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1 Overview of CFT and twisted equivariant K-theory
Conformally invariant quantum field theory in 2 dimensions (CFT for short) is by now a well-established
area of mathematical physics, with profound relations to several areas of pure mathematics. The two easiest
classes of examples are associated to finite groups G (holomorphic orbifolds) and to the loop group LG =
{f : S1 → G} of compact Lie groups G (Wess-Zumino-Witten models), at some level k ∈ Z. New examples
can be constructed from old ones through the orbifold and GKO coset constructions.

A CFT consists of two halves, called vertex operator algebras (VOA), which are linked together by a
modular invariant. Typically these two VOAs are isomorphic. For the nicest VOAs (called rational), e.g.
those associated to finite groups or loop groups, the modules form a modular tensor category, and so among
other things come with representations of braid groups and other mapping class groups such as the modular
group SL(2,Z). The Grothendieck ring of this category is called the Verlinde ring. In these rational theories
— the only ones we consider — each Verlinde ring is finite-dimensional, associative, commutative and is
perhaps the simplest algebraic structure associated to the CFT.

The modular invariant should be thought of as the glue linking together the two VOAs (or more specifi-
cally their modules) into the full CFT. The possible modular invariants for a finite group G are parametrized
by pairs (H,ψ) for a subgroup H of G×G and ψ ∈ H2

H(pt;S1). No such parametrisation is known for loop
groups: the modular invariants at all levels k are known only for LSU(2) (which have an A-D-E classifica-
tion) and LSU(3). More generally, we know that the generic loop group modular invariants are associated to
affine Dynkin diagram symmetries. Those symmetries of the unextended Dynkin diagram are associated to
outer automorphisms of G; the remaining symmetries are associated to subgroups Z of the centre of G, and
yield the so-called simple current modular invariants. The remaining modular invariants — the exceptional
ones — are primarily due to conformal embeddings (certain subgroups H of G) and rank-level duality. For
example, in the A-D-E list of LSU(2), the outer automorphisms of SU(2) are trivial and give rise to the A-
series of modular invariants, the only nontrivial subgroup of the centre Z2 of SU(2) gives rise to the D-series,
conformal embeddings give rise to the E6 and E8 modular invariants, while E7 is due to rank-level duality.

The Verlinde ring is associated to each half. The analogous structure, associated to the full conformal
field theory (or if you prefer, the modular invariant), is called the full system or algebra of defect lines. The
nimrep or boundary data is a module for both the Verlinde ring and the full system. In some sense, every
modular invariant of a pair of VOAs comes from a restriction of a larger VOA, twisted by an automorphism
of the larger VOA. The problem in general is then to find such extensions. In practise (and in theory) the
reverse procedure (inducing rather than restricting) is more valuable and is called alpha induction.
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Much of this data is beautifully captured by subfactors (a subfactor is a containment N ⊂ M of fac-
tors, which are simple von Neumann algebras), and sectors (equivalence classes) of endomorphisms. Here
the Verlinde algebra is represented by sectors NXN on a III1 factor N which are nondegenerately braided;
multiplication is composition. In this picture, every modular invariant arises from a subfactor N ⊂ M and
an alpha-induction up to a closed (but unbraided) system MXM of sectors on M , and the nimrep to a system
NXM of maps N →M closed under left compositions by NXN and right compositions by MXM .

The other ingredient in our story is K-theory, which on a compact Hausdorff space X looks at the vector
bundles over X , or equivalently the finitely generated projective modules over the C∗-algebra C(X) of
complex valued continuous functions on X . This gives the abelian group K0(X), as the Grothendieck group
of vector bundles or modules. If a groupG acts on our spaceX , we can define equivariant K-theoryK0

G(X)
for equivariant bundles, e.g. as the K-theory corresponding to the crossed product C(X) o G. For locally
compact spaces, we need to be a bit careful, e.g. by inserting and removing one-point compactifications,
but once we’ve done that we can define the group K1

G(X) as K0
G(R × X). These C∗-algebras (thought of

as spaces of sections of the trivial bundle over X with fibres the compacts K) can be twisted, by taking a
non trivial bundle Kτ over X . This results in twisted (equivariant) K-theory τK∗(X) (or τK∗G(X) in the
equivariant case). The possible twists τ are classified by a Čech cohomology class ofX , the Dixmier–Douady
invariant H3(X; Z) (or H3

G(X; Z)).
In a similar way, twisted equivariant K-homology τKG

∗ (X) can be defined; these are related by Poincaré
duality. The most important property ofK-theory (orK-homology) is Bott periodicity, which says τKi+2

G (X) ∼=
τKi

G(X) and τKG
i+2(X) ∼= τKG

i (X).
For example, let G be a compact connected simply connected Lie group. The equivalence classes of its

finite-dimensional representations under direct sum and tensor product form the representation ringRG. This
ring can be realized as the equivariant K-group K0

G(pt) of G acting trivially on a point pt; the other K-group
is K1

G(pt) = 0.

2 Recent Developments and Open Problems
The recent work of Freed-Hopkins-Teleman (see e.g. [5]) gives a K-theoretic interpretation for the Verlinde
ring Verk(G) of a loop group LG at level k: Verk(G) is the twisted equivariant K-group k+h∨K

dim(G)
G (G)

where G here acts adjointly on itself, h∨ is the dual Coxeter number of G, and the twist k + h∨ lies in
H3
G(G; Z) ∼= Z. The multiplication in Verk(G) is recovered from the push-forward of group multiplication.

The other K-group, namely k+h∨K
1+dim(G)
G (G), is 0.

A natural extension of Freed-Hopkins-Teleman would be to realise in a similar spirit (e.g. K-theoretically)
the other data, such as the full system, nimreps, and alpha induction, for the modular invariants associated
to loop groups. Freed-Hopkins-Teleman were helped to their loop group theory, through considering a toy
model: the finite group G case, where it is much easier to see that the Verlinde ring is isomorphic to K0

G(G).
But in [1], the finite group story is developed much more completely, guided by the braided subfactor ap-
proach. Consider a modular invariant associated to subgroup H < G×G and, for simplicity, trivial cocycle
ψ in H2

H(pt;S1). Then the full system can be identified with K0
H×H(G×G), where H ×H acts on G×G

diagonally on the left and right, and K1
H×H(G×G) = 0. The nimrep is K0

H(G), and again K1
H(G) = 0.

We would expect something similar for loop groups. But one of the many ways in which finite groups
G are easier than loop groups is that uniform parametrisation of modular invariants. For loop groups, we
would expect a different description of the full system etc, for each class of modular invariants (namely those
coming from outer automorphisms of G, from subgroups of the centre of G, from conformal embeddings,
from rank-level duality,...).

Our recent paper [2] confronted these questions for the loop groups. It’s long and technically complicated,
and took us over 3 years to write, but will provide the foundation for all of our future work. In it we focussed
primarily on what we thought would be the class closest to Freed-Hopkins-Teleman, namely conformal em-
beddings H ⊂ G; we expected the full system to be related to some twist of KH(G). This turned out to
be far from straightforward, for reasons we only now understand, and we could only obtain partial matches.
[2] also constructed the relevant Dixmier-Douady bundles realising the twists, and studied orbifold examples
(again with only partial results).
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3 Scientific Progress Made
We arrived in BIRS with several questions and some ideas. Our intention was to begin a sequel to our paper
[2], which we had recently completed. A week later we left with 50+ pages of notes and the core of the sequel
[3] worked out. Considering how hard [2] had been to write, we were both completely amazed at how much
progress we made in so little time.

We have a new and much more promising approach to conformal embeddings, namely τK0
H×H(G×G)

where the action is diagonal: (h1, h2).(g1, g2) = (h1g1h
−1
2 , h1g2h

−1
2 ) (implicit here is the map H → G).

But we now realise that exact K-theoretic descriptions of conformal embeddings will require addressing the
Clifford algebras implicit in [5].

But much more important, we obtained a complete understanding of the full system (including nimreps,
alpha-induction,...) corresponding to the generic modular invariants, i.e. those coming from outer automor-
phisms and subgroups of the centre. For example the full system corresponding to a subgroup Z of the centre
will be τK0

G×G(G/Z0×G/Z0), again using the diagonal action, where Z0 is a certain subgroup of Z, and τ
some twist. The nimrep is τKdimG

G/Z (G). We accomplished this by first working out the complete picture for
the special case of tori, which have a geometric description in terms of lattices. Furthermore, we obtained the
K-theoretic description for the Verlinde ring of an infinite class of (non-holomorphic) orbifolds. We failed to
do this for even one example in [2].

4 Outcome of the Meeting
Once we left BIRS we began fleshing out the details. We applied ourK-theoretic descriptions to dramatically
simplify nimrep formulas appearing in the CFT literature, and recovered K-theoretically formulas for D-
brane charges which appeared in the CFT literature. The resulting paper [3] has been submitted it to Commun.
Math. Phys. (We also began an unrelated paper, [4], which slowed somewhat our completion of [3].)

There are still some open questions left in [3] (e.g. we only have a partial understanding of rank-level
duality and hence of the E7 modular invariant of LSU(2)), but we both feel that the K-theoretic story is
now close to complete, and the next step is to obtain direct KK-theoretic descriptions of the various maps
here, namely the modular invariant, alpha inductions, the modular group representation, etc. These should
be analysed via spectral triples, Fredholm modules and Dirac operators. Given the success of [3], developing
this picture is the natural next step.

[2] took over 3 years to write. Partly this is because of its length (88 pages) and complexity, but partly it
was because we work on opposite sides of the Atlantic and our visits together are diluted somewhat by other
obligations (teaching, grad students, family etc). By contrast our week at BIRS was intense and distraction-
free. It was a fabulous and invaluable experience, which pushed our desired extension of Freed-Hopkins-
Teleman to new levels. [3] is a fine paper; it could not have been written in anything like this timeline without
this Research-in-Teams at BIRS.
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