing new invariants of knots and links.

Finite-type invariants, following Vassiliev, have been extremely important
in the study of knots and 3-manifolds. C. Lescop presented surgery formulas
for finite-type invariants associated with rational homology 3-spheres, that is,
orientable 3-manifolds with trivial rational homology in dimension one.
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1.6 Braids, combinatorics and algorithms

A very active area which was well-represented at the conference concerns ideas
surrounding Garside’s 1969 solution to the word and conjugacy problems in
the braid groups [12]. An equivalent way of describing the framework is to in-
troduce the notion of a Garside groupoid (small catgeory where all arrows are
invertible). Technically, an extended Garside structure is specified by axioma-
tizing the intervals [a, a∆] of a Garside monoid, where ∆ is a Garside element.
The main interest of this extended framework is to make it possible to define
completely new Garside structures on braid groups — and, possibly, on more
general mapping class groups, but this remains a conjecture. The construction
starts with considering the braid group Bn as acting on a disk with n punctures,
as in Definition 5 above.

Now, the new ingredient is to add q marked points on the boundary circle. By
considering certain cell decompositions of such ”bi-punctured” disks (punctures
in the interior and on the boundary) up to isotopy, one obtains a lattice and,
under a convenient version of Dehn’s half-twist in which the boundary punctures
are shifted, one obtains an action of the braid group Bn on that lattice. In the
case q = 2 (only the North and the South poles of the disk are marked), the
action is simply transitive, and one obtains the standard Garside structure of
Bn. For q ≥ 3, the action is not transitive, and one obtains a completely
new structure. In particular, for q = 3 (3 punctures on the boundary disk),
the lattice can be described explicitly, and, surprisingly enough, the famous
MacLane pentagon shows up, and, more generally, the intervals [a, a∆] are
closely related with the Stasheff associahedra. This opens a new, fascinating
connection between Artin’s braid group and Richard Thompson’s groups, and
certainly much more is still to come.

The word and conjugacy problems in the braid groups have importance for
their role in public key cryptography. It is well known that the complexity of
the word problem in the braid group Bn is (|W |2n), where |W | is word length
and n is braid index, whereas all solutions to the conjugacy problem known
at this time are exponential. Codes have been designed which are based on
the assumption that the conjugacy problem is fundamentally exponential, so a
polynomial solution to the conjugacy problem would be of major importance. J.
Gonzalez-Meneses outlined an ambitious program, with J. Birman and V. Geb-
hardt, to develop a polynomial-time algorithm to solve the conjugacy problem
in braid groups, as well as the closely-related conjugacy search problem.

1.7 Generalizations of the braid groups

Because of the many definitions of the braid groups, there are various natural
ways to generalize them, some of which have far-reaching applications. Sev-
eral such generalizations were considered in the BIRS workshop, namely Artin
groups (an algebraic generalization), mapping class groups (also known as mod-
ular groups), configuration spaces and their algebraic properties.
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1.8 Artin groups and reflection groups

Deligne [8] and Brieskorn-Saito [6], introduced a family now referred to as Artin
groups, which generalizes the braid groups and is also closely related to the
so-called Coxeter groups which arise in the study of Lie groups and symmetries
of Euclidean space. For a fixed positive integer n, consider an n by n matrix
M = {mij}, where mij is a positive integer or ∞, with the assumption that
mij = mji ≥ 2 and mii = 1. The corresponding Artin group has a presentation
with generators x1, . . . , xn and, for each pair i, j there is a relation:

xixjxi · · · = xjxixj · · ·

where the product on each side has length mij (mij =∞ indicates no relation
is present). If one adjoins relations x2

i = 1, the result is the so-called Coxeter
group corresponding to the given matrix.

In this context, the n+ 1 by n+ 1 matrix with entries equal to 3 just above
and below the diagonal, and 2 in entries farther from the diagonal, corresponds
exactly to the braid group Bn; in this case the Coxeter group is the symmetric
group Σn. The Artin groups for which the corresponding Coxeter group is
finite are an important subclass, referred to as “spherical.” As with the braid
groups, Artin groups of spherical type correspond to fundamental groups of
configuration spaces associated to hyperplane arrangements.

The finite Coxeter groups can be considered as groups of reflections of Rn,
acting on configuration spaces, as described in Definition 3 for the case of the
braid groups. Periodic elements in the sphrical Artin groups were described
at the meeting by D. Bessis. B. Wiest outlined algorithmic solutions of the
conjugacy problem in an important class of Artin groups, called right-angled as
their corresponding reflection groups involve right angles.

1.9 Mapping class groups

The mapping class group Mod(S) of an orientable surface S is well-known to be
generated by Dehn twists about simple closed curves in S. An important sub-
group of this is the Torelli subgroup, consisting of (classes of) homeomorphisms
which induce the identity on the homology of S. In particular, the subgroup K
of Mod(S) generated by twists along separating curves of S, called the Johnson
kernel, lies in the Torelli subgroup. An important advance in our understanding
of this family of groups was described by D. Margalit, who gave an explicit
calculation of the cohomological dimension of the Torelli group. Another aspect
which promises to be quite fruitful was discussed by D. Kraamer, who showed
that the Torelli groups can be analyzed using a structure similar to that used
by Garside to solve the conjugacy problem in braid groups.

J. Marché’s talk dealt with so-called quantum representations of Mod(S),
showing that asymptotically they are faithful, converging in a certain sense to
the space of regular functions on a certain character variety.
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1.10 Surface braid groups, string links and orderings

If S is a Riemann surface, one can consider braids in the product of S with an
interval, just as classical braids are defined over the disk. This defines surface
braid groups Bn(S), codified by Fox and Neuwirth [11] in 1962. Many aspects
of these surface braid groups are still not well understood. It is known that
the only surfaces whose braid groups contain elements of finite order are the
sphere and projective plane. At the conference J. Guaschi and D. Goncalves
described their recent compilation of exactly which finite groups which can occur
as subgroups of the braid group of the sphere.

String links are another generalization of braid groups, in which the strands
are no longer required to be monotone in the “time” direction. Just as braids,
they may be multiplied by concatenation, but they no longer form a group, as
inverses do not always exist. N. Habegger and X.-S. Lin (in whose memory
the conference was dedecated) showed that under J. Milnor’s notion of link ho-
motopy, in which one allows strands to pass through themselves but not each
other, string links do form a group. They also derived an algorithm for com-
paring string links. The student K. Yurasovskaya discussed her recent work,
showing that the groups of homotopy string links can be endowed with a strict
total ordering which is invariant under left-multiplication. This was inspired
by the celebrated result of P. Dehornoy that the classical braid groups are left-
orderable. Another student, A. Clay, presented his work showing the seemingly
paradoxical result that, although the Dehornoy ordering is discrete (in the sense
of orderings), certain important subgroups – for example the commutator sub-
group of Bn are order-dense, under the same ordering. An important open
question is whether Bn(S) is left-orderable for surfaces of positive genus.

The above discussion is just a sample of the progress in braid theory discussed
at the BIRS conference. Further details may be found in the abstracts which
are given below.
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2 The talks

2.1 General organization

As mentioned above, we managed to organize, as much as possible, homogeneous
sessions. Roughly speaking, the themes were as follows:

- Monday morning: applications of braids to knot theory (3 talks),
- Monday afternoon: algebraic properties of braids (4 talks),
- Tuesday morning: connections with Heegard and Floer homology (4 talks),
- Tuesday afternoon: geometric aspects of braids (5 talks),
- Wednesday morning: Garside’s theory of braids (4 talks),
- Thursday morning: braids and mapping class groups (4 talks),
- Thursday afternoon: more on Garside’s theory (4 talks),
- Friday morning: geometric and ordered aspects of braids (4 talks).
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2.2 Schedule

Here is the complete schedule and the abstracts of the talks.

Monday

9:15–9:45 Recollection of X.Lin and his work, by Joan Birman
10:00–10:25 H.Morton, Mutants with symmetry
11:00–11:45 H.Murakami, On a generalization of the volume conjecture
12:00–12:25 G.Zhang, Concordance crosscap number of a knot

14:45–15:30 P.Dehornoy, Alternating normal forms of braids
16:00–16:25 A.Clay, Normal subgroups of the braid groups and the Dehornoy ordering
16:45–17:30 J.Guaschi & D.Goncalves, Finite subgroups of the sphere braid groups
17:45–18:10 S.Humphries, Subgroups of braid groups generated by powers of Dehn twists

Tuesday

9:00–9:45 J.Przytycki, Two–braid intersection of Hochschild and Khovanov homologies
10:00–10:25 L.Watson, Knots with identical Khovanov homology
10:50–11:35 D.Thurston, Combinatorial Heegard–Floer homology for knots via grid diagrams
11:45–12:30 S.Morrison, Functoriality for Khovanov homology in S3

14:45–15:30 C.Lescop, Surgery formulae for finite type invariants of rational homology 3–spheres
16:00–16:25 W.Menasco, A calculus for Legendrian and transversal knots
16:35–17:00 R.Fenn, Welded braids, links, their configuration spaces and other properties
17:10–17:35 H.Matsuda, A calculus on links via closed braids
17:45–18:10 J.Birman, Lorenz knots, templates and closed braids

Wednesday

9:00–9:45 D.Krammer, A Garside type structure on the Torelli group
10:00–10:25 D.Margalit, Dimension of the Torelli group
10:50–11:35 D.Bessis, Periodic elements in spherical type Artin groups
11:45–12:30 J.Gonzalez–Meneses, A project to find a polynomial solution to the conjugacy problem

in braid groups

Thursday

9:00–9:45 J.Marché, On asymptotics of quantum representations of mapping class groups via skein theory
10:00–10:25 K.Kawamuro, Braid index and algebraic crossing number
11:00–11:45 F.Castel, Rigidity of the representations of the braid group in the mapping class group
12:00–12:25 S.Kamada, On braid presentation of knotted surfaces and the enveloping monoidal quandle
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.

14:45–15:30 S.Lee, Translation numbers in Garside groups
16:00–16:25 E.Lee, Super summit property of abelian subgroups of Garside groups
16:45–17:30 I.Marin, Generalized braid groups as Zariski–dense subgroups of GLN

17:40–18:05 B.Wiest, The conjugacy problem in right–angled Artin groups and their subgroups

20:00–21:30 Problem session

Friday

9:00–9:25 E.Kin, The ratio of the topological entropy to the volume for pseudo–Anosov braids
9:40–10:05 T.Kohno, Loop spaces of configuration spaces and link invariants
10:30–10:55 E.Yurasovskaya, String links and orderability
11:00–11:25 D.Rolfsen, Ordered groups and pseudo-Anosov maps

2.3 Abstracts

Here are (in alphabetic order by speaker surname) the abstracts of these talks.

Speaker: David Bessis (Ecole Normale Supérieure, Paris, France)
Title: Periodic elements in spherical type Artin groups
Abstract: In the braid group on n strings, the classification of periodic elements
(elements with a central power) follows from a classical theorem of Kerekjarto.
We generalize this to the other spherical type Artin groups and obtain a com-
plete description of periodic elements, their conjugacy classes and their central-
izers. A key ingredient is a categorical reformulation of a theorem by Bestvina.

Speaker: Joan Birman (Columbia University, New York, USA)
Title: Lorenz knots, templates and closed braids
Abstract: Lorenz knots were first defined in a 1983 paper that Bob Williams
and I wrote. They arise as the periodic orbits in the flow associated to solutions
to a particular ODE in 3-space which has since become a paradigm for chaos.
They are of renewed interest right now because of work by Etienne Ghys, who
proved that the identical family of knots (and their defining ‘template’) are as
the closed orbits in the classical modular flow on the complement of the trefoil
knot.

Speaker: Fabrice Castel (Université de Dijon, France)
Title: Rigidity of the representations of the braid group in the mapping class
group
Abstract: In 1995, Perron and Vannier proved that the morphism from the
braid group into the mapping class group of an orientable surface, that sends
the generators of the braid group on Dehn twists, is injective. We show that
under some restrictions on the genus, the embeddings between these two groups
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arise all from the embedding defined by Perron and Vannier. Using the rigidity
of such embeddings, one can for instance compute the group of automorphisms
of the braid group as well as the group of automorphisms of the mapping class
group. The proof of the theorem is based on Nielsen-Thurston theory and of
a simultaneous action of the mapping class group on itself, on the complex of
curves and on the complex of subsurfaces.

Speaker: Adam Clay (University of British Columbia, Vancouver, Canada)
Title: Normal subgroups of the braid groups and the Dehornoy ordering
Abstract: The braid groups admit a left-ordering, discovered by Dehornoy,
which is discrete as an ordering. I will show that normal subgroups interact
with the Dehornoy ordering in such a way that ”nearly all” normal subgroups
of the braid groups are densely ordered with respect to this ordering. In par-
ticular, some popular normal subgroups–such as the commutator subgroup and
kernels of the Burau representations–can be easily analyzed. This is joint work
with Dale Rolfsen.

Speaker: Alissa Crans (Loyola Marymount University, Los Angeles, USA)—
talk cancelled due to illness
Title: Analogues of self-distributivity
Abstract: This is joint work with Scott Carter, Mohamed Elhamdadi, and
Masahico Saito. Self-distributive binary operations have appeared extensively in
knot theory in recent years, specifically in algebraic structures called ‘quandles.’
A quandle is a set equipped with two binary operations satisfying axioms that
capture the essential properties of the operations of conjugation in a group. The
self-distributive axioms of a quandle correspond to the third Reidemeister move
in knot theory. Thus, quandles give a solution to the Yang-Baxter equation,
which is an algebraic distillation of the third Reidemeister move. We formulate
analogues of self-distributivity in the categories of coalgebras and Hopf algebras
and use these to construct additional solutions to the Yang-Baxter equation.

Speaker: Patrick Dehornoy (Université de Caen, France)
Title: Alternating normal forms of braids
Abstract: We describe new types of normal forms for braid monoids, Artin-
Tits monoids, and, more generally, all monoids in which divisibility has some
convenient lattice properties (“locally Garside monoids”). We show that, in the
case of braids, one of these normal forms turns out to coincide with the normal
form introduced by Burckel and deduce that the latter can be computed easily.
This approach leads to a new, simple description for the canonical well-order of
B+

n in terms of that of B+
n−1 which, in turn, leads to unprovability statements

for certain games involving braids.

Speaker: Roger Fenn (University of Sussex, Brighton, GB)
Title: Welded braids, links, their configuration spaces and other properties
Abstract: Configuration spaces of the classical braids are well known. A config-
uration space for welded braids is given with a suggestion for possible invariants.
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Speaker: Daciberg Lima Goncalves (Universidade de Sao Paulo, Brazil) &
John Guaschi (Université de Toulouse, France)
Title: Finite subgroups of the sphere braid groups
Abstract: It is well known that the sphere braid groups Bn(S2) have torsion
elements. Such elements were characterised by Murasugi. In this talk, we clas-
sify the finite subgroups of Bn(S2). Our work is partly motivated by the study
of the generalisation of the Fadell-Neuwirth short exact sequence for pure braid
groups to the ‘mixed’ subgroups of the full braid groups. By giving explicit con-
structions, we prove that for all n ≥ 3, Bn(S2) contains subgroups isomorphic to
the dicyclic groups of order 4n and 4(n−2). It follows that Bn(S2) contains two
non-conjugate copies of the quaternion group of order 8 for all n ≥ 4 even, one
of which lies in the commutator subgroup of Bn(S2), the other not. Finally we
classify the finite subgroups of Bn(S2): the maximal finite subgroups of Bn(S2)
are either cyclic, dicyclic or binary polyhedral groups (their realisation depend-
ing on n). Two corollaries of this classification are: a) the binary tetrahedral
group is a subgroup of Bn(S2) for all n ≥ 4 even; b) if n is odd then the finite
subgroups of Bn(S2) are cyclic or dicyclic.

Speaker: Juan Gonzalez-Meneses (University of Seville, Spain)
Title: A project to find a polynomial solution to the conjugacy problem in braid
groups
Abstract: This is a joint work with Joan S. Birman and Volker Gebhardt.
We present a project to find a polynomial solution to the conjugacy decision
problem and the conjugacy search problem in braid groups, whose outline is the
following. First we need to determine the geometric type of the braids involved,
that is, to classify a given braid as periodic, reducible or pseudo-Anosov. In the
periodic case, we give a polynomial solution by using some Garside structures
of the braid groups and of Artin-Tits groups of type B. In the reducible case,
one needs to find the reducing curves, and also to solve the question of finding
the generators of the centralizer of a braid. In the pseudo-Anosov case, we show
how one can simplify the situation by taking powers of the original braids, and
reducing the problem to the conjugacy search problem for ”rigid” braids. We
will present our achievements, together with the open problems that remain.

Speaker: Stephen Humphries (Brigham Young University, Utah, USA)
Title: Subgroups of braid groups generated by powers of Dehn twists
Abstract: Let F =< x1, . . . , xn > be the free group on n generators and let
Pn =< A12, . . . , An−1,n > be the pure braid group with its standard (Dehn
twist) generators. We identify Fn with the subgroup < A1,n+1, . . . , An,n+1 >
of Pn+1. We are interested in the related questions: (1) when is a subgroup of
Fn which is generated by a set of powers of conjugates of x1, . . . , xn, of finite
index in Fn; and (2) when is a subgroup of Pn which is generated by a set of
powers of conjugates of A12, . . . , An−1,n, of finite index in Pn? For example,
we give necessary and sufficient conditions for a subgroup of Pn of the form
< Ae12

12 , . . . , A
en−1,n

n−1,n > to have finite index in Pn. The answer to question (1)
involves Schur’s theory of S-rings.
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Speaker: Seiichi Kamada (Hiroshima University, Japan)
Title: On braid presentation of knotted surfaces and the enveloping monoidal
quandle
Abstract: We introduce a method to describe a knotted surface in 4-space by
a sequence of braids, Alexander’s and Markov’s theorem in dimension 4. It is
natural to regard such a sequence as an element of the enveloping monoidal
quandle in the sense of Kamada and Matsumoto.

Speaker: Keiko Kawamuro (Rice University, Houston, USA)
Title: Braid index and algebraic crossing number
Abstract: I will discuss a conjecture that the maximal Bennequin number of a
knot is realized at its minimal braid representatives.

Speaker: Eiko Kin (Tokyo Institute of Technology, Japan)
Title: The ratio of the topological entropy to the volume for pseudo–Anosov
braids
Abstract: We consider two invariants of pseudo-Anosov mapping classes. One
is the dilatation of pseudo–Anosov homeomorphisms and the other comes from
the volume of mapping tori. Both invariants measure a kind of complexity of
pseudo–Anosov mapping classes. The mapping class group on the n–punctured
disk is identified with the n–braid group up to full twist braids, and it makes to
sense to speak of the dilatation and the volume for pseudo–Anosov braids. We
are interested in a relation of these two invariants, the dilatation and the volume.
In this talk we focus on the ratio of the logarithm of the dilatation namely the
(topological) entropy to the volume. We show that there is a constant c > 0 such
that the ratio of the entropy to the volume for the pseudo–Anosov 3–braids is
greater than c. We also extend this result for a family of pseudo–Anosov braids
with many strands. This is a joint work with Mitsuhiko Takasawa (Tokyo
Institute of Technoloty).

Speaker: Toshitake Kohno (University of Tokyo, Japan)
Title: Loop spaces of configuration spaces and link invariants
Abstract: It is know by F. Cohen and S. Gitler that the homology of the loop
spaces of configuration spaces of ordered points in the Euclidean space is a
graded algebra defined by infinitesimal pure braid relations. Based on this
result we give a description of a link homotopy invariant as an integral of de
Rham cohomology class of the loop space of a configuration space.

Speaker: Daan Krammer (University of Warwick, GB)
Title: A Garside type structure on the Torelli group
Abstract: In 1969, Garside solved the word and conjugacy problems for braid
groups. We now say that he proved braid groups to be Garside groups. In 1998
another Garside structure on the braid group was discovered by Birman-Ko-Lee
(BKL).

A well-known class of groups generalising braid groups are the surface map-
ping class groups. The Torelli group of a surface is the subgroup of the mapping
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class group of those elements which act trivially on the first homology H1(S,Z)
of the surface.

I will present a Garside type structure on the Torelli group. It depends on
the choice of a lexicographic total ordering on H1(S,Z). It is a close relative of
the BKL Garside structure on the braid group.

It is not precisely a Garside structure for a number of reasons:
(1) Rather than as a group, it should be regarded as a groupoid whose object

set looks a lot like a topological space;
(2) The distinguished path between two points in general has an infinite

number of intermediate stops in a mild way.
Still, the most important properties of Garside groups, such as the grid

property, still hold.

Speaker: Eon-Kyung Lee (Sejong University, Seoul, Korea)
Title: Super summit property of abelian subgroups of Garside groups
Abstract: Garside groups provide a lattice-theoretic generalization of braid
groups and finite type Artin groups. In the talk, we show that for every abelian
subgroup H of a Garside group, some conjugate x−1Hx consists of super sum-
mit elements. Using this property, we show that the centralizer of H is a finite
index subgroup of the normalizer of H. Combining with the results on trans-
lation numbers in Garside groups, we obtain an easy proof of the algebraic flat
torus theorem for Garside groups.

Speaker: Sangjin Lee (Konkuk University, Korea)
Title: Garside groups and translation numbers
Abstract: The translation number of an element in a combinatorial group is de-
fined as the asymptotic word length of the element. The discreteness properties
of translation numbers have been studied for geometric groups such as biauto-
matic groups and hyperbolic groups. The Garside group is a lattice-theoretic
generalization of braid groups and Artin groups of finite type. In this talk, we
discuss recent results on the discreteness properties of translation numbers in
Garside groups, and their applications to the conjugacy problem.

Speaker: Christine Lescop (Université of Grenoble, France)
Title: Surgery formulae for finite type invariants of rational homology 3-spheres
Abstract: I wish to present four graphic surgery formulae for the degree n
part Zn of the Kontsevich-Kuperberg-Thurston universal finite type invariant of
rational homology spheres. Each of these four formulae determines an alternate
sum of the form

∑
I⊂N (−1)]IZn(MI) where N is a set of disjoint operations to

be performed on a rational homology sphere M , and MI denotes the manifold
resulting from the operations in I. The first formula treats the case when N
is a set of 2n Lagrangian-preserving surgeries (a Lagrangian-preserving surgery
replaces a rational homology handlebody by another such without changing
the linking numbers of curves in its exterior). In the second formula, N is
a set of n rational surgeries on the components of a boundary link. The third
formula deals with the case of 3n surgeries on the components of an algebraically
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split link. The fourth formula is for 2n surgeries on the components of an
algebraically split link in which all Milnor triple linking numbers vanish. In
the case of homology spheres, these formulae can be seen as a refinement of the
Garoufalidis-Goussarov-Polyak comparison of different filtrations of the rational
vector space freely generated by oriented homology spheres (up to orientation-
preserving homeomorphisms).

Speaker: Julien Marché (Université Paris 7, France)
Title: On asymptotics of quantum representations of mapping class groups via
skein theory
Abstract: We explain a simple proof of the asymptotic faithfulness of quantum
representations of the mapping class group of a surface S. The idea is to show
that in some sense, the quantum representations converge to the representation
H(S), where H(S) is the space of regular functions on the character variety of
S in SL(2, C).

Speaker: Dan Margalit (University of Utah, USA)
Title: Dimension of the Torelli group
Abstract: In joint work with Mladen Bestvina and Kai-Uwe Bux, we prove that
the cohomological dimension of the Torelli group for a closed surface of genus g
at least 2 is equal to 3g − 5.

Speaker: Ivan Marin (Université Paris 7, France)
Title: Generalized braid groups as Zariski-dense subgroups of GLN

Abstract: Embeddings of every (irreducible) spherical-type Artin group in some
GLN have been described in recent years. We show that these embedings have
Zariski-dense image, and use this to prove group-theoretical results on Artin
groups. In particular we show that these groups are residually torsion-free
nilpotent, and compute their Frattini and Fitting subgroups. We also gener-
alize a classical result of D. Long which says that normal subgroups of braid
groups which are not included in the center intersect non-trivially. The density
result is based on a simple interpretation of these embeddings as monodromy
representations, that we shall describe if time permits.

Speaker: Hiroshi Matsuda (Columbia University, New York, USA)
Title: A calculus on links via closed braids
Abstract: We improve ”Markov Theorem Without Stabilization” of Birman and
Menasco.

Speaker: William Menasco (University at Buffalo, USA)
Title: A calculus for Legendrian and transversal knots
Abstract: Using an extended example of the Etnyre-Honda (2,3) cabling of the
(2,3) torus knot we discuss a calculus of isotopies associated with Legendrian
and transversal knots in the standard contact structure of S3 (Joint work with
Douglas Lafountain, University at Buffalo).
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Speaker: Scott Morrison (University of California, Berkeley, USA)
Title: Functoriality for Khovanov homology in S3

Abstract: (Joint work with Kevin Walker.) I’ll tell you what I mean by the
Khovanov homology of a knot in S3 (as opposed to the usual B3). We can show
that Khovanov homology is still functorial in this case, but it takes a bit more
work beyond checking the 15 movie moves needed for functoriality in B3.

Speaker: Hugh Morton (University of Liverpool, GB)
Title: Mutants with symmetry
Abstract: Mutants with certain extra symmetry, for example the pretzel knots
K(a1, ..., ak) with k and all ai odd, can be shown to share many more of their
Homfly satellite invariants than is the case for a general mutant. The proofs
make use of representation theory of quantum sl(N) modules.

Speaker: Hitoshi Murakami (Tokyo Institute of Technology, Japan)
Title: On a generalization of the volume conjecture
Abstract: The volume conjecture says that the large N limit of the N-colored
Jones polynomial of a knot evaluated at the N -th root of unity would determine
the volume of the knot complement. In this talk we will consider what happens
if we change the evaluation.

Speaker: Jozef Przytycki (George Washington University, Washington DC,
USA)
Title: Two-braid intersection of Hochschild and Khovanov homologies
Abstract: We show that Khovanov homology and Hochschild homology theo-
ries share common structure. In fact they overlap: Khovanov homology of a
(2, n)-torus link can be interpreted as a Hochschild homology of the algebra un-
derlining the Khovanov homology. In the classical case of Khovanov homology
we prove the concrete connection. In the general case of Khovanov-Rozansky,
sl(n), homology and their deformations we conjecture the connection. The best
framework to explore our ideas is to use a comultiplication-free version of Kho-
vanov homology for graphs developed by L. Helme-Guizon and Y. Rong and
extended here to M -reduced case, and in the case of a polygon to noncom-
mutative algebras. In this framework we prove that for any unital algebra A
the Hochschild homology of A is isomorphic to graph cohomology over A of a
polygon.

Speaker: Dale Rolfsen (University of British Columbia, Vancouver, Canada)
Title: Ordered groups and pseudo-Anosov maps
Abstract: This is a report on work in progress regarding finding orderings of
groups invariant under a given automorphism. One goal is to show that for a
pseudo-Anosov homeomorphism of a surface, there is an ordering of the surface
group invariant under the action of the induced mapping. This would imply
the bi-orderability of fundamental groups of hyperbolic 3-manifolds which fibre
over the circle.
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Speaker: Dylan Thurston (Barnard College, Columbia University, New York,
USA)
Title: Combinatorial Heegaard-Floer homology for knots via grid diagrams
Abstract: We give a combinatorial definition of Heegaard-Floer homology. In
particular, this yields a very simple algorithm for computing the knot genus.
Our method is based on grid diagrams, a representation for knots that, with
restrictions on the allowed moves, also yields transverse or Legendrian knots or
closed braids up to isotopy.

Speaker: Liam Watson (Université du Québec Montréal, Canada)
Title: Knots with identical Khovanov homology
Abstract: While it is well know that mutation is not detected by the Jones
polynomial, it is presently unknown if mutation of knots preserves Khovanov
homology. In this talk we will present a technique for producing pairs of distinct
knots that cannot be distinguished by Khovanov homology. As an application,
this construction may be applied to produce families of examples of mutant
pairs that have identical Khovanov homology.

Speaker: Bert Wiest (Université de Rennes, France)
Title: The conjugacy problem in right-angled Artin groups and their subgroups
Abstract: We prove that the conjugacy problem in right-angled Artin groups
and a large class of their subgroups can be solved in linear time. This concerns
in particular all graph braid groups. Some of this talk is joint work with J.Crisp,
some with J.Crisp and E.Godelle.

Speaker: Ekaterina Yurasovskaya (University of British Columbia, Vancou-
ver, Canada)
Title: String links and orderability
Abstract: The group of homotopy classes of string links H(k) has first been
described by Nathan Habegger and Xiao-Song Lin in 1990 and provided the
main tool to classify links up to link-homotopy. Since then H(k) became an ob-
ject of interest in itself. I shall discuss H(k) as an example of orderable groups
appearing in topology.

Speaker: Gengyu Zhang (Tokyo Institute of Technology, Japan)
Title: Concordance crosscap number of a knot
Abstract: We define the concordance crosscap number of a knot as the min-
imum crosscap number among all the knots concordant to the knot. The
four-dimensional crosscap number is the minimum first Betti number of non-
orientable surfaces smoothly embedded in 4-dimensional ball, bounding the
knot. Clearly the 4-dimensional crosscap number is smaller than or equal to
the concordance crosscap number. We construct two infinite sequences of knots
for which the 4-dimensional one is strictly smaller than the concordance one. In
particular, the knot 74 is one of the examples.
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3 The problem session

The problem session on Thursday night was a great moment. We think that the
following list, which grew out of the discussion and was subsequently elaborated,
contains very interesting and deep problems.

Question 1 (Famous open question). Is it true that if two elements of PBn do
not commute, then they generate a free group?

Question 2 (Joan S. Birman). What are the (interesting) finite quotients of
Bn? Find a constructive proof of the known fact that the braid groups Bn are
residually finite. That is, a proof that produces (interesting) finite quotients of
Bn.

Question 3 (Józef H. Przytycki). What if we adjoin the relation σp
i = 1 and

∆4 = 1 to Bn? (For which n, p is the quotient finite?)

Question 4 (Dan Margalit). Let Bk
n be the subgroup of Bn fixing the first k

punctures. Note that B0
n = Bn, B1

n = A(Bn), Bn−1
n = Bn

n = PBn. What is
Aut(Bk

n)? (The answer is known in the aforementioned cases [Dyer-Grossman,
Ivanov, Charney-Crisp, Bell-Margalit]. Bell-Margalit proved that Aut(Bk

n) sur-
jects onto Aut(Bk

n/Z(Bk
n)), i.e. the automorphism group can exchange any of

the fixed punctures with the boundary of the disk.

Question 5 (Dan Margalit). Define the kth term of term of the Johnson filtra-
tion to be the kernel of the map Bn → Aut(Fn/F

k
n ), where F k

n is the kth term
of the lower central series of Fn. What is this filtration? Note that the first
two terms are Bn and PBn. (Proposed generating set: push punctures about
elements of F k

n .)

Question 6 (Ivan Marin). What is the topological closure of the Lawrence-
Krammer representation of Bn, depending on the two complex parameters?

Question 7 (Joan S. Birman). An open problem is whether there is a solution
to the conjugacy search problem in the braid groups which is polynomial both in
the braid index and word length of a braid. If one wishes to use the Nielsen-
Thurston classification, then a subquestion concerns its complexity. We suggest
as a starting point to compute the complexity of the existing algorithms to decide
the Nielsen-Thurston type of a braid. If it turns out that none of the existing
algorithms have the desired polynomial properties, we suggest that this problem
be studied.

Question 8 (Patrick Dehornoy). Let Mn be the incidence matrix for the stan-
dard greedy normal form of braids, i.e., the matrix with rows and columns
indexed by permutation braids such that the (x, y)-entry is 1 if (x, y) is left
weighted, and 0 otherwise. Is the spectrum of Mn included in the spectrum of
Mn+1? (true for n ≤ 13; ref: J. Combinatorial Th. Series A; 114 (2007)
389-409.)
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Question 9 (Juan González-Meneses). What is a pseudo-Anosov element in
an Artin-Tits group? (There are natural definitions of reducible and periodic
elements in these groups, but pseudo-Anosov ones are just defined as “none of
the above”. Some Artin-Tits groups embed into the braid group, so this can give
a partial answer. The others embed in E8. So the question could be: What is a
pseudo-Anosov element in E8? But a general answer would be much better.)

Question 10 (Stephen Humphries). Does the Artin-Tits group E8 embed in
Aut(Fn) for some n? (A positive answer would solve the previous question,
since an element of E8 would be pseudo-Anosov just as maps to an infinite
order, irreducible automorphism of Fn)

Question 11 (Dale Rolfsen). Are spherical type Artin-Tits groups left-orderable?
(true provided it is true for E8)

Question 12 (Ivan Marin). Do the exceptional type pure spherical Artin-Tits
groups admit non-abelian free normal subgroups?

Question 13 (Ivan Marin). Can they be decomposed as an iterated semi-direct
product of free groups?

Question 14 (Fabrice Castel). What is the kernel of the standard embeddings
of Artin-Tits groups E6, E7 and E8 in a mapping class group? What are the
outer automorphisms of these groups?

Question 15 (Dan Margalit). Let Bk
n be the subgroup of Bn fixing the first k

punctures. Note that B0
n = Bn, B1

n = A(Bn), Bn−1
n = Bn

n = PBn. What is
Aut(Bk

n)? (The answer is known in the aforementioned cases [Dyer-Grossman,
Ivanov, Charney-Crisp, Bell-Margalit]. Bell-Margalit proved that Aut(Bk

n) sur-
jects onto Aut(Bk

n/Z(Bk
n)).

Question 16 (Seiichi Kamada). Is there an algorithm to decide if two given
n-tuples of elements of a group G are in the same orbit under the Hurwitz action
of Bn on Gn? (specially for G = Bn and G = MCG(Σ))

Question 17 (Daciberg Lima Goncalves). For which integers m < n is Bm(S2)
a subgroup of Bn(S2)? For m = 3 it is known to be true if and only if n ≡ 0, 2
(mod 3).

Question 18 (Daan Krammer). Luis Paris proved that Artin monoids embed
into groups, but his proof is rather indirect. Distill a combinatorial proof from
his methods.

Question 19 (Daan Krammer). Is every Garside group linear? (Guess: no).
Find combinatorial necessary conditions for a Garside group to be linear (more
precisely, for it to have a faithful representation over a totally ordered field which
realises the Garside structure).

Question 20 (Daan Krammer). One of the equivalent definitions of Garside
groups (namely, the grid property) is a combinatorial analog of convex sets in
real vector spaces, or equivalently, in real hyperbolic space. Weaken Garside
groups by modelling them on convex sets in complex hyperbolic space.
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Question 21 (Ivan Marin). Is the Frattini subgroup of a Garside group always
trivial/central?

Question 22 (Dale Rolfsen). Assume Σ is a surface of positive genus. Is Bn(Σ)
left orderable? [Pn(Σ) is bi-orderable]

Question 23 (Joan Birman). Can one find a bound on the volume of the com-
plement of a Lorentz knot?

Question 24 (Hugh Morton). Let us regard a Lorentz knot as a framed knot
(by the template); describe a Lorentz pattern as a framed pattern in the standard
annulus by including the Lorentz pattern in the annulus. If a Lorentz knot is
a satellite, is it constructed as a satellite of a Lorentz knot using a Lorentz
pattern? (the satellite of any Lorentz knot using a Lorentz pattern is always a
Lorentz knot).

Question 25 (Roger Fenn). Are there interesting polynomials that are invari-
ants of welded links (other than the Alexander...)?

Question 26 (Dale Rolfsen). Is there a practical algorithm to decide for a braid
β whether β̂ is fibred?

Question 27 (Michel Boileau). What are the positive braid presentations of a
torus knot? (think of the Lorentz presentations)

Question 28 (Michel Boileau). Let Σ be a closed surface, ϕ a pseudo-Anosov
homeomorphism of Σ. Then Σ o S1 has a representation in PSL(2,C) which
induces a representation ρ of π1(Σ) in PSL(2,C). Consider H1(Σ) with coef-
ficients twisted by ρ∗. Look at the action of ϕ on H1(Σ). It is described by a
matrix M(ϕ) which is nontrivial. What does M(ϕ) say about the dynamics of
ϕ?

Question 29 (Patrick Dehornoy). Can one (fruitfully) use self-distributive sys-
tems that are not racks in knot theory? (In other words: algebraic systems that
encode invariance under Reidemeister move III, but not necessarily move II;
comment: highly non-trivial examples of such systems are known.)
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