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1 Introduction

This Focussed Research Group (FRG) was organized with two goals. The first goal was to facilitate the inter-
pretation of results from the state-of-the-art diffusion-weighted magnetic resonance imaging (DWI) technique
by using a multi-scale mathematical modeling approach to study the transport of ions and water in biological
tissue. The second goal was to utilize more realistic models of water transport in tissues, such as the brain-
cell micro-environment, to develop methodologies to refine imaging techniques such as DWI. At the FRG,
we took initial steps to achieve these goals by focussing on simple models of apparent diffusion coefficient
(ADC) and on cell swelling associated with the clinically important problem called cortical spreading de-
pression (CSD). Cell swelling serves as a case study to explore the issues related to co-transport of ions and
water as well as those associated with DWI.

The FRG included applied mathematicians involved in modelling, mathematical analysis, and scientific
computing of fundamental problems in fluid dynamics and neuroscience (Huang, Lewis, Miura, Wylie) and
biomedical and mechanical engineers and a biomechanician involved in applications to mammalian biological
tissue (Sotak, Takagi, Yao).

2 Overview of the Field

Diffusion-Weighted Magnetic Resonance Imaging (DWI) is a powerful tool for the non-invasive measurement
of the apparent diffusion coefficient (ADC) of tissue water. The ADC is directly related to the Brownian mo-
tion of an ensemble of water molecules and reflects the specific characteristics of the tissue micro-architecture
that impose restricting barriers to water diffusion. In addition to normal anatomy, DWI is often used to visu-
alize disease states that affect the tissue micro-architecture in ways that change the net displacement of water
molecules (and hence the ADC value).

For example, immediately following the onset of acute ischemic stroke, the rapid failure of high-energy
metabolism and associated ionic pumps leads to the migration of sodium and calcium into the cell. The
subsequent influx of osmotically-obligated water results in cellular swelling (cytotoxic edema) and a decrease
in the extracellular volume fraction. The ADC of brain water declines over the first 1-2 h following stroke
onset [6] and allows visualization of the ischemic territory as a hyperintense region on the DW image. In
addition to acute ischemic stroke, transient ischemic attack (TIA), ischemic depolarizations (IDs), cortical
spreading depression (CSD), status epilepitcus, and hypoglycemia also exhibit cellular swelling (cytotoxic



edema) that reduces the net displacement, and hence the ADC of the tissue water molecules as measured by
DWI [11]. Water ADC values are also affected by the presence and orientation of barriers to translational
water movements (such as cell membranes and myelin fibers) and thus MRI measures of anisotropic diffusion
are sensitive to more chronic pathological states where the integrity of these structures are compromised by
disease.

The biophysical mechanisms responsible for these ADC changes are still not well understood. However,
the water ADCs are temporally well correlated with the relative changes in intra- and extracellular volume
fraction and increased extracellular tortuosity, e.g., as measured independently by electrical conductivity and
real-time iontophoretic methods [7]. Furthermore, the transient water ADC changes measured during CSD
and IDs suggest that MRI diffusion measurements are also sensitive to chemical communication (e.g., via
KT or glutamate) between cells through the extracellular space (i.e., extrasynaptic or volume transmission,
VT).

3 Recent Developments and Open Problems

The exact connection between cellular swelling and decrease in overall water ADC has not been quantified.
Various mechanisms have been proposed to explain changes in tissue water ADC [1, 4], and some analytical
models have previously been presented to study restricted water self-diffusion [12, 13]. However, earlier
attempts to relate MR signals in DWI with morphologic changes have been either qualitative or based on
simple non-realistic geometries, such as cylinders and spheres. For better understanding of the factors that
affect water diffusion in biological tissues with more complex morphologies, numerical models have been
proposed, such as Monte Carlo (MC) [13] and image-based finite difference (FD) methods [3, 15].

In spite of the theoretical models that have been proposed to date, the fundamental biophysical mechanism
responsible for the water ADC changes observed during cerebral ischemia, cortical spreading depression, is-
chemic depolarizations, status epilepticus, and hypoglycemia remains uncertain. However, it is clear that all
of these conditions share the common features of acute cell membrane depolarization and subsequent cell
volume changes (cytotoxic edema). A more quantitative understanding of how the underlying tissue pathol-
ogy manifests in the measured water ADC would be important for clarifying the role of these measurements
in characterizing the severity of disease as well as the potential outcome in response to treatment. In this
regard, improved theoretical modeling of water diffusion in tissue may play an important role in improving
the diagnosis and treatment of these diseases using DWI.

3.1 Some open questions
Model Cell Swelling

1. What is the sensitivity of water ADC changes on parameters such as: intracellular diffusion coeffi-
cient (D;,), extracellular diffusion coefficient (D.,:), cell-membrane permeability, volume fraction,
geometry (cell size)? How does the underlying tissue geometry affect the sensitivity analysis of the
parameters?

2. Can cell volume changes alone account for all of the percentage-reduction in water ADC observed
during CSD or stroke? Can such an analysis be done without making any particular assumptions about
the underlying tissue geometry?

3. Given the changes in membrane permeability to ions that accompany CSD, could it be inferred what
changes occur in the effective membrane permeability to water that accompanies the osmotic water
shifts?

4. From the Goldman-Hodgkin-Katz equation used to model cell membrane potential in CSD, is it pos-
sible to get the correct changes in relative volume fraction (due to osmotic swelling) from just the
shifts in ions alone (knowing all of the intra- and extracellular ion concentrations both before and after
depolarization as well as the channel permeabilities both before and after depolarization)?



5. Based on the volume of the region where reduced ADC is observed by DWI during CSD, it is possible
to incorporate this information into a model such that the length scale of the cellular depolarization
could be determined? From this length scale, could a ”*‘syncytium size” be estimated which would
correspond to the size of the cell population that is depolarized at any one time during CSD. This would
require that both the temporal and spatial aspects of the CSD depolarization be incorporated into the
model.
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q-Space Analysis

1. Apply the Tanner model to the g-space problem.

2. How should g be chosen, e.g., to estimate higher-order moments?

3. What is the sensitivity of the second-order moment to D;,¢, D¢, permeability, and volume fraction?

4. How can the relationship between the diffusion time and g be exploited to provide additional informa-
tion about the underlying tissue geometry?

5. What is the effect of noise on the g-space analysis?

4 Diffusion and Displacement Distribution Profile of Water

The data obtained from DWI techniques have typically been interpreted using ideas from diffusion in isotropic
homogeneous materials. This effectively means that the techniques are used to estimate a single ‘effective’
diffusion coefficient that represents an ’effective medium’ approximation to the complicated inhomogeneous
and anisotropic structure in tissues. This method has been extremely useful in application.

In biological applications, such as the brain, the complex intracellular and extracellular regions that
are separated by permeable membranes represent a medium that is far from being either homogeneous or
isotropic. Therefore, diffusive processes in the brain differ significantly from those that would be observed
in homogeneous and isotropic media. In principle, it is possible to use the data from DWI measurements to
determine much more detailed information about the diffusive processes. The natural questions then arise of
how much information about the complex structure of the brain can be extracted from the data and how robust
is this information to measurement errors. There is also the important question of whether it is possible to
extract this information in an acceptable image acquisition time.

4.1 One-, two-, and three-dimensional models

To investigate these questions, we will consider a simple one-dimensional model that contains intra- and
extracellular regions that have different sizes and diffusivities and are separated by permeable membranes,
and use this as a model for brain tissue. We will determine an exact solution to the diffusion of water in this
model environment, and then use this solution to determine the DWI measurements that one would obtain.
We will use this data to attempt to reconstruct the parameters that characterize the model system. We will also
determine the robustness of this approach when noise is added to the signal. This will allow us to determine
what type of information can realistically be obtained from the DWI measurements.

Subsequently, we will extend this model by coupling it to a one-dimensional region of uniform diffusivity
containing no boundaries. This region will represent the connected component of the extracellular space,
while the original portion of the model will represent the contribution from the diffusive particles that move
within and between cells. With this model, it will be possible to separate out the relative importance of the
intracellular and extracellular spaces in determining the value of the ‘effective diffusion coefficient’, and thus,
we may use the model to provide insight into the process of cell swelling that occurs in brain ischemia and
cortical spreading depression.

We will also consider the diffusion of water in fully two- and three-dimensional cellular media. We will
use closed regions within the domain to model the intracellular space. A permeable boundary will separate
these regions from a continuously connected region that represents the extracellular space. In this case, it will
not be possible to derive an exact solution, and thus numerical approximations will be made. With this model,



we can consider further the questions discussed above. In particular, we will consider how the variation of
the anisotropy, in addition to the inhomogeneities, affects the value of the ‘effective diffusion coefficient’.
Furthermore, we can extend the discussion to include Diffusion Tensor Imaging (DTI), which is an extension
of the effective medium assumption that drops the assumption of isotropy while maintaining the assumption
of homogeneity.

4.2 Displacement distribution profile

By Fourier transformation of the decay of the DWI signal for water, it is possible to extract the displacement
distribution profile. Some models have been set up to simulate water diffusion in tissues, but it is difficult to
solve the inverse problem for these models. Since the displacement distribution profile is determined by the
movement of intracellular or extracellular molecules, we set up a compartmental (lumped parameter) model
based on molecular thermodynamics theory. This model allows us to simulate the displacement distribution
profile and to solve the inverse problem.

Suppose the tissue consists of two compartments: the intracellular and extracellular spaces, and water
molecules can move between these two compartments. Then the velocity distribution of the water in the
tissue can be simplified to give

af(a,v) + (1 —a)g(e,v) + Sh(v) = P(v) (1)

where « is the intracellular volume fraction and [ is the fraction of water molecules exchanged between the
intracellular and extracellular spaces. f(c,v) is the velocity distribution of the intracellular water molecules,
and g(a, v) is the velocity distribution of the extracellular water molecules. h(v) is the tissue water molecules
without considering cell boundaries. P(v) is the velocity distribution profile that can be inferred from the
distribution profile of the DWI, i.e., by dividing the displacement by time t. If we know these velocity
distributions, then we can get the optimum values of « and 3.

4.3 Theoretical velocity distribution

If these two compartments are homogeneous, then from our knowledge of statistical mechanics, the velocity
distribution can be defined by a Maxwell-Boltzmann distribution

¢(v) = Cexp((~Kv?)/2) (2)

where C and K are constants. Obviously, C and K are affected by the volume (or boundary) of the com-
partment and the tortuosity within the compartment. Therefore, f(a,v), g(a,v), and h(v) can be defined

fla,v) = Cr(a) exp((—Kr(a)v?)/2), 3)
g(a,v) = Cp(a) exp((~Kp(a)v?)/2), (4)
h(v) = Cw exp((—Kwv?)/2). (5)

If we can determine expressions for the parameters, Cj(«), Cr (), Cw, Ki(a), Kg(«), and Ky, and obtain
the velocity distribution profile over a short enough time, then we should be able to solve the inverse problem
for this model.

S Comparison of the Predicted Apparent Diffusion Coefficient Using
Three Different Models

Although the apparent diffusion coefficient (ADC) is often used to characterize water movement in brain-
tissue, the actual phenomenon is not dominated only by the diffusion process. The permeability of water
molecules through cell membranes also is an important factor. Since the spatial scale of MRI measurements
is much larger than the cell size, the measured ADC is just an indicator to show how far water molecules
can spread. There exist several simple models for evaluating macroscopic water movement that take into



Table 1: Parameter values from Latour et al. [4]. a: radius of sphere (cell), ¢: volume fraction of the extracel-
lular region, Cipt: Water concentration in intracellular region, Dint: diffusion coefficient of the intracellular
region, Dexy: diffusion coefficient of the extracellular region.

Sample | a 10) Cint Dip¢ Dext Permeability
pum x107% cm?/s | x107° cm?/s || x1073 cm/s
A 2.1 | 0.19 | 0.71 1.56 2.12 63+14
B 2.1 | 0.19 | 0.71 1.56 2.12 3.7£1.4
C 2.3 | 0.00 | 0.78 1.64 2.12 1.1

Table 2: Effective diffusion coefficient (Dqgr) based on three models using permeability coefficient [106
cm?/s] estimated by Latour et al. [4].

Diffusion model | Sample A Sample B | Sample C
Latour et al. 4.2 3.50 2.70
ADCps 3.95 3.50 2.25
(3.71-4.17) | (3.26-3.73)
ADCsp 4.10 3.66 2.25
(3.87-4.32) | (3.42-3.88)

consideration the water permeability through membrane. Here, we discuss and evaluate the ADCs obtained
using different phenomenological models.

Latour et al. [4] obtained time dependent ADCs based on experiments using red blood cells. They eval-
uated the permeability of water through cell membranes from the long time asymptotic behavior of ADC.
They used Effective Medium Theory and called this long time ADC an effective diffusion coefficient (Dg¢f).
The parameters they used and the estimated permeabilities are shown in Table 1.

5.1 Estimation of Deff

Using these values, we evaluated the ADCs using two other models, given in Szafer et al. [13], which are
called the Parallel-Series Approximation and the Series-Parallel Approximation. In these models, the ADCs
are computed as follows. Let the volume fraction of the intracellular region be f = 1 — ¢, and the length of
the periodic volume is given by

L=— (1
g
where g = f1/3. Define
pe— (241" @
© " \PL " Dicjpe)
The ADC using the Parallel-Series Approximation ADCps) is given by
g  1-g\"

ADCps = ¢* | = 1-¢*)D 3
ps g(DC+DE) +(1-9°)Dg 3)

and that using the Series-Parallel Approximation (ADCsp) is given by

g 1—g\ ™"

ADCsp = + : 4
sp (gQDc +(1-¢?>)Dg  Dg ) @

It is noted that these formulas, (3) and (4), are slightly different from the original ones, since they have
the effect of water concentration in the cell (¢jy,¢) in D, given by Eq.(2). This c;; is not taken into account in
the original formula given in [13]. The comparisons of the effective diffusion coefficients (Dggf), i.€., ADCs
at large time, are shown in Table 2.

It can be seen that the differences in D¢y is less than 5% in Sample A and B, and 20% in Sample C. Since
the differences between the models is primarily in the geometric shapes of the cells, these values indicate that
the D¢y is insensitive to the geometric shape of the cells, provided the same physical parameters are used.



Table 3: Permeability (10~3 cm/s) estimation based on three different models using the same effective diffu-

sion coefficient obtained by Latour et al. [4]

Diffusion model | Sample A | Sample B | Sample C
Latour et al. 6.3+1.4 3.7+1.4 11
ADCps 7.90 3.70 13.9
ADCsp 6.94 2.81 13.9

5.2 Estimation of Permeability Coefficients

We also did another type of analysis; namely, we used D¢ obtained from Latour et al. [4] to estimate the
permeability coefficients using the models given by Eqs. (3) and (4). The results are shown in Table 3.
Interestingly, the estimation of permeability coefficients has a larger error than that in the effective diffusion
coefficients. There is more than a 20% difference in some cases.

5.3 Discussion

From the results given above, it is concluded that the estimation of Dggr using the same permeability co-
efficients is less sensitive to the models than is the permeability coefficients when using the same Dggy.
This characteristic suggests that obtaining the permeability by different experimental means and using them
to evaluate apparent diffusion coefficient is a more robust way to probe into scales smaller than the MRI
resolution allows.

6 Cell Swelling in CSD

Under pathological conditions such as stroke, the depletion of oxygen due to reduced blood supply leads to
failure of ion pumps and a resulting depolarization of the cell membrane potential. Consequently, the intra-
cellular ion concentration increases and water moves into cells due to osmotic pressure and the cells swell.
This has been observed by diffusion weighted MRI measurements since cell swelling reduces extracellular
space and restricts water diffusion [10]. Understanding the relationship between these pathological condi-
tions and restricted diffusion due to cell swelling could help us to identify regions in the brain at risk and
limit further damage. However, since complex biological and biochemical processes typically occur during
dramatic pathological conditions, such as stroke, it is difficult to identify cell swelling as the single most im-
portant factor to affect the MRI signals. On the other hand, less severe physiological phenomena, which do
not involve energy failure, also could lead to cell swelling and alter the characteristics of water movement in
the brain-cell microenvironment. Studying these phenomena could provide useful clues for us to understand
the underlying biological and biochemical processes involved in cell swelling. Cortical spreading depression
is one such phenomenon and is relatively easy to study using diffusion-weighted-imaging (DWI) techniques
such as MRI [11].

6.1 Cortical spreading depression

Cortical spreading depression (CSD) is a slowly propagating chemical wave phenomenon observed in the
cortex of various brain structures in a diverse set of experimental animals. CSD is characterized by depres-
sion of cellular electrical activity and pathological shifts in ion concentrations, e.g., extracellular potassium
concentration can reach values as high as 50 mM during CSD. The primary clinical interest in CSD is due to
its presence in the visual cortex of humans during migraine with aura (aka classic migraine). Although CSD
was discovered in 1944 by the Brazilian neurophysiologist, A.A.P. Leao [5], the mechanisms producing CSD
and their quantitative explanations remain elusive.

Some of the mechanisms that are believed to be of importance in CSD instigation and propagation are
ion diffusion, cell (neuronal and glial) membrane electrical activities (ionic channels and metabolic pumps),
release of neurotransmitter (due to increased extracellular potassium), spatial buffering (effects of electrotonic
spread of depolarization along glial cell syncytia), and cell swelling due to osmotic effects. While several



of these effects have been considered in different models, all of them have not been incorporated into a
comprehensive model, see [9, 14]. The need for parameter values in quantitative modeling motivates the use
of DWI in helping to establish upper and lower bounds on these parameter values.

6.2 Spatially independent model of CSD

During the FRG, it was decided that a first step in a more comprehensive study of CSD would be to construct a
spatially independent compartmental model of Hodgkin-Huxley (HH) type. This model would include water
movement in the direction of osmotic pressure differences between the intra- and extracellular compartments.
The basic model takes the following form

dC’jE deI

o =Lt Py =By, (5)
where CJE and C]I are the extra- and intracellular ion concentrations, respectively, with j=Na, K, Cl, and
Ca for sodium, potassium, choride, and calcium ions, respectively. The ion channel fluxes for Na and K are

given by,

Ik =g9x(V =Vk), Ina=9gna(V — VNa) (6)
where 5
RT . C!

Vj= Fz; In CTI (N

is the Nernst potential and R, T', F', and z; are the universal gas constant, the temperature, Faraday con-
stant, and the valence for ion j, respectively. The cell membrane potential can be computed using either the
Goldman-Hodgkin-Katz (GHK) formula

_RT INaCRo + 9k CE + 90aCha + 901CE

14 ®)
F 7 gnaCL, + 9xCk + 90aCL, + 9c1CE,
or the Hodgkin-Huxley (HH) equation
RT
V =
F(gna + 9K + gca + gci)
c cE cE cl
x | gnaln =2 + g ln K + g In =& + goyIn =S ) . 9
<9N HC]{IG 9K HC{( gc Hcéa gClanl )
For the conductance, we use the Hodgkin-Huxley formulas for g, and gx given by
9Na = gnam’h, gk = grn' (10)
where m, h, and n are given by equations in the form
du  Use — U
— = 11
dt Tu (In
with coefficients ]
u = ; oo = Tuly 12
T, o U TuQ (12)

for u = m, h, and n, respectively. As a simplification, we assume that the conductance for Cl is a constant,
gor = 0.5gxn%_ and the calcium conductance is zero, i.e., goq = 0.

The ion pumps play a crucial role in maintaining homeostatic ion concentrations and cell membrane
potential. The basic ion pump is the sodium-potassium exchange pump, which is modeled as

Pno =3P, Px=—-2P (13)
where ) 5
. CE C1 0.052 sinh
P=201x107%( —X e sinh(y) (14)
CE 1-176.5 CL, +0.6/) 0.026exp(y) + 22.5exp(—7)



with
_ F(V +176.5)
TSR
Finally, the volume fraction of the extracellular space, g, can be computed using
dag 3 B I A
W:gwa% ;cj _ch_l—oz (15)
J

where g, is the conductance and A; is the number of immobile anions inside the cell.
In summary, the above system of ordinary differential equations can be used to compute the evolution of
the ion concentrations and membrane potential from a given set of initial data.

6.3 Numerical tests

We use the parameter values, R = 8.31, T' = 310, and F' = 95, specify the initial conditions as cﬁa = 145,
chy =10, cE =2, ¢k =140, cE, = 1.8, ¢k, = 2 x 1074, ¢&, = 110, ¢L, = 5, ap = 0.2, and set
A= (1 —ag) Zj (ch - cjf) gnae = 0.01gk, go1 = 0.5gk. Since the effect of calcium on the osmotic
pressure is small, we have neglected the effects of C'a by setting gc, = 0, and the conductance for C1 is
assumed to be fixed. Finally, we set gy, = 120 and gx = 3.6. The water conductance is set at g,, = 0.1.

The numerical results show that using the GHK formula, the membrane will automatically depolarize
from about —95 mV to a much higher value and the cell swells. The behavior of the system changes little
when KCl is injected except that the cell shrinks initially before swelling. The HH formula for membrane
potential, on the other hand, maintains the resting membrane potential (computed based on the initial ion
concentrations). Furthermore, when we inject KCI, the membrane depolarizes as expected. However, the
cell shrinks instead of swells. Note that there is no recovery in these results because spatial diffusion is not
included.

6.4 Discussion

The preliminary studies conducted during the FRG suggest that further modeling is needed. As shown in [8],
the GHK and HH formulas for membrane potential are two asymptotic limiting equilibrium cases. Therefore,
a dynamic approach which yields more consistent equations for membrane potential and ionic currents is
desirable, as indicated by [2].

7 Scientific Progress and Outcome of the Meeting

Comparison of the continuous medium theory of Latour et al. [4] with that of Szafer et al. [13] showed a
good correspondence using the permeability data from the Latour et al. paper to predict the water ADC values
from the Szafer et al. model. The results of this comparison will be considered for a conference abstract.

The FRG has proved to be a very effective way to bring our group of researchers to a common level of
understanding and competence to work together on several different projects related to Water Movements in
Biological Tissue and Diffusion-Weighted Imaging. We have identified several interesting problems that will
continue to be studied. The group worked together very well and had a very productive week.
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